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All the infinitesimal deformations of the Galilean algebra with and without central extension 
are computed, as well as their integrability properties. Among the four-parameter family of 
infinitesimal deformations of the unextended algebra is found the Newton algebras, the 
Euclidean algebra E( 4), the Poincare algebra, the de Sitter algebras, and SO(5). For the 
centrally extended algebra there is found, in particular, an infinitesimal deformation containing 
a Poincare subalgebra (although the embedding is not the natural one), and centrally extended 
versions of the Newton algebras. 

I. INTRODUCTION 

The theory of Lie algebra deformations 1-3 provides us 
with a systematic procedure that is an inverse to the more 
common Lie algebra contractions.4

•
5 In practice, contrac

tions are associated with physical parameters, which enter in 
the commutation relations of a representation of a Lie alge
bra, tending to some physically meaningful limit. For exam
ple, the low velocity limit (c--+ 00) of the Poincare algebra 
yields6

•
7 the Galilean algebra, and the Poincare algebra is 

itself the flat space limit (K--+O) of the de Sitter algebras. It is 
more useful, however, to look at the inverse problem. Sup
pose that we are given a Lie algebra which, to the best of our 
empirical knowledge, is an exact symmetry of the physical 
system under consideration. It may be, however, that this 
symmetry is only approximate and hence-either to discov
er new symmetry principles or to suggest empirical tests 
which can probe the exactness of the symmetry-one would 
like to know all the possible algebras that are "close" in some 
sense to the given one. These are precisely those algebras to 
which the given algebra can be deformed. The advantage of 
the deformation approach lies in that deformations can be 
searched for systematically by computing Lie algebra coho
mology groups. Equivalently, one could classify all isomor
phism classes of Lie algebras of a given dimension and then 
compute all the possible contractions, but as the dimension 
grows, this problem becomes computationally untractable, 
whereas the computation of cohomology groups is still feasi
ble, due in great part to theorems like the one of Hochschild 
and Serre,8 which allows one to exploit the semisimple part 
of the algebra in question to simplify the calculations tre
mendously. 

The possible deformations of the Poincare algebra have 
been known for some time. It was proven by Levy-Nahas in 
Ref. 3 that the only algebras to which the Poincare algebra 
can be deformed are the de Sitter algebras SO ( 4,1) and 
SO(3,2). It had been proven previously by Sharp in Ref. 9 
that this was the case among the semisimple Lie algebras. 

In this paper, we analyze the question starting from the 
Galilean algebra. Since both the Galilean algebra as well as 
its centrally extended version are physically interesting, we 
find all the Lie algebras to which these algebras can be de
formed. Whereas our results for the centrally extended alge
bra are new, the ones for the unextended case can be read 

from the work ofBacry and Levy-Leblond7 and of Bacry and 
Nuyts lO who classify all the (3 + 1 dimensional) kinematic 
Lie algebras under the constraint of space isotropy. Kine
matic Lie algebras are those real Lie algebras generated by 
the ten elements {Mij,K;,P;,Po} where i,jrun from 1 to 3 and 
Mij = ~EijkgkIJI' and the constraint of space isotropy merely 
fixes the transformation laws of the generators under space 
rotations; K;, J;, P; are vectors and Po is a scalar. Although 
we make no isotropy assumption on the deformations, we 
notice that as a consequence of the semisimplicity of the 
rotation subalgebra (and hence its rigidity under deforma
tions) there are no deformations of the Galilean algebra that 
are not isotropic. 

In summary, we find that there are four infinitesimal 
deformations of the unextended Galilean algebra yielding, 
among many other algebras, the Newton algebras, the Eu
clidean algebra E ( 4 ), the Poincare algebra, as well as diverse 
real forms of B2 : SO(3,2), SO(4,1), and SO(5). For the 
centrally extended algebra there are three infinitesimal de
formations, one of which corresponds to centrally extended 
versions of the Newton algebras, and one of which contains a 
Poincare subalgebra, although the embedding is not the nat
ural one. We also investigate the integrability properties of 
these infinitesimal deformations. 

This paper is organized as follows. In Sec. II we review 
the basic facts about deformations of Lie algebras. Lack of 
space prohibits a more detailed account, but the reader is 
urged to look at the beautiful treatment to be found in Ref. 2. 
In Sec. III we discuss the factorization theorem of Hochs
child and Serre, which simplifies many of the calculations. 
We also give two brief applications of this theorem: the de
termination of the possible central extensions ofthe Galilean 
algebra, and the theorem of Levy-Nahas on the deforma
tions of the Poincare algebra. Finally, in Sec. IV we deter
mine the infinitesimal deformations of the Galilean algebra 
with and without central extension and discuss their integra
bility domains. 

II. DEFORMATIONS OF LIE ALGEBRAS 

Let 9 be a finite-dimensional real Lie algebra and 9 [ [t] ] 
the space offormal power series in t with coefficients in g. By 
a deformation of we 9 we mean a skew-symmetric bilinear 
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map 9 X g-+ 9 [[t]] that satisfies the Jacobi identity formal
lyll order by order in t. In other words, we can think of a 
deformation as a new bracket [ , ] t defined by 

'" 
[X,Y1, = [X,Y] + L tncn(x,Y), (2.1 ) 

n=O 

for all X, YE 9 and where the Cn are cochains in C 2
( gig). 

The Jacobi identity imposes certain conditions on these co
chains. In particular, the linear therm CI has to be a cocycle. 
Conversely, ifCI is any cocycle in C 2

( gig), we can begin to 
define a deformation by 

[X,Y1, = [X,y] + tCI(X,Y). (2.2) 

The fact that CI is a cocycle guarantees that the Jacobi iden
tity is satisfied up to terms of order t 2. Therefore we call CI an 
infinitesimal deformation. In general, not every infinitesimal 
deformation is the linear term of a deformation. Those that 
are, are called integrable. To see what stands in the way of an 
infinitesimal deformation giving rise to a deformation, we 
look at the terms of order t 2 in the Jacobi identity for the 
above infinitesimal deformation. One finds the following: 

CI(X, CI (Y, Z» + CI(Y, CI (Z, X» + CI(Z, CI (X, Y», 
(2.3) 

which, since CI is a cocycle, can be seen to be a cocycle in 
C 3 (g; g). If and only if it is also a coboundary, say - dC2, we 
can continue the deformation as follows: 

[X, Y1, = [X, Y] +tCI(X, Y) +t 2 C2 (X, y), (2.4) 

guaranteeing that the Jacobi identity is satisfied up to term of 
order t 3 and higher. Looking at the terms of order t 3, we 
again find a cocycle in C 3 (g; g) and so on. Hence the ob
struction to the integrability of an infinitesimal deformation 
is an infinite sequence of cocycles in C 3 (g; g) whose coho
mology classes all have to vanish. These classes appear very 
naturally within the framework of Nijenhuis and Richard
son,2 who define the structure of a graded Lie algebra on the 
cohomology H (g; g). We refer the reader to their paper for 
the details. 

On the other hand, not all infinitesimal deformations 
are "essential." Suppose that CI is a coboundary. That is, 
CI = - dB I , for some BI in C I (g; g). Then we define the 
map Tby T(X) =X + tBI(X). It is then trivial to verify 
that up to terms of order t 2, 

[T(X), T(y)1, = T([X, y]). (2.5) 

Conversely such a map T exists only if CI is a coboundary. 
Hence infinitesimal deformations such that CI is a cobound
ary will be called trivial. This allows us to introduce an 
equivalence relation on the set of infinitesimal deformations. 
Two infinitesimal deformations are considered equivalent if 
their difference is trivial. Hence the equivalence classes of 
infinitesimal deformations are in bijective correspondence 
with the cohomology group H 2 (g; g). 

Hence we see that there are two crucial cohomology 
groups in the theory of deformations of Lie algebras: 
H 2 (g; g), which contains the nontrivial infinitesimal defor
mations, and H3 (g; g), which contains the obstructions to 
the integrability of the infinitesimal deformations. In gen
eral, unless one can show that it vanishes, it is neither neces
sary nor useful to compute H 3 (g; g) since only certain 
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classes have to be checked. We do, however, need to com
pute H 2 (g; g), and in the next section we will describe a 
method attributable to Hochschild and Serres that makes 
the computations rather straightforward. 

Notice that a semisimple algebra is rigid in the sense that 
it admits no nontrivial deformations. 

III. THE FACTORIZATION THEOREM OF HOCHSCHILD 
AND SERRE 

In Ref. 8 Hochschild and Serre proved a factorization 
theorem that in many cases simplifies the calculation of Lie 
algebra cohomology groups. Leg 9 be a finite-dimensional 
real Lie algebra and lj be an ideal such that the quotient Lie 
algebra ~ = g/lj is a semisimple. Let m denote a 9 module. 
Then the ideallj defines a filtration ofthe cochains C(g; m) 
whose spectral sequence degenerates at the E2 term yielding 
the following isomorphism: 

n 

Hn(g;m)~ EIlHn-i(~;R)®Hi(lj;m)~, (3.1) 
i=O 

where ~ denotes ~ invariants. Since ~ is semisimple, it acts 
reducibly on the cochains C(lj; m), and hence the invariant 
cohomology can be computed from the invariant cochains. 

Moreover, using the Whitehead lemmas, we know that 
H I (~; R) = H2(~; R) = O. If, in addition, ~ is simple, then 
H 3 (~; R) ~ R. Hence for ~ simple, the first few H (g; g) 's are 
as follows: 

HO(g; g) ~Z(g), 

HI(g; g)~HI(lj; g)~, 

H2(g; g) ~H2(lj; g)~, 

H3(g; g) ~H3(lj; g)~ Ell Z(g), 

where Z(g) denotes the center of g. 

A. Central extensions of the Galilean algebra 

As a trivial application of the factorization theorem, we 
compute the central extensions of the Gililean algebra; that 
is, H 2 (g; R). The Galilean algebra is a real Lie algebra gen
erated by {Mij' K i, Pi> po} where i, j run from 1 to 3 and 
M ij = - ~i' The Lie bracket is given by 

[Mij' M k/ ] = gjkMj/ + gj/Mjk - gikMjI - gj/Mik , 

[Mij' Kk ] = gjkKi - gikKj, 

[Mij' Pk ] = gjkPi - gikPj' 

[Ki' Po] = Pi' 

and all other brackets are zero. Let lj denote the ideal genera
ted by {Ki, Pi' po}. Then ~ is the subalgebra generated by 
{Mij}.Bythefactorizationtheorem,H 2 (g; R) ~H2 (lj; R)~. 
The space of ~ invariant two-cochains is one-dimensional 
spanned by K i. /\ pj. gij' where K i. is the canonical dual 
vector to Ki and the same for P i •. It is clearly a cocycle and 
not a coboundary since the only ~ invariant one-cochain is 
po., which is a cocycle. Therefore there is only one nontri
vial central extension. Let us denote its generator by c. Then 
the extended Galilean algebra is supplemented with the ex
tra term [Ki' Pj ] = gijc, as is well known. 
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B. Deformations of the Poincare algebra 

As a final trivial application of the factorization 
theorem, we determine the deformations of the Poincare al
gebra. This was first done by Levy-Nahas in Ref. 3. The 
Poincare algebra is spanned by {Mab , Pa}, where a, b run 
from 1 to 4 and Mab = - Mba' The Lie bracket is given by 

[Mab' M cd ] = gbcMad + gadMbc - gacMbd - gbdMac' 

[Mab' Pc] = gbcPa - gacPb' 

all other brackets being zero. From this it already follows 
that Z(g) = O. We choose I) to be a translation ideal. Then g 
can be identified with the Lorentz subalgebra. There are no 
Lorentz invariant elements in I). The only Lorentz invariant 
cochain in C I (I); g) is P a* ® Paw hich is clearly a cocycle but 
not a coboundary by the previous remark. There are only 
two linearly independent Lorentz invariant cochains in 
C 2 (I); g). Theyarep a* /\p b* ® Mab andpa* /\p b* ® Eabcd 
g<e Met. The first one is a cocycle but the second one is not. 
Therefore there is a unique nontrivial infinitesimal deforma
tion of the Poincare algebra. There is only one linearly 
independent Lorentz invariant cochain in C 3 (I); g). It is 
P a* /\ P b* /\ P c* Ell Eabcd ~e Pe. It is not just a cocycle but 
also a coboundary. Hence there are no obstructions to inte
grability and the unique nontrivial infinitesimal deformation 
is integrable. It turns out that the deformed algebra needs no 
terms of order t 2 since the obstruction cocycle vanishes iden
tically, and hence we are left with the deformed algebra 

[Mab' M cd ] = gbcMad + gadMbc - gacMbd - gbdMac' 

[Mab' Pc] = gbcPa - gacPb' 

[Pa,Pb] = tMab · 

Notice that by rescaling Pa we can always reduce t down to a 
sign, but without complexifying we cannot reabsorb the sign. 
These algebras correspond to the de Sitter and anti-de Sitter 
Lie algebras depending on the sign of t. Both of these alge
bras are simple and hence rigid, admitting no further defor
mations. 

IV. DEFORMATIONS OF THE GALILEAN ALGEBRA 

In this section, we look at the deformations of the Gali
lean algebra with and without central extension. 

A straightforward calculation yields 

TABLE I. Results of cohomology calculations for the unextended Galilean 
algebra. 

Space 

CO(l);g)' 
ZO(l); g)' 
HO(l);g)' 
B '(l);g)" 
C'(l);g)" 
Z'(l);g)" 
H '(l);g)" 
B 2(l);g)" 
C 2(l) ;g)" 
Z 2(l); g)' 
H2(l);g)' 
B 3(l); g)" 

A. Unextended Galilean algebra 

Dimension 

I 
o 
o 
1 
7 
3 
2 
4 

16 
8 
4 
8 

The factorization theorem tells us that in order to com
pute H2(g;g) we merely need to compute H2 (1);g)', The 
method is straightforward. We first isolate the g-invariant 
cochains and then determine which of these are cocycles and 
coboundaries. This then gives us the dimension of the coho
mology group, as well as representative cocycles from each 
class. We let Z(I); g)' and B(I); g)' determine the g-invariant 
cocycles and coboundaries, respectively; Table I summar
izes the results. 

In particular, there is a four-parameter family of nontri
vial infinitesimal deformations generated by the following 
cocycles: 

C: = K i* /\ K j* ® Eijkgk1pI , 

Ci = ~Ki* /\Kj· ®Mij - p i* /\Kj· ®gijPO' 

C~ = pO. /\Pi. ®K" 

Cj = pO. /\Pi. ®Pi + pO. /\K i• ®Ki. 

The most general nontrivial infinitesimal deformation is 
therefore a linear combination l:! ~ Ita Cr. To investigate 
the integrability of the infinitesimal deformations, we must 
first compute the obstruction cocycles and then determine 
which ones are coboundaries. The first obstruction is the 
three·cocycle J2 = l:!,b~ I tatbJ~b where 

J ~b (X, Y,Z) = C ~ (X, C r ( Y,Z» + cyclic permutations. 
(4.1 ) 

J2 = t lt3(!p o• /\K i• /\Kj· ® EijkgklKI - p O* /\K i* /\pj. ® Eijkgk1pl ) + t lt2K i• /\Kj· /\K k• ® EijkPO 

_ !tlt4P O• /\K i. /\Kj. ® Eijkgk1pl + t2t3(Pi. /\pj. /\K k• ®gjkKi - po. /\pi. /\Kj. ®Mij) 

+ t t (2p o.d/\Pi• /\Kj. ""g .. p, - pO. /\K i• /\Kj. ®M .. + pi. /\pj. /\K k• ®g. p. + pi. /\Kj·K k• ®g .. K ) 
2 4 "" IJ 0 IJ Jk 1 IJ k • 

All terms, except for those proportional to tlt2 and t2/4' are 
coboundaries. Hence this infinitesimal deformation is not 
integrable unless II = t4 = 0 or 12 = O. 

In the first case, t I = 14 = 0, we have that J2 = - dC2 

where 

(4.3) 
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(4.2) 

I 
Computing the obstruction to the integrability of this sec-
ond-order infinitesimal deformation, we find that J3 = 0 and 
hence this is already a deformation. Reabsorbing the defor
mation parameter t into the ta's, we have the following de
formed algebra: 

[Mij,Mkl] = gjkMi/ + gi/~k - gikMjI - gjlMik , 
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[Mij,Kk] = gjkKi - gikKj' 

[Mij'Pk ] = gjkPi - gik~' 

[K;.Po] = Pi' 

[K;.Kj ] = t2Mij' 

[PO,Pi ] = t3K i' 

[p;.Pj ] = t2t3Mij' 

[ P;.Kj ] = - t2KijPO' 

for any value of t2 and t3. For t3 = 0 we obtain either the 
Euclidean algebra E( 4) or the Poincare algebra depending 
on the sign of t2, which via rescaling can be reduced to a sign 
itself. For t2 and t3 both nonzero we get, depending on their 
sign, SO (5), SO ( 4, 1 ), or SO (3,2). The correspondence is 
the usual one: Ki --+ MOi' Pi --+ MSi' and Po --+ M50. Then substi
tuting these into the commutation relations, we see that after 
some rescaling we can identify t2 with - goo and t2t3 with 
- g55. Finally, when t2 = 0 we obtain the Newton algebras 

which, depending on the sign of t3, we call N + and N _. For 
t3 > 0 and after some rescaling we get the algebra N + which 
is defined by 

[Mij,Mk/] = gjkMik + gi/Mjk - gikMj/ - gjlMik' 

[Mij,Kk] = gjkKi - gikKj' 

[Mij'Pk ] = gjkPi - gikPj' 

[PO,Ki ] = -Pi' 

[Po,P;] = Ki· 

For t3 < 0 after some rescaling and rotating Pi and Ki we 
obtain the algebra N _ defined by 

[Mij,Mk/] = gjkMi/ + gi/~k - gikMj/ - gjlMik' 

[Mij,Kk ] = gjkKi - gikKj' 

[Mij'Pk ] = gjkPi - gikPj' 

[Po.K;] = K;. 

[PO,Pi ] = - Pi· 

These results are summarized graphically in Fig. 1, which 
represents the t, = t4 = 0 plane in the parameter space of 
infinitesimal deformations. 

t3 

SO(5) SO(3,2) 

--- E(4) ----11..---

SO(4,1) 

Galilean 

FIG. 1. The t, = t4 = 0 plane in the parameter space of infinitesimal defor
mations of the unextended Galilean algebra. 
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In the second case, t2 = 0, we have that J2 is a cobound
ary, but the obstruction cocycle at level 3 to which this sec
ond-order deformation leads is not integrable unless t, = 0 
or t3 = O. In the first case, t, = 0, we see that J2 is automati
cally zero so that this is already a deformation. The de
formed algebra is given by 

[Mij,Mk/] = gjkMi/ + gilMjk - gikMjI - gjlMik' 

[Mij,Kk] = gjkKi - gikKj' 

[Mij'Pk ] = gjkPi - gikPj' 

[ PO,Ki ] = - Pi + t4K;. 

[PO,Pi ] = t4P[ + t3Ki· 

This is nonsemisimple Lie algebra that does not seem par
ticularly interesting. In the second case, t3 = 0, a long calcu
lation yields an obstruction cocycle at level 5 that is not a 
coboundary unless t, = 0 or t4 = O. In any of these cases J2 
= 0 to begin with and we already have deformations. The 

case t, = 0 yields (after some rescaling) the algebra 

[Mij,Mkd =gjkMik +gi/Mjk -gik~/ -gj/Mik , 

[Mij,Kk] = gjkKi - gikKj' 

[Mij'Pk ] = gjkPi - gikPj' 

[ P oKi] = - Pi + K;. 

[ PO,Pi ] = p;. 

which is a contraction of the previously found algebra; 
whereas in the second case, t4 = 0, we find, after some rescal
ing, the deformed algebra 

[Mij,Mk/] = gjkMi/ + gil~k - gik~k - gjlMik' 

[Mij,Kk] = gjkKi - gikKj' 

[Mij'Pk ] =gjkPi -gikPj' 

[Ki.Kj] = Eijkgk/p/, 

[Po,K;] = -Pi· 

In brief, we have a four parameter family {to} of nontri
vial infinitesimal deformations. The "domain of integrabi
lity" of these infinitesimal deformations, i.e., the subset ofR4 

corresponding to those values of {to} for which the infinite
simal deformations are integrable, is given by the (3,4)
plane, the (2,3 )-plane, and the I-axis. The interesting defor
mations seem to be in the (2,3) -plane, as Fig. 1 shows. 

B. Centrally extended Galilean algebra 

The summary of the calculations for the centrally ex
tended Galilean algebra is shown in Table II. 

In particular, there is a three-parameter family of non
trivial infinitesimal deformations induced by the following 
cocycles: 

C: = pO*/\P i*®K;. 

Ci =pO*/\Pi*®Pi +PO*/\Ki*®Ki -2c*/\po*®c, 

C~ = ~Ki* /\Kj* ®Mij + c* /\K i* ®Pi. 

Again the most general nontrivial infinitesimal deformation 
is l:! = , toe ~ . The first obstruction cocycle is given by 
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TABLE II. Results of the cohomology calculations for the extended Gali
lean algebra. 

Space 

CO(~;g)' 

ZO(~;g)' 
HO(~;g)' 

B'(~;g)' 
C'(~;g)' 
Z'(~;g)' 
H'(~;g)' 
B2(~;g)' 
C2(~;g)' 
Z2(~;g)' 
H2(~;g)' 
B3(~;g)' 

Dimension 

2 
I 
1 
1 

10 
4 
3 
6 

25 
9 
3 

16 

J2 = t lt3(p o* Ac· AK i* ®Ki - pO. Ac. APi. ®Pi ) 

+ 2t2t3Po. A c· AK i. ® Pi' (4.4) 

This is a coboundary if and only if it vanishes identically. 
That is, t I = t2 = 0 or t3 = O. In this latter case the deformed 
algebra looks like 

[Mij,Mkl] = gjkMi/ + gi/Mjk - gikMj/ - gjlMik' 

[Mij,Kk] = gjkKi - gikKj' 

[Mij'Pk ] = gjkPi - gikPj, 

[PO,Ki ] = - Pi + t2Ki, 

[PO,Pi ] = tiKi + t2Pi, 

[Pi,Kj ] = gijc, 

[c,Po] = - t2c. 

If t2 = 0, and depending on the sign of t I> we get centrally 
extended versions of the Newton algebras N + and N _ con
sidered in the previous subsection. If t I = 0 we get, after 
some rescaling, 

2739 

[Mij,Mk/] = gjkMi/ + gi/Mjk - gikMjI - gj/Mik , 

[Mij,Kk] = gjkKi - gikKj' 

[Mij'Pk ] = gjkPi - gikPj' 

[Po,K;) = -Pi +K;. 

[Po,P;) = Pi> 

[Pi,Kj ] = gijc, 

[c,Po] = - 2c. 
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In the case that t I = t2 = 0 we get the following de-
formed algebra: 

[Mij,Mk/] = gjkMi/ + gi/Mjk - gikMjI - gj/Mik , 

[Mij,Kk] = gjkKi - gikKj' 

[Mij'Pk ] = gjkPi!gikPj, 

[Ki>Po] = Pi' 

[Ki>Kj] = t3Mij' 

[c,Ki ] = t 3Pi , 

[Pi,Kj ] = gijc. 

Notice that depending on the sign of t 3, this algebra has a 
Poincare of E( 4) subalgebra. However, this seems to be an 
accident since the role of the fourth momentum generator is 
played not by Po but by the central extension c. In fact, we get 
either Poincare or E( 4) with an extra generator which we 
call D obeying [D,Moi] = - Pi' 

In brief, we have a three-parameter family of nontrivial 
infinitesimal deformations, whose integrability domain is 
the subset ofR3 consisting of the (1,2)-plane and the three
axis. 
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A multivariable biorthogonal generalization of the Meixner, Krawtchouk, and Meixner
Pollaczek polynomials is presented. It is shown that these are orthogonal with respect to 
subspaces of lower degree and biorthogonal within a given subspace. The weight function 
associated with the Krawtchouk polynomials is the multivariate binomial distribution. 

I. INTRODUCTION 

The Meixner polynomials 1-3 of a single variable appear 
in the Askey tableau4 of hyper geometric orthogonal polyno
mials under family (j) and are defined by the following hy
pergeometric representation: 

mn (x;{3,c) = ({3) n 2FI ( - n, - x;/3; 1 - c- I
) , 

(1.1 ) 

where{3and care complex parameters, withO< Icl < 1 andn 
a non-negative integer. These can also be expressed as a Ro
drigues-type formula, 

( ;/3 ) - r(x+ 1) -n-xDn[ cXr(x+fi) ] mn x ,c - c , 
r(x + fi) r(x - n + 1) 

where D is a finite difference operator defined as 

DI(x)=/(x+ 1) -/(x). 

They satisfy a discrete orthogonality relation, 
00 

I mn (x)m n, (x)w(x) 
x=o 

= ({3) nnlc - n(1 - c) - f38nn" 

where the weight function is given by 

w(x) = C
X 

r(x + {3) 
xl r({3) , 

( 1.2) 

(1.3 ) 

(1.4 ) 

( 1.5) 

and the sum is over all non-negative integers x = 0,1,2,,,.,00. 
A special case of the Meixner polynomials is associated 

with the binomial distribution; these were introduced earlier 
by Krawtchouk5 and appear as family (i) in the Askey tab
leau. They are defined 

k n (x) = (qnlnl)mn(x; - 6., - ql(1 - q», 

n = 0,1,2, ... ,6., ( 1.6) 

where the weight function is the binomial distribution 

w(x) = t)¢(1-q)lJ.-X, ( 1.9) 

and the sum is over the finite range of non-negative integers 
x = 0,1,2, ... ,6.. 

As shown in the Askey tableau, a limit case of the 
Krawtchouk polynomials are the so-called Charlier2

,3 poly
nomials designated as family (I). Ifwe put q = al6., then for 
fixed a, x, and n, 

lim kn (x) = (1lnl)C~Q)(x), ( 1.10) 
lJ.-oo 

where the Charlier polynomials are defined 

C~Q)(x) = .± (~)(~\'1( - a)n-j, 
}=o J J Y 

(1.11) 

and these satisfy the orthogonality relation 
00 aX I C~Q)(x)C~)(x)-exp{-a}=annI8nm' (1.12) 

x=o xl 

Under (g) in the Askey tableau are found the Meixner
Pollaczek polynomials which satisfy a continuous orthogon
ality relation. The hypergeometric representation is 

P~(x;,p) = (r(n + 2A.)/nlr(2A.»exp{in,p} 

X 2F1 ( - n,A. + ix;2A.;I- exp{ - 2i,p}), 
(1.13) 

where A. and ,p are real parameters with O<,p < 1T and A. > 0. 
They also have a Rodrigues-type representation, 

PA(X',p) = (_1)n r(1-A.+ix) ex {-2,px}8n 
n' nl r (A. + ix) p 

x[ r(A.+!n+ix) eXP{2,px}], (1.14) 
r(1-A. -!n + ix) 

where 8 is another finite difference operator defined as 

where 6. is a non-negative integer and q is a real parameter in 81(x) =/(x + ~i) - I(x - !i). (1.15) 

the range ° < q < 1. The corresponding Rodrigues formula is These are orthogonal on the infinite real line 

kn(x) = (_1)n r(x+ 1)r(6.-x+ 1) 
nl ¢(1_q)lJ.-x 

X
Dn[ ¢(1_q)lJ.-x+n ] 

r(x-n+l)r(6.-x+l) , (1.7) 

while the orthogonality relation is written as 
lJ. 

I kn(x)km(x)w(x) 
x=o 

= (~)(1- q)nqn8nm , n,m = 0,1,2, ... ,6., ( 1.8) 

f: 00 P~ (x;,p)P;" (x;,p)~(x;,p )dx 

= (21T) r(n + 2A.) 8nm , 
nl(2 sin ,p)2A 

where the weight function is given by 

w(x) = exp{(2,p - 1T)X}[r(A. + ix) 12. 

(1.16) 

(1.17) 

These are a limit case of the continuous Hahn polynomials, 
family (I) in the tableau, and also of the continuous dual 
Hahn polynomials, family (c). 
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Several of the families appearing in the Askey tableau 
have been generalized to multi variable biorthogonal polyno
mials; these include the Jacobi,6 continuous Hahn,7 and dis
crete Hahn8 polynomials. In this paper, we present an analo
gous multivariable extension of the Meixner, Krawtchouk, 
and Meixner-Pollaczek polynomials. A limit of the Krawt
chouk family then yields a trivial multivariable generaliza
tion of the Charlier polynomials. The biorthogonality rela
tions are proved by introducing a set of auxiliary variables 
and then expressing the inner products as differentiations on 
these variables. Alternatively, the Krawtchouk and at least 
partly the Meixner-Pollaczek families can be obtained as 
limits of the multivariable discrete8 and continuous 7 Hahn 
polynomials, respectively. 

where we are using the following shorthand notation, 

p p 

X= L X k , N= L nk , 
k= I k= I 

P P 

J= L jk' C= L Ck, (2.5) 
k=1 k=1 

and {ik} denotes summation indices jIJ2, ... Jp , which run 
over all non-negative integers with the convention that 
l/r( - m) = O,m = 0,1,2, .... Thismultivariableextension 
is nontrivial in that the polynomials and weight function do 
not factor with respect to the independent variables. The 
overbar in (2.2) denotes the biorthogonal family and should 
not be confused with complex conjugation. The p + 1 com
plex parameters C I 'C2' ••• ,cp , /3 are restricted by 

P 

Ck #0, L icki < 1, (2.6) 
k=1 

and identify a particular family of polynomials and their 
weight function. The variable /3 is arbitrary, including nega
tive integers. In the latter case, (2.1 )-(2.3) are still well 
defined through use ofthe identity. 

r(/3 + I) = ( _ V r( - /3 + 1) , 1= 0,1,2, .... 
r(/3) r( - /3 - 1+ 1) 

(2.7) 

The set of p non-negative integers n l ,n2, ••• ,np label the 
members of a given family and the degree of a polynomial is 
simply given by N. When no ambiguity arises, we simply 
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II. MULTIVARIABLE MEIXNER POLYNOMIALS 

The extension to p variables X I ,X2, ... ,xp is given in terms 
of multi variable hypergeometric series as 

0'2' '2 (-: - n l , - XI;"'; - np , - Xp ) X F ..... , . C - I ••• C - I 
1:0; ... ;0 -N-X-/3 1. _ .. _' I p' +. ,"', 

(2.1 ) 

and also the distinct biorthogonal family 

(2.2) 

(2.3 ) 

(2.4) 

write Mn (x),Mn (x) and w(x) for the polynomials and 
weight function, respectively. In the special case of a single 
variable, Mn (x) and Mn (x) both reduce to the familiar 
Meixner polynomials, but in general they are distinct. 

The polynomials Mn (x) have a Rodrigues-type for
mula that is a natural extension of the single variable expres
sion 

X [r(x +/3) IT C~k ] , 

k=1 r(x k -nk + 1) 
(2.8) 

where Dk is the multivariable generalization of (1.3) de
fined as 

DJ(XI"'Xk"'Xp)=!(XI"'Xk + 1"'xp ) 

- !(x l ' "Xk ' "xp) , (2.9) 

whereas the analogous expression for Mn (x) is more ob
scure; here Y is kept fixed during the differenciating and is 
set equal to X afterwards, 

Mn(x) = 0- C)N+xLuI r(Xk + 1)ck -nk-xkD~k] 

X[O-C)-X r(N+/3) 
r(Y-X+N+{3) 

X IT C~k ] • 

k = I r(xk - nk + 1) 
(2.10) 
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To verify these representations, one substitutes the identity 

D:k/(XI"'Xk"'Xp) 

= I C~k)( -1)iJf(xI"'xk +nk -jk"'Xp) (2.11) 
A=O k 

in (2.8) and (2.10), which immediately yields (2.1) and 
(2.2), respectively. Identity (2.11) is in turn easily proved 
by induction on nk • 

Next we calculate the norm of the weight function 

~ w(x) = ~LI]I ::J r(:(;t) , (2.12) 

where the sum is over all non-negative integers 
Xk = 0,1,2, ... ,00, k = 1,2, ... ,p. Using identity (2.7), this can 
be written in the form 

[ IT C~k] reX + {3) 
~ k= I x k ! r({3) 

- >[IT (-Ck(k] r(-{3+1) (2.13) 
-tj k=1 x k ! r(-{3-x+1)' 

and if we then isolate one of the summations, say the x I sum 

I [IT (_Ck)Xk] r( -{3+ I) 

{x,"'x,,} k=2 x k ! r( -{3-x2 '" -xp + 1) 

(2.14) 

we find just the binomial series. By (2.6), I C II < I, so the 
series converges and we obtain 

and if we then isolate the X 2 sum 

I [IT (- C ~ ) Xk] r ( - ~ ~ 1) 
{x,"'x,,} k=3 Xk • r(-{3-x3 -xp+l) 

X(1_c
l
)-13-X,.,,-xp 

(2.6) ensuring that the argument of each binomial series has 
a modulus less than one. The final result is 

I [IT C~k] reX + {3) = (1 _ C) -13. 
{Xk} k = I Xk! r({3) 

(2.19) 

In the remainder of this section, we discuss the ortho
gonality and biorthogonality properties of the multivariable 
Meixner polynomials. First we demonstrate that the inner 
product of Mn (x) with another polynomial of the same fam
ily M n, (x) vanishesifN =IN', that is, any two polynomials of 
differing degree are orthogonal. Consider the inner product 

(2.20) 

where without loss of generality we assume N> N'. The pol
ynomial M n, (x) can be expanded (as can an arbitrary poly
nomial) in the following manner: 

P r(xk + 1) 
Mn,(x) = I aU;Ji,···J;) II -----

(jIJ k=1 r(x k -lie + I) 
(2.21) 

where aU;Ji, ... J;) are some constants which we need not 
evaluate, and the vie} sums run over non-negative integers 
such thatO<J' <N'. Then referring to (2.20) we consider the 
following inner product: 

[ 

P r(xk + 1) ] I=. Mn (x) II w(x) , ~ k=1 r(Xk -jie + I) 
(2.22) 

which upon substituting (2.1) and (2.3) becomes 

(2.23 ) 

To evaluate the {x k } sum, we introduce a set of auxiliary real 
variables tb k = 1,2, ... ,p confined to the domain 

( 

p )-1 
0< tk < k~1 ICk I , k = 1,2, ... ,p, (2.24) 

and write I in terms of differentiations on these variables 
we again find the binomial series and by (2.6) we have once evaluated at tk = I, 
more 

I~I<I l-c1 ' 
(2.17) 

so this series converges, also giving 

[ 

p (_ Ck (k] 

{X'~x,,} JJ3 x k ! 

X 
r( - {3 + 1) ( 1 )- {3 - x,' .. - '}i 

-CI - C2 • 
r( - {3 - X3'" - ~ + 1) 

(2.18 ) 

The remaining sums are then performed by induction, with 

2742 J. Math. Phys., Vol. 30, No. 12, December 1989 

(2.25 ) 

and then changing the summation indices X k to 
x" = Xk - jk' one obtains (after dropping the primes) 
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x r(N+X +f3) 
r(f3) , 

(2.26) 

and from (2.24) we have 

(2.27) 

This sum is uniformly convergent on the parameter range 
(2.27) so we can interchange the order of the differentia
tions with the summations, and then substituting (2.19) 
(with t k C k replacing C k and N + f3 replacing f3), one obtains 

x (1 - ktl tkCk) - N-f:l, (2.28) 

and now one notices that the {h} sum is simply the product 
of binomial expansions for integer powers. Summing these, 
we find 

(2.29) 

and it is obvious that if any factor of (1 - t k ) survives the 
differentiations, it will vanish upon setting tk = 1. The total 
order of differentiations is J' so for N> J' at least one factor 
of (1 - t k ) for some k will survive in every term after the 
differentiations and then will vanish. Thus recalling the de
finition of I, we have shown 

~ [P r(Xk + 1) ] . ~ Mn (x) II w(x) = 0, If N>J', 
{Xk} k= 1 r(xk - jk + 1) 

(2.30) 

and then referring back to (2.20) and (2.21), we immediate
ly deduce that 

L Mn (x)Mn, (x)w = 0, if N #N', 
{Xk} 

(2.31 ) 

so Mn (x) are orthogonal with respect to subspaces labelled 
by N, which however says nothing about polynomials of the 
same degree. 

Now we demonstrate the analogous result for the 
biorthogonal family Mn (x) in essentially the same manner. 
As before, we expand Mn, (x) as 

M- () ~ -U'" .,) lIP r(xk + 1) 
n' x = ~a IJ2, ... Jp , 

vi,} k = 1 r(xk - jk + 1) 
(2.32) 

where Ii U; J; , ... J; ) are some constants and the {ik} sums are 
over non-negative integers such thatO.;;;J'.;;;N'. Then we con
sider the inner product 
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1= ~ - [P r(Xk + 1) ] - ~ Mn (x) II w(x), 
{Xk} k= 1 r(xk - jk + 1) 

(2.33) 

which upon substituting (2.2) and (2.3) gives 

x L [IT CZkXk! ] r(x +f3) , 
{Xk} k=1 (Xk -jk)!(Xk -jk)! r(J+f3) 

(2.34) 

and again introducing the parameters t k , k = 1,2, ... p con
fined to the domain (2.24), 

(tkCk (k ] r(X + f3) 
(xk - jd! r(J + f3) , 

(2.35) 

and then changing the summation indices X k to 
x k = Xk - jk' we obtain (after dropping the primes) 

x r(X + J + f3) . 
r(J + f3) 

(2.36) 

As before, we bring the differentiations outside the sums and 
then substitute (2.19) (with tkck replacing Ck and J+f3 
replacing f3), which yields 

1 = (f3) N [ IT (~)jk ] 
k=1 atk 'k=1 

X ~LI]IG~k) (1 - ktl tkck rk
-

h 

X{ - (1- C)tkYk]( 1 - ktl tkCk) -N-{j, (2.37) 

and once more {i k } sums are simply binomial expansions for 
integer powers. Summing these, we obtain 

(2.38) 

and again it is obvious that if any factor of 
1 - l:{ = 1 tkck - (1 - C)tk survives the differentiations, it 
will vanish upon setting tk = 1. The total order of differen
tiations is J' so for N> J' at least one factor of 
1 -l:{= 1 tkCk - (1 - C)tk for some k will survive in every 
term after the differentiations and then will vanish. Thus 
recalling the definition of/' we have shown 
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~- [P r(xk+ 1) ] 
~ Mn (x) II w(x) = 0, if N>J', 
{Xk} k=1 r(Xk -jk + 1) 

(2.39) 

and then referring to (2.32) we immediately deduce that 

L Mn (x)Mn, (x)w(x) = 0, if N =/=N', 
{Xk} 

(2.40) 

and so Mn (x) are also orthogonal with respect to subspaces 
labelled by N. 

Though the polynomial familes Mn (x) and Mn (x) are 
each orthogonal among themselves with respect to degree N, 
they are not so for different polynomials of the same degree. 
We now demonstrate that these two families form a biortho-
gonal system; consider the inner product 

(2.41 ) 

If N> N' we expandMn' (x) as in (2.32) and then by (2.30) 
this inner product vanishes, whereas if N <N' we expand 
Mn (x) as in (2.21) and by (2.39) it again vanishes. So this 
inner product is zero unless N = N', which we now assume. 
Substituting (2.2) into (2.41) gives 

L [ IT (~k)Ck-jk] r(N: + {3) (C - l)J' 
{M k= 1 \h r(J +{3) 

(2.42) 

and noting that the {x k } sum is just the inner product I 
which we already calculated in (2.29), this becomes 

({3)N L[ IT (~k)Ck-jk(aa yi. (1_tk )nk] 
{jn k=l\h tk)'k=1 

x r (N'+{3)(C_1)J'(1_.i tkCk)-N-tJ. (2.43) 
r(J' + {3) k= 1 

As we discussed with the previous cases, if the order of the 
differentiations J' is less than the degree of the factors 
(1 - tk )nk which is N, then one obtains zero. So the only 
term in the Vk} sum which does not vanish is that for which 

I 

J' = N' = N, that is, forjk = nk k = 1,2, ... ,p, and then the 
inner product simplifies to 

({3)N(C-l)N[ IT C;:nk(~)nk (1- tk)nk] 
k=1 atk 'k=1 

(2.44) 

Now if nk > n k for some k, and recalling that N = N', then 
nk, <nk' for some other k '. In thatcase,afactorof( 1 - tk,) 
will survive in every term after the differentiations and then 
will vanish upon setting t k' = 1. So (2.44) is zero unless 
nk = nk for every k, and in the nonvanishing case it simply 
becomes 

({3) N LtJI nklck- nk] (1 - C) - tJ, 

so the inner product (2.41) is simply 

(2.45) 

(2.46) 

III. MUL TIVARIABLE KRA WTCHOUK POLYNOMIALS 

A special case of the previously discussed Meixner fam
ily are the multivariable Krawtchouk polynomials. These 
are obtained for 

qk 
{3 = - fl., Ck = , k = 1,2, ... ,p, (3.1) 

(Q-l) 

where fl. is a non-negative integer and qk, k = 1,2, ... ,p are 
real parameters satisfying 

P 

qk >0, O<Q< 1, Q= L qk' (3.2) 
k=1 

As we already mentioned, (2.1), (2.2), and (2.3) are well 
defined for {3 a negative integer through use of identity (2.7). 
Also making a change in normalization analogous to (1.6), 
we define the multi variable Krawtchouk polynomials as 

K (x)=(-fl.+X) [lIP nkln I]FO,2; ... :2(-: -nl,-xI; .. ·;-np'-xp: ;(Q_1)ql-J"'(Q_1)qp- J), (3.3) 
n N qk k 1.0 •...• 0 A _ N _ X + 1. _. ._ 

k=l L1 • ,"', 

and their biorthogonal counterparts 

K (x)=(-fl.) [lIP nkln I]FO:2: ... ;2(-: -nl,xI; .. ·;-np,-xp: .q-I ... q-I) 
n N qk k 1.0 •...• 0 A. ., ' J p' 

k= 1 - Ll. -, ••• ,-
(3.4 ) 

where for given fl. the indices nl,n2 , ... ,np are confined by O<.N<.fl.. The corresponding Rodrigues formulas as deduced from 
(2.8) and (2.10) are 

Kn(X)=(_1)Nr(fl.-X~+~)[IT r(Xk~l) D~k][(1-Q)~+N-X IT qZk ], 
(l-Q) - k=J nk1qkk r(fl.-x+o k=lr(Xk -nk +1) 

(3.5 ) 

and 

(3.6) 
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where in (3.6) Yis kept fixed during the differenciating and 
then is set equal to X afterwards. The weight function is the 
multivariate binomial distribution 

w(x) = a! [fI q~k](1_Q)~-X, (3.7) 
(a-x)! k=\ x k ! 

and the {Xk} sum defining the inner product is over the finite 
set of non-negative integers lying on the discrete simplex 
o<x<a. In this respect the infinite {x k } sums have been 
truncated by P being a negative integer. 

Notice that the Ck parameters as defined by (3.1) and 
(3.2) do not satisfy the second restriction in (2.6). That 
condition was necessary so that the infinite binomial series 
would converge. Now, however, since we are dealing with 
finite sums, this restriction is no longer necessary. 

The orthogonality and biorthogonality proofs follow as 
before with the only difference being that the summations 
are now finite. Then corresponding to (2.31) and (2.40) we 
have that the multi variable Krawtchouk polynomials are or
thogonal with respect to subspaces labelled by N(O<N<a) 

'} Kn (x)Kn, (x)w(x) = 0, if N =/=N' , 
tJ (3.8) 

') Kn (x)Kn, (x)w(x) = 0, if N =/=N' , 
tJ 

while in general these two families are biorthogonal, corre
sponding to (2.46), 

(3.9) 

where we recall that the {Xk} sum is over the discrete sim
plex o<x<a. 

The Askey tableau shows that the single variable 
Krawtchouk polynomials can be obtained as a limit of the 
Hahn polynomials; this still holds true for the multi variable 
biorthogonal families. In the multi variable Hahn8 polyno-

I 

mials G~(x) and H~fJ(x) set ak + 1 = yqk, k = 1,2, ... ,p, 
P + 1 = y( 1 - Q) and then take the limit y --+ 00 • This yields 

lim G ~fJ(x) = 1 [ fI nk!q;: nk]Kn (x), 
r~ 00 ( - a) N k = 1 

(3.10) 

lim H~fJ(x) = 1 [ fI nk!q;: nk]Kn (x), 
r~ 00 ( - a) N k = 1 

while from the Hahn weight function wafJ(x) one obtains the 
Krawtchouk weight 

(3.11 ) 

The orthogonality (3.8) and biorthogonality (3.9) relations 
also follow in this limit. 

The Askey tableau also shows that the single variable 
Charlier polynomials are a limit case of the Krawtchouk 
polynomials; let us consider this limit in the multivariable 
case. Set q k = a k / a and then take the limit a--+ 00 with 
ak,xk, and nk fixed. One finds 

(3.12) 

that is, both families of Krawtchouk polynomials reduce to 
just a product of single variable Charlier polynomials. Fur
thermore, the Krawtchouk weight function (3.7) in this lim
it reduces to just a product of single variable Charlier 
weights. 

IV. MULTIVARIABLE MEIXNER-POLLACZEK 
POLYNOMIALS 

The corresponding orthogonality relations for the 
Meixner-Pollaczek family are deduced in a similar manner. 
The extension to p variables x\,x2, ... ,xp can be expressed in 
terms of multi variable hypergeometric series as follows: 

p~:~:.·::;:+I(X\,X2, ... ,XP;¢I'¢2···'¢P) = (Ap + 1 - iX)N[ fI eXP{ink¢k}/nk!] 
k=\ 

and the distinct biorthogonal family 

2745 J. Math. Phys., Vol. 30, No. 12, December 1989 M. V. Tratnik 2745 



                                                                                                                                    

!k (rp) == (1 - jtl exp{2irpj} )exp{ - 2irp k}' 

with the multivariable weight function 

WA""Ap + '(X . "X .J. ... J. ) 
I p,'f'1 'f'p 

= LUI exp{(2rpk - 1T)Xk}r(Ak + ixk ) ] 

X r(Ap+ I - iX), (4.3) 

where the p + 1 lambda parameters A I,A2, ... ,A.p + I are com
plex and the p angle parameters rpl,rp2'''''rpP are real. We are 
using the same shorthand notation as in previous sections, 
and in addition we have defined A==}:~! ~Ak; we simply 
write Pn (x),Pn (x) and w(x) for the polynomials and 
weight function, respectively. In the special case of a single 

I 

variable, P n( x) and P n (x) both reduce to the familiar single 
variable Meixner-Pollaczek polynomials, but in general 
they are distinct. 

The angle parameters rpk are confined to 

0< rpk < 1T, k = 1,2, ... ,p, (4.4) 

and if the real parts of the complex parameters 
AI,A2, .. ·,A.p+ I are greater than zero, thep integration con
tours are simply the p real axes. For more general values of 
these lambda parameters, the contours are deformed to sepa
rate the increasing sequences of poles of the weight function 
from the decreasing sequences, which is possible whenever 
the two sets are disjoint. In the remainder of this section, we 
simply write the contours as the real axes, but one should 
interpret them as above if necessary. 

These polynomials also have Rodrigues-type formulas 

iN [ p exp{ - (2rpk - 1T)Xk } nk] [ p 
Pn (x) = . II . 8k r(Ap+ I + N 12 - iX) II r(Ak + nkl2 + ixk ) 

r(Ap+ 1 -iX) k=1 nk!r(Ak +IXk ) k=1 

xexp{(2rpk - 1T)Xk}] , (4.5) 

where 8 k is the multivariable generalization of ( 1.15), 

8J(x l " 'Xk " .xp ) ==!(XI" 'Xk + iI2" 'xp) 

-!(xI '''xk -i/2'''xp ), (4.6) 

and as before in the second Rodrigues formula, Y is kept 
fixed during the differenciating and then is set equal to X 
afterwards. To verify these representations, one substitutes 
the identity 

in (4.5) and (4.6), which immediately yields (4.1) and 
( 4.2), respectively. Identity (4.7) is in tum easily proved by 
induction on nk' 

Next consider the following multiple integral, 

f: 00 dx l '" f: 00 dxp 

X [kUI r(A k +iXk)Z~k]r(Ap+I -iX), 

- 1T < arg(zk) < 1T, k = 1,2, ... ,p (4.8) 

which for Zk = exp{ - i(2tPk - 1T)} is the norm of the 
weight function. This is a multiple Mellin-Barnes type inte
gral which can be calculated by induction and the following 
single integral formula, \0 
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(4.9) 

where - 1T < arg(z) < 1T, and in this manner one obtains 

f:oo dxl '" f:oo dXpLUlr(Ak +iXk)Z~k]r(Ap+I -iX) 

= (21T)Pr(A) LUIz';-Ak] [1 + ktl Z~] -A. (4.10) 

In the remainder of this section, we derive the orthogon
ality and biorthogonality relations of these polynomials; we 
demonstrate that they satisfy continuous analogs of (2.31), 
(2.40), and (2.46). First we show that the inner product, 

f: 00 dx l '" f: 00 dxp Pn (x)Pn , (x)w(x), N i=N', 

(4.11 ) 

vanishes if N i=N'. Without loss of generality we assume 
N> N', then we expand Pn, (x) as follows: 

where bUiJ2, ... J;) are some constants which we need not 
evaluate and the {i;J sum is over the range O"J' "N'. Next 
we consider the inner product 
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1= f: co dx l' .. J: co dxp Pn (x) 

[rrP ru,,+Ak+iXk)] 
X w(x), 

k = I nAk + ixk ) 

which upon substituting (4.1) and (4.3) becomes 

1= ~[ IT C. k) -l, exp{i(nk - 2jk )¢k}] 
OJ k=1 k nk' 

X Ico co dxl '" f: co dxp LUI rUk + Ak + ixk ) 

ru" +Ak +ixk ) 
X r(Ak + ixk) 

(4.13) 

X exp{(2¢k -1T)Xk}]nN-J+Ap+1 -IX). (4.14) 

In analogy with the discrete case, we introduce a set of 
auxiliary real parameters tk , k = 1,2, ... ,p, so that we may 
write 

ru" +Ak + ixk) = (~)j'k t~+A.k+iXk-l, (4.15) 
nAk + ixk ) atk tk= I 

and then substituting this into the expression for I, we obtain 

X LUI rUk +Ak +iXk)Z~k]nN-J+Ap+1 -IX), 

(4.16) 

where we have defined 

Zk =tk exp{ - i(2¢k - 1T)}, ( 4.17) 

and by (4.4) these Zk parameters satisfy the conditions in 
(4.8). This integral is uniformly convergent on this param
eter range, so we can interchange the order of integrations 
with differentiations, and then substituting (4.10) for the 
multiple integral, we obtain 

1= (21Tyr(N + A)LUI n:! exp{i(nk + Uk )¢k - i1TAk}] 

(
PI )_N-A. 

X 1 - L -exp{2i¢k} . 
k= I tk 

(4.18 ) 

The Vk} sums are now simply binomial expansions for in
teger powers, which upon summing gives 

1= (21TynN + A)LUI n:! exp{i(nk + Uk )¢k - i1TAk}] 

rr 11< j,,-I 1 k 

[ 
p ( a )" (1 )n ] 

X k=1 atk tk=lt -r; 

(
PI )-N-A. 

X 1- L -exp{2i¢k} 
k= I tk 

(4.19) 
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The interpretation of this expression is the same as with the 
discrete family. The total order of differentiations is J' so for 
N>J' at least one factor of (1 - l!tk ) for some k will sur
vive in every term after the differentiations and then will 
vanish upon setting t k = 1. Thus recalling the definition of I, 
we have shown 

( 4.20) 

and then referring back to ( 4.11) and ( 4.12), we immediate
ly deduce that 

f: co dx l'" f: co dxp Pn (x)Pn, (x)w(x) = 0, if N =/=N', 

(4.21) 

and so Pn (x) are orthogonal with respect to subspaces la
belled by N, which is the continuous analog of (2.31 ). 

Now we demonstrate the analogous result for the 
biorthogonal family Pn (x). As before, we expand Pn, (x) as 

Pn, (x) = L bU; J; , ... J;) IT ru" + Ak -: ixk ) , (4.22) 
{iU k= I r(Ak + Ixd 

where bU; J;, ... J;) are some constants and the Vn sum is 
over the range O<..J' <N'. Then we consider the inner product 

[= f: co dx l'" f: co dxp Pn (x) 

[ II
p ru" + Ak + iXk )] 

X w(x), 
k= I nAk + ixk ) 

(4.23) 

which upon substitution (4.2) and (4.3) becomes 

X(I- ± eXP{2i¢k})J r(N +A) fco dx l'" 
k=1 r(J+A) -co 

X dxp rr rUk + Ak + ixk ) k + k -: IXk fco [ p ru' A .) 

-co k=1 r(Ak+1Xd 

exp{(2¢k -1T)Xk} ]r(Ap+ I - IX). (4.24) 

Proceeding as before, we substitute (4.15), interchange the 
order of integrations with differentiations, and then substi
tute (4.10) for the multiple integral. This gives 

(4.25) 

where we have defined 
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Again the {j k} sums are simply binomial expansions for 
integer powers, which upon summation gives 

7 = (21T)pr(N + A) 

X [ IT ~ exp{i(nk + 2.,1,k )¢k - i1T.,1, k}] 
k~ Ink' 

(4.27) 

From (4.26) we see that upon setting tk = 1, k = 1,2, ... ,p, 
theparametersSk , k = 1,2, ... ,p become equal to unity. Then 
it is obvious that if any factor of (1 - S k ) survives the differ
entiations, it will vanish upon setting tk = 1, k = 1,2, ... ,p so 
the argument follows as before. The total order of differen
tiations is J' so for N> J' at least one factor (1 - S k) for 
some k will survive in every term after the differentiations 
and then will vanish. Thus recalling the definition of!, we 
have shown 

(4.28) 

then referring back to (4.22) we immediately deduce that 

f: '" dx l '" f: '" dxp Pn (x)Pn, (x)w(x) = 0, if N =IN', 

(4.29) 

and so Pn (x) are also orthogonal with respect to subspaces 
labelled by N, which is the continuous analog of (2.40). 

Though the polynomial familes Pn (x) and Pn (x) are 
each orthogonal among themselves with respect to degree N, 
they are not so for different polynomials of the same degree. 
In analogy with discrete case, we demonstrate that these two 
families form a biorthogonal system; consider the inner 
product 

(4.30) 

If N> N' we expand Pn, (x) as in (4.22) and then by (4.20) 
this inner product vanishes whereas if N <N' we expand 
Pn (x) as in (4.12) and by (4.28) it again vanishes. So this 
inner product is zero unless N = N', which we now assume. 
Substituting (4.2) into (4.30) gives 
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(4.31 ) 

and then substituting (4.19) for the multiple integral yields 

(21T)pr(N + A) LUI n:! exp{i(nk + Uk )¢k - i1T.,1,k}] 

XL [ IT (~k)+ exp{i(nk - 2jk )¢k}] r(N,' + A) 
ou k~l\h nk! r(J +.,1,) 

X(I- ± eXP{2i¢k})J'[IT (~)jk tjf- I 
k ~ I k ~ I at k tk ~ I 

( 
1 )nk]( p 1 )-N-A. X 1-- 1- L -exp{2i¢k} . (4.32) 

tk k ~ I tk 

As we discussed several times, if the order of the differentia
tions J' is less than the degree of the factors (1 - 1/ t k ) 

which is N, then one obtains zero, So the only term in the 
{jk} sum which does not vanish is that for which 
J' = N' = N, that is, forjk = nk, k = 1,2" .. ,p, and then the 
inner product simplifies to 

(21T)Pr(N + A) LUI n)nk! 

X exp{i(nk - nk + Uk )¢k - hT.,1,k}] 

X(1 - ktl exp{2i¢k} ftul (a~J~:~ I 
Xt~k(I_~)nk](I_ ± ~exp{2i¢k})-N-A. 

tk k ~ I tk 
(4.33 ) 

As with the discrete family, if nk > nk for some k, and recall
ingthatN = N', thennk' < nk , for some other k '. In that case 
a factor of (1 - 1/tk , ) will survive in every term after the 
differentiations and then will vanish upon setting t k' = 1. So 
the inner product (4.33) is zero unless nk = nk for every k, 
and in the non vanishing case it simply becomes 

hn == (21T)pr(N + A) [ IT ~ exp{i(2¢k - 1T).,1,k}] 
k~ Ink' 

(4.34) 

Thus the inner product (4.30) is simply 

f: '" dx l '" f: '" dxp Pn (x)Pn, (x)w(x) = hn kUI Dnknk ' 

(4.35) 

which is the continuous analog of (2.46). 
The Askey tableau shows that the single variable 

Meixner-Pollaczek polynomials in the special case when 
¢ = 1T12 can be obtained as a limit of the continuous Hahn 
polynomials. An analogous limit exists for the multivariable 
biorthogonal families and provides an independent check for 
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the results of this section. In the multivariable continuous 
Hahn7•8 polynomials Cn (x) and en (x) set 
ak = Ak,bk = yexp{;(2~k -1T)} k = 1,2, ... ,p, c = y, 
d = A p + I , and then take the limit y -+ 00. One finds 

!~~ y-NCn (x) = ( - i)NLUI exp{ink~k} ]Pn (x), 

!~~ y-NCn (x) = ( - i)NLUI exp{ink~k} ]Pn (x), 

(4.36) 

while the continuous Hahn weight function wh (x) limits to 
the Meixner-Pollaczek weight 

!~~ [ r(c) kUI r(bk ) ] - I Wh(X) 

= LUI exp{(2~k - 1T)Xk}r(Ak + iXk )] 

Xr(Ap + 1 -iX). (4.37) 

The orthogonality and biorthogonality relations (4.21), 
(4.29), and (4.35) also follow in the limit at least for values 
of ~1'~2'''''~P satisfying Re(bl ,b2, ... bp » 0 (which includes 
~I = ~2 = ... = ~ p = 1T /2). Angle parameters not fulfilling 

2749 J. Math. Phys., Vol. 30, No. 12, December 1989 

this condition require separate consideration since then the 
integration contours must be deformed during the limit. 
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The quantum and classical algebras connected with the Zn -symmetric elliptic solution of the 
Yang-Baxter equation are derived; their structure constants and the relations between the 
quantum algebra and the classical one are investigated in detail. Moreover, the trigonometric 
limit of these algebras is worked out. 

I. INTRODUCTION 

In recent years the Yang-Baxter equation (YBE) I and 
its exact solutions have been studied fruitfully.2-6 This inves
tigation is extended and associated with quantum algebra 
(quantum group), 7-9 conformal field theories, completely 
integrable models, and braid groups etc. W-IS The solutions 
of YBE have been classified as rational, trigonometric, and 
elliptic cases, including their high-spin (fusion) representa
tions.s.6 The quantum groups for rational and trigonometric 
cases have been well studied.7 For the elliptic case, Sklyanin 
investigated the quantum and classical algebras connected 
with the eight-vertex model in 1982.8 In a short article on the 
representation,9 Cherednik wrote down an expression for 
the quantum algebra of Belavin's Zn -symmetric model in 
1985. Since the elliptic case is related naturally to the Kac
Moody-Virasoro characters, and can be generated easily 
onto a high-genus Riemann surface, and its degeneration 
gives the trigonometric case, hence the elliptic quantum al
gebra is more interesting. 

In Sec. II we first reduce the Yang-Baxter relation for 
the Zn -symmetric elliptic solution (Zn -SES) to a spectro
parameter independent form by means of the Heisenberg 
group, and we give various explicit expressions for the struc
ture constants of the algebras and their symmetric relations. 
In Sec III we deduce the quantum algebra. In Sec. IV we 
treat the classical YBE and find the classical algebra. In Sec. 
V we exhibit the correspondences between the quantum 
quantities as well as the equations and the classical ones. In 
Sec. VI we study the corresponding trigomometric algebras. 

II. THE YANG-BAXTER RELATION 

The Boltzmann weight in 2D statistical mechanics can 
be written as 

Rjk(u) = L Wa(u)nJ>n(k>, 
aeZ! 

(1) 

where I ~) acts on the subspace of the jth site, I a = h a Iff", h 
and g are n X n matrices with elements 

h - ~k + I g liJk~ jk - Uj(mod n) , jk = Ujk' (2) 
I 

and liJ = e2
1/'i/n, a = (aI' a 2), a J = O,I, ... ,n - 1, Wa (u) is 

the Boltzmann coordinate. The YBE for the Boltzmann 
weights is 

R I2 (U - v)R 13 (u)R23 (V) = R 23 (v)R 13 (u)R I2 (U - v). (3) 

By means of 
I;; I = Il = liJa,a'I _ a' Ia1p = liJa,{3'Ia + p' 

tr(la1p =n8~, tr(A U)B(k» =trA U)trB(k), (4) 

(3) is reduced to an equivalent YBE for the Boltzmann co
ordinates 
L (liJ(r.a) _liJ(a.r - P» 

rez~ 

X Wr - a (u - v) Wa+p_ r(u) Wr(v) = 0, (5) 

where (a,/3) = a/32 - a~I' Takingy-+a + /3 - yin thelat
ter term, (5) turns to , 

L liJ(r.a) WafJr (u,v) = 0, (6) 

where the summation };' means the restriction (a, 
2y - /3) #0, and 

WafJr (u,v) = Wr - a (u - v) Wa +fJ- r (u) Wr (v) 

- WfJ-r(u - v) Wr(u) Wa+fJ-r(v). 
(7) 

For the Zn -SES (Ref. 3) we have 

W
a
(U)=O'a(U+ 71 ) 0'0(71) , 

O'a(71) 0'0(u+71) 
(8) 

with the Jacob theta function of rational characteristics (11 
2 + al/n, 112 + a 2/n), 

O'a (u) = O'a (u,1') 

f exp{hrJ m +..!.. + a l
) 

m=-co '\ 2 n 

+z21T(m+ ~ +:I)(U+++:
2
)}. 

Now we will construct a spectroparameter independent 
quantity Ca{3r by dividing (7) with a y independent factor. 
Let 

O'fJ(271) [O'r_a(U-v+71) O'a+fJ-r(u+71) O'r(v+71) 
CafJr (u,v) = ------'-------

O'o(u - v)O'fJ(u + 271)O'a(v) O'r-a(71) O'a+fJ-r(71) O'r(71) 

_ O'fJ_r(u-v+71) O'r(U + 71) O'a+ fJ - r (V+71)]. 

O'fJ- r(71) O'r(71) O'a+fJ- r(71) 
(9) 
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By means of the Heisenberg group, we have 

Capy(u + l,v) = Capy(u + T,V) = Capy(u,v). 

Hence Capy (u,v) is a doubly periodic function with respect 
to (wrt) U and it has at most two poles on the lattice genera
ted by I and T. On account of the zero of its denominator, 
U = v, cancelling out one zero of its numerator, we confirm 
that Capy (u,v) is an entire function wrt u, hence it is inde
pendent of u. A similar analysis for the spectroparameter v 
shows that Capy (u,v) is also independent ofv. We denote it 
as C apy ( 'T], T). Based on the spectroparameter independence 
of Capy ('T],T), we may get its various expressions by substi
tuting appropriate values of u,v into (9). Taking u = 0, 
V= -'T]-(YIT+Y2)/n,weobtain 

C ( ) 
_ wY' -a'ua +p_2y(0)up (2'T]) 

a{3y 'T],T -
Uy_ a ('T])Ua + {3- y ('T])Uy ('T])U{3- y ('T]) 

( 10) 

We see that Ca{3y ('T],T) is a four-order elliptic function of'T] 

with periods 1 and T. Now we rewrite (6) as 

L w(y,a}Ca{3y ('T],T) = L w(y,a}Ca{3Y ('T],T) = O. 
(a,2y - {3} #0 yeZ~ 

(11) 

However, we should prove the validity for the latter without 
the summation-restriction equations. Denote 

F ( ) 
=~l u y - a ('T])ua +{3-y('T]) 

a{3y 'T],T n 
J'T] up_ y('T])uy('T]) 

f('T]) = L w(y,a}Ca{3y('T],T), 
yeZ~ 

with Capy as in (10). It is obvious that f ('T] )/up (2'T]) is 
holomorphic for 'T]# (81T + 82)/n, 8EZ~. Using (10) we 
evaluatef('T]) at'T] = £ + (8 IT+ 82 )/n. For £-+0 there are 
four singular terms, Y = a - 8, a + f3 + 8, - 8, andf3 + 8, 
However, the singular parts cancel exactly: 

f(£ + (81 + 82)/n) = u{3 (2'T])' (regular terms at E = 0). 

Hencef ('T])/u{3 (2'T]) is an entire function wrt 'T]. As an entire 
doubly periodic function,f ('T]) is independent of'T]. Taking 
2'T]0 = - (f3I T + (32)/n we get f ('T]o) = O. This proves 
f ('T]) = O. This also gives another explicit proof of Belavin's 
ansatz3 as a solution of YBE. 

We shall see in the next section that Ca{3y's are quantum 
algebra structure constants (QSC's). In order to be more 
convenient for expressing the symmetries of the QSC's and 
the relations between the QSC's and the classical algebra 
structure constants (CSC's) we introduce a modified QSC, 

Fa{3y('T],T) = u~ (O)ua (O)Ca{3y('T],T), a#O, 

FO{3y('T],T) = u~'(O)CO{3y('T],T). (12) 

Equation (10) gives an explicit expression for Fa{3y or F o/3y 
Two other expressions come from (9) by setting v = 0, u -+ a 
or u = 0, v-+O: 

= t( 'T] + YI ~ a l T+ Y2 ~ a 2 ) + t( 'T] + a l +~I - YI T + a 2 +~2 - Y2) _ t( 'T] + f31: YI T+ f32: Y2) 

- t( 'T] + :IT + :2). a#O, 

J2 U{3 _ y('T]) 
FO{3y ('T],T) = -2 In ---'----''---

J'T] uy('T]) 

= 9( 'T] + YIT: Y2) _ 9( 'T] + /31: YI T+ f32: Y2), (13 ) 

where t(x) and 9 (x) are the Weierstrass zeta function and 
elliptic function, respectively 

Using (10), (13), and 

ux,+np,a,+nq(u) =e2i17(1I2+a,ln)qua (u), p,qEZ, (14) 

we obtain the following relations: 

Fa{3y= -F_ a,{3,y-a =F2Y - a -{3,{3,y, a#O, (15) 

-Fa,{3,a+P-y, (16) 

Fo,a + P,{3 + Fo,{3 + y, y + .,. + Fo,t; + p,p + Fo,p + a,a = 0, 
(17) 

L Fa{3y = L Fa{3y = 0, a#O. (18) 
rez~ /3Ez~ 
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Now (11) is rewritten as 

L w(y,a} Fa{3y ('T],T) = L w(y,a} Fa{3y ('T]T) = O. 
(a,2y - {3} #0 yeZ ~ 

III. THE QUATNUM ALGEBRA 

The operator representation of the YBE, 

L - ~ W U> j(u) - £... a(u)Ia Sa' 
aEZ~ 

satisfies 

R 12 (u - v)L I(u)L2 (v) =L2(v)L I(u)R 12 (u - v). 

Using (4), (21) is equivalent to 

(19) 

(20) 

(21) 

L Wa{3y(u,v) w({3,-y,)(y,-a')Sa+{3_ySy =0, (22) 
yeZ~ 
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where Sa = Sa(mod n) . For the Zn -SES (8) using (9), (22) is 
reduced to a spectroparameter independent form 

I Fapy('TJ,r) w(P,-y,)(y,-a')Sa+P_ySy =0, (23) 
yeZ~ 

This is an algebra for the quantum operators S's, and ( 11) is 
its compatibility conditions. Define a normalized QSC, 

F~py = F apyIFa{3a' 

From (10) we have 

FI ('TJ r ) =wy,-a, apy , 

On account of FaP{3 = - F a{3a, we rewrite (23) as 

[Sa,S{3] = I F~{3y('TJ,r) 
y#a,{3 

(24) 

Xw(P, - y,)(y, - a')Sa + {3- ySY' a=l{3, (26a) 

I Fa,a,a+ y ('TJ,r)w - 1',1',[ Sa_ Y' Sa+ 1'] = 0 (n>3). 
reZ~ 

(26b) 

For n = 2, we have 

F:o,II,ol = F:"OI ,IO = F61,IO,II = 1, 

F:o,II,oo = F:I.ol,oo = F61,IO,OO = - 1, 

FI - _ FI = _ t?t ('TJ)t?~ ('TJ) 
0,01,10 - 0,01,11 t?~ ('TJ)t?~ ('TJ) 

I _ FI __ t?t ('TJ)t?~ ('TJ) 
F 0,10,11 = 0,10,01 - t? ~ ('TJ)t? ~ ('TJ) 

FI - FI _ t?t ('TJ)t?~ ('TJ) 
0,11,01 - - 0,11,10 - t?~ ('TJ)t?~ ('TJ) 

(27) 

Note that 110 = 0"1' III = - i0"2' 101 = 0"3' 10 = 1, and 
write SI = SIO' iS2 = SII' S3 = SOl' So = Soo, we obtain the 
result of Ref. 8, 

[So, Sa] = zJbc [Sb' Sc] +, (28) 

[Sa,Sb] = i[ Sc' So] +, abc: cycle of 123. (29) 
Now let us see the simplest case 'TJ-+O for (26). We get 

F ~py (O,r) = 1 for Y = a + {3, - 1 for Y = 0; 0 otherwise. 
Then (26a) turns to 

[So, Sa] =0, 

[Sa, Sp] = (w - a,p, - W - a,{3,) SoSa + (3' (30) 

By means of (30), (16), and (19), the left-hand side of 
(26b), 

I Fa,a,a + l' (O,r)w - 1',1', [Sa - 1" Sa + y] 
reZ ;, 

= w - a,a, " F (0 r) (w(r,a) - w(a,y»s {' £.. a,a,a + y , 0"-"2a 

yeZ~ 

= 2w - a,a, " F (0 r)w(r,a) S {' £.t a,a,Y' OU2a' 
yeZ;' 

vanishes, hence (26b) does not give more relations except 
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(26a). We conclude that the algebra with 'TJ = 0 is equivalent 
tp (30) and in another basis it appears as the algebra u(n). 

Moreover, in this case we have a matrix realization Sa ~I: 
for it. 

IV. THE CLASSICAL VBE AND THE CLASSICAL 
ALGEBRA 

The classical YBE corresponding to the YBE (3) is 

[r 12 (u - v),r13 (u) + r 23 (v)] + [r13 (u),r23 (v)] = 0, 
(31) 

with 

rjd u ) = I wa(u)I~)I:(k), 
aeZ;' 

a 
Wa (u) = a'TJ Wa (u) 1,,=0' wo = O. 

By means of (4), (31) is reduced to 

(w(a,{3) -1) [W_a(u - V)Wa +{3(u) - Wp(u - v) 

XWa +{3(V) + wp(u)Wa(V» =0, a,{3EZ~. 

The classical representation 

2'j(u) =so+iIwa(u)I~)sa 
a#O 

(32) 

(33) 

(34) 

(35) 

satisfies the fundamental Poisson bracket relations (FPR) 

{2' I(U), 2'2(V)} = [r 12 (u - v), 2' I(U)2'2(V)], (36) 

Using (4), the FPR is reduced to 

(37) 

with wo= 1, wa =iwa (a=lO). Letting a={3', {3=a'; 

Y = r' - a' for the former term and Y = {3' - r' for the lat
ter term on the right-hand side of (37) we get 

{ s s} = - " I" (u v)w({3, - y,Hy, - a,) 
a' p £... JaPr' 

({3- y.r- a)#O 

(38) 

where 

/aPr (u,v) = [wp (u)wa (V»-I 

X [wr - a (u - v)wa + p _ r(u)wr(v) 

- wp_r(u - v)wr(u)wa+P_r(v», 
(39) 

For the Zn -SES (8) we have 

O"~ (0) O"a (u) 
wa(u) =----, a=lO, wo=O. (40) 

O"o(u) O"a (0) 

Taking a similar analysis as in Sec. II, we conclude that/aPr 
(u,v) is independent of both the spectroparameters U and v. 

Setting v = 0, U = - (ylr + Y2)ln for/aPr and/aOr ; U = 0, 
V= (ylr+Y2)ln for/oPr ; v=o for/aPo , we obtain the 
CSC's expressed in terms of the QSC's: 
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la{3y (r) = Fa{3y (O,r), a,/3,r,a - r,/3 - r,a + /3 - ri=O, 

10{3y (r) = l{30y (r) = iFo{3y (O,r), /3, r, /3 - ri=O, 

la{3o = - la.{3.a +(3 = i, a, /3, a + /3 i=0. (41) 

By means of (10), (13), and (41) we get, besides (15)
( 18), the following relations for the CSC's: 

la{3y=l{3ay' ri=a,/3, a +/3,0, (42) 

= I-a. - (3. - y' a,/3,r,a - r,/3 - r,a + /3 - ri=O, 
(43) 

lo{3y =1o.-{3.-y, /3, r,/3- ri=O. (44) 

Moreover, the summation restriction in (38) can be 
weakened to ri=a, /3. To see this, using (16) we combine 
every pair terms of r = 1" and r = a + /3 - 1" in (38) and 
denote the summation of all the pairs as ~" , 

" {Sa,S{3} = - L la{3y(r)[liJ({3,-y,)(Y2- a,) 

_ liJ({3, - y,)(y, - a,)]s S . 
a+{3-y Y' 

we see that the terms satisfying (/3 - r, r - a) = ° cancel. 
Therefore we write the classical algebra as 

{Sa,S{3} = - L la{3y(r)liJ({3,-y,)(y,-a,) 
(a-y.{3-yhf O 

XSa+{3_ ySY' 

= - L la{3y(r)liJ({3,-y,)(y,-a,) 
y#a.{3 

For the n = 2 case we have 

10.01.10 = -10.01.11 = - i-rr{}i (O,r) =.ijI2' 

10.10.11 = -10.10.01 = - i-rr{}! (O,r) =.ij23' 

10.11.01 = -/0.11.10 = i-rr{}~ (O,r) =.ij31' 

(45) 

la{30 = - la.{3.a + {3 = i, a, /3 i= 0. ( 46) 

The summation in (45) is only for two terms. Denoting 
Sl1 = is2, SIO = SI,SOI = S3 we get 

{so, sa} = - 2jbcSbsc' (47) 

{Sa' Sb} = - 2sc so, abc:cycle of 123. (48) 

1-0, 

1-1, 
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V. RELATIONS BETWEEN THE QUANTUM AND 
CLASSICAL CASES 

Based on the quantization correspondences 

[A,B] - - iIi{A,B}, So-lisa, Sa -Sa (ai=0), 

where the Poisson bracket {A,B} = ~j(aA lapjaB laqj 
-aAlaqjaBlapj) and (33), wa(u) 
= (a la1]) W(u) 1'1/= 0' all the classical quantities and equa
tions may be obtained by taking first fz terms of fz-expansions 
for the corresponding quantum ones. Suppressing the high
er-fz terms, the relations are 

R = 1 + ifzr, Wa = {//, + ifz Wa, 

F ~{3y (ifz, r) = ilifa{3y ( r) , a ,/3 i= 0, 

F b{3y (ifz, r) = ifz%{3y ( r) , /3, /3 - r i= 0, 

YBE (3) = - fz2 CYBE (31), (5) = - fz2 (34), 

L-fz!£, (21) - - ifz3 (36), 

(26a) - - ifz (45), ai=0; - ifz2 (45), ai=0; 

(28) - - ifz2(47), 

(29) - - ifz2 (48), Jbc = fz2jbc. 

VI. LIMITING TO THE TRIGONOMETRIC CASE 

When the elliptic parameter r --+ i 00, the Zn -SES turns 
to a Zn -symmetric trigonometric solution. Correspondingly 
the algebras turn to trigonometric ones. The equations for 
the trigonometric algebras are the same as (23), (26), and 
(45). We exhibit the structure constants below. For com
pactness we use the notations 

(u p) = sin rr(u + L), (u I) = (u I) 
n v m (v m) 

- (/3 _ )_{I,/3I>a l , c- c I a l -
-1,/3I<a l , 

8 -8(/3 )_{I,/3I>a l , +- I-a l -
0, /31 <aI' 

F F ( . ) 2rrjln () ( d) a{3y = a{3y 1],100, liJ=e ,q n =q mo n . 

On account of Sa = Sa(mod n) in (23) we restrict below 
O<aj, /3i> rj<n - 1; F~{3y for ai=/3, ri=a, /3 only; a l i=/31 
when cor 8+ appears; a l = /31 when F~~yis used; ai= (0,0) 
in 1- and 2-items. The nonvanishing QSC's are 

0), F~~y = 2i( 1] 
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1-4 {YI = a l + /11 #O(n), 
a l ,/1I#O: 

e - i1rTf1T F = OJ - (a, + fJ, - y,)12 ______ _ 
afJy 

(1] a 2 +/12 - Y2) 

F I = OJ - (a, + fJz - yz)12e - 2i1rTJ8+(1] ° ) 
afJr 1] a 2 + /12 - Y2 ' 

F l' = - (az + fJz - rz)12e - i1rTJ(1] ° ) (1] /12 - a2 ). 
afJr OJ Oa a' 1-'2 - a 2 1] a 2 + 1-'2 - Y2 

1-5 {YI =/11#0, F = _OJ(fJz-r,)E/2 1Te
i1rTfE 

Fl = _OJ(fJz-rz)E12(1] ° ) . 
...J.O a afJr ' afJr a' 

all ,1-'1: (1] /12-Y2) 1] 1-'2-Y2 

1-6 {YI = /11 = 0, F fJ = _ 1T (21] /12 ), F~fJY = _ (1] 0) (1] /12 ) ; 
al>O: ar (1] Y2) 1] /12-Y2 1] Y2 1] /12-Y2 

1_7{YI=al =0, F
afJr

= 1T (0 a 2 ), F~fJr=(1] 0)(1] a 2 ), 
/11>0: (1] Y2) 1] Y2- a 2 1] Y2 1] Y2- a2 

F afJr = 
(1] 

1T (0 
Yz-a2) 1] 

a 2 +/12 - 2Yz) 
/12 - Y2 ' 

F~fJr = (~ ~2 -a) (~ 
1-12 a l =/11 = YI = 0: F _ 1T (0 a z )(0 

afJr -
(1] Y2) 1] Y2- a2 1] 

o ) (1] a 2 )(1] 
Y2 1] Y2 - a2 1] 

(
1] O)Z 

F6fJr = ; 
1] Y2 

r I (1] ° )2 3-3 YI =/11#0: F ofJr = - 2' F ofJr = - a ; 
(1] /12-Y2) 1] 1-'2-Y2 

3-4 YI = /11 = 0: F. = r (0 /12 - 2Y2) (21] /12) FI (1] 0 )2(1] /12 )2(0 
OfJr (1] Y2)2 (1] /12-Y2)Z ' OfJr 1] Y2 1] /12-Y2 0 

r 
4-1 /11 #0: FOfJo = 2; 

(1] 0) 

/12 - 2Y2). 

/12 ' 
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For n = 2 we have 

F &,10,11 (1],i 00) = J 23 (i 00) = - tan2 
1T1], 

F &,11,01 (1],i 00) = J 31 (i 00) = tan2 
1T1], 

F&,01,10(1],ioo) =J\2(ioo) =0, 

The CSC's!aPy (i 00 ) 's may be written down from above 
Fa{Jy ( 1],i 00) by means of (41). We see that nonvanishing 
!apy (i 00 ) 's exhibit a nontrivial classical trigonometric alge
bra. 

VII. CONCLUDING REMARKS 

Recently quantum algebra (quantum group) has be
come an interesting subject and many approaches to the trig
onometric quantum group are appearing. However, the alge
bra in the elliptic case is more complicated; on that subject, 
fewer results have been published, and its relation to the 
trigonometric case is known only for n = 2. In this article we 
have, for n>2, derived the classical and quantum algebras as 
well as their compatibility conditions, obtained some explicit 
expressions for the structure constants and their symmetric 
relations, given exact relations between the classical algebra 
and the quantum one, and worked out the corresponding 
trigonometric algebras. 
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The four sets of additive quantum numbers of SU(3) 
J. Patera 
Centre de Recherches Mathematiques, Universite de Montreal, Montreal, Quebec H3C 3J7, Canada 

(Received 19 July 1988; accepted for publication 2 August 1989) 

The four maximal sets of additive quantum numbers and related fine gradings of the Lie 
algebra sl(3,C) are described in detail. The quantum numbers are determined by a grading of 
the Lie algebra, fine gradings providing maximal sets of them. Two sets of additive quantum 
numbers are equivalent precisely if the corresponding gradings are equivalent under a 
transformation from the automorphism group of the Lie algebra. 

I. INTRODUCTION 

In quantum mechanics it is often convenient to distin
guish three types of quantum numbers: additive, multiplica
tive, and the others. The additive ones are eigenvalues of 
operators of infinitesimal transformations, the mUltiplica
tive ones are eigenvalues of operators performing finite 
transformations, and the remaining ones are exemplified by 
the Casimir operators. 

Quantum numbers are in principle measurable quanti
ties, hence real numbers, which are used to label states of a 
physical system. Their physical interpretation ranges from 
obvious symmetries of a crystal to, for instance, the rather 
obscure eight additive quantum numbers of Eg (assuming 
that this group reflects some properties of the physical 
world). Whatever may be the situation with interpretation 
of some quantum numbers at a given time, the correspond
ing symmetry will remain at best a speculative frontier of 
physics for as long as those quantum numbers do not become 
tangible, at least in principle, for experimentalists. 

Conversely, for the same reason it is important to know 
all really different choices of quantum numbers for a given, 
say established, symmetry: What are the really different 
quantum numbers one may use with that symmetry? Here 
by "really different" we obviously mean more than just 
eigenvalues of different linear combinations of the same set 
of diagonal operators. Surprisingly the answer cannot be giv
en except for the case described in this paper because the 
corresponding questions in mathematics are only now being 
asked. 1,2 Moreover, it is quite likely that states of a physical 
system can be built in a much simpler way in one basis of the 
corresponding space than in another, because the states of 
the system are more simply characterized by one set of quan
tum numbers than by another. An unsuitable basis may ob
scure the role of such a symmetry, for instance, by "mixing 
pure states." 

The simple Lie group SU (3) is ever present in elemen
tary particle physics. The corresponding quantum numbers 
may refer to colors, flavors, properties of harmonic oscilla
tors, and many other quantities related to SU (3) symmetry. 
In spite of that the following question has not been answered 
before: What are the really different choices of additive SU(3) 
quantum numbers? 

The answer is given in this paper: there are precisely 
four different maximal sets of additive quantum numbers 
related to SU (3). 

In order to begin, we need to explain what is meant by 
the additivity of a set of quantum numbers and how to decide 
whether two sets of additive quantum numbers are equiva
lent or not. In the paper it is first noticed that the difference 
commonly made between additive and multiplicative quan
tum numbers if not essential for the purpose here (loga
rithms of multiplicative quantum numbers add up). It is 
explained that the existence of a set of additive quantum 
numbers hinges on the existence of a grading of the corre
sponding linear space V. In this paper V is the Lie algebra 
s1(3,C). Then a natural equivalence relation for gradings of 
Lie algebras 1 is the equivalence of the corresponding grading 
decompositions of the Lie algebra under the action of the 
group of automorphisms of the Lie algebra. 

Each set ofSL(3,C) quantum numbers is described in a 
general way and exemplified by a realization of the genera
tors of the Lie algebra by matrices. Their nonequivalence is 
then easy to verify. The fact that there are no other but the 
four possibilities described below is a result of Refs. 1 and 2; 
it is not proven here. A representation of the gradings is 
found in the appendix of Ref. 1. 

It turns out that only one of the four sets is the one 
familiar in particle physics [or rather all common choices of 
additive SU (3) quantum numbers are equivalent to it]. Ex
istence of the other three possibilities raises amusing ques
tions in SU(3) representation theory. Namely, how to use 
those quantum numbers in describing representations of 
SU (3). No answer has yet been given to that but, in general, 
it is clear that equivalent gradings of the Lie algebra produce 
nonequivalent gradings of representations. These problems 
are studied elsewhere. 3

,4 Here we encounter only the lowest 
representations that pose no problems. 

It is a common practice in physics to speak about a com
pact simple Lie group such as SU(2), SU(3 ), ... , while really 
using the group (or Lie algebra) with complex parameters. 
For instance, the generators L 1 and L _ 1 of the angular mo
mentum theory generate the Lie algebra of SL(2,C) rather 
than SU(2). Such an inconsistency is then remedied at the 
end of a calculation typically by taking appropriate linear 
combinations and restricting parameters to real values when 
needed. Similarly in this paper the relevant Lie algebra is 
s1(3,C) of the group SL(3,C). 

The question that is asked in this paper is by no means 
limited to SU (3) or rather to SL (3, C), however, all maximal 
additive sets of quantum numbers are not known for simple 
Lie groups others than SL(2,C) and SL(3,C) [there are ap-
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parently 9 of them for SL( 4,(;)]. A method to construct 
them is the main content of Ref. 2. Some uncommon sets of 
quantum numbers for the Lie algebras of the groups 
SL(n,C) are described in Ref. 5. 

II. NONEQUIVALENT ADDITIVE QUANTUM NUMBERS 

The physical states that are labeled (often not complete
ly) by a set of quantum numbers are eigenvectors of corre
sponding "labeling" operators Q (there may be several of 
them at a time and they necessarily commute). Practically 
this means that in the corresponding space V of physical 
states one can choose a basis {IA ), AES} of eigenvectors of 
Q's, where S is the set of eigenvalues of Q 's in the space V. 

If AI and A2 are two different quantum numbers corre
sponding to the same labeling operator Q, one has the additi
vity of the quantum numbers of the physical states 

IA I) IA2 ) = IAI + A2 ), 

(1) 

IAI)EVI, IA2 )EV2, IA I) IA2 )EVI ® V2 

as a consequence of the infinitesimal action of Q: on. a prod
uct state Q acts as a derivation, 

Q(IAI)1A2» = Q(IA I»IA2 ) + IA I)Q(IA2» 

=A IIA I)IA2 ) +A2 IAI)IA2 ) 

= (AI +A2 )IA I)IA2)· 

Suppose now that AI and A2 are multiplicative quantum 
numbers corresponding to the operator denoted again by Q. 
Then one has the multiplicativity of the quantum numbers of 
the states 

IA I) IA2) = IA IA2) (2) 

following from the finite transformation action of Q: 

Q(IA I)IA2 » = Q(IA I»Q(IA2 » =AIA2 IAI)IA2 )· 

In the case of the nonadditive and nonmultiplicative 
quantum numbers, the quantum number of the state 
IA I) IA2 ) is not determined by AI and A2 because Q is not 
diagonal in the basis IA I) IA2 ). 

For our purposes the distinction between the multiplica
tive and additive quantum numbers is not a major one. In
deed, nothing is lost by making a different labeling conven
tion in (2), replacing AI and A2 by exp (In AI) and 
exp(ln A2 ), and using the logarithms of AI and A2 as the 
labels-quantum numbers. Then (2) is rewritten in the ad
ditive form (1): 

IlnA I)llnA2 ) = IlnAI +lnA2 ) (3) 

and we speak of the additive form of the multiplicative quan
tum numbers. 

Consequently we need to distinguish only two classes: 
the additive and nonadditive quantum numbers. In this pa
per we are concerned with the former ones, assuming always 
that multiplicative quantum numbers are used in their addi
tive form. 

The crucial property is the fact that on the left side of 
(1) there is a state labeled by AI + A2 and not a linear combi
nation of states with different values of the quantum num
ber. Only then do AI and A2 determine the quantum number 
of the product state IA I) IA2); that is the additivity of the 
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quantum numbers. Mathematically the general property 
that reflects that fact and thus underlies the notion of the 
additive quantum numbers is called grading. 

In general, the space Vof the physical states can be de
composed into a direct sum of subspaces 

V= ED VA (4) 
AE5 

labeled by the eigenvalues A of an operator Q. It is called the 
grading decomposition of V provided there is a label set S 
such that (1) holds for any 

IAI)EVA" IA2 )EVA2 , 

IAI +A2 )EVA ,+A, (AI' A2, AI +A2ES). (5) 

Note that it is not required that the subspaces VA are one 
dimensional or that S is unique. In general, one has several 
(commuting) operators Q, each providing different quan
tum numbers. In that case the subspaces VA of ( 4) may be 
further decomposed. We say that the grading decomposition 
( 4) is refined. It is convenient then to use multicomponent 
labels for subspaces and for states so that each component is 
one quantum number. If no further refinement is possible 
the grading is called fine. 

Practically, a grading of Vis accomplished provided one 
knows a labeling set S of the quantum numbers and a basis 
for each subspace VA of ( 4 ), such that (1) and (5) are ful
filled. Two sets Sand S' of additive quantum numbers need 
to be distinguished only if the corresponding decompositions 
( 4) are "really" different. 

The question about all different maximal sets of com
muting, simultaneously diagonalizable operators Q acting in 
the space V giving maximal sets of additive quantum 
numbers is thus reduced to the question about all really dif
ferent fine gradings of the space V. In order to be able to give 
an answer to such a question we have to say more about the 
space V. 

In this paper we consider the case V = sl(3,C). There
fore our task is to present the Lie algebra in the form of a 
direct sum of subspaces 

s1(3,C) = ED VA' (6) 
AE5 

called a grading decomposition, such that the grading prop
erty 

[ VA' VI' ] ~ VA + 1" A, p, A + pES (7) 

of the commutation relations is satisfied. Here S is a set of 
distinct labels-quantum numbers. The grading subs paces 
are pairwise orthogonal: 

tr VA VI' = 0, for any A + w;60, 

(8) 

Practically, we need to know generators of each sub
space VA and the set of quantum numbers S for which the 
subspaces are nontrivial (dimension dim VA > 0). More
over, since we are interested in fine gradings of sl(3,C) 
(which cannot be made finer) we require as well that the 
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decomposition (6) contains as many terms as possible. Note 
that for [V"" V", ' ] = 0 Eq. (7) implies no restriction. For 
instance the subspace V", + ",' may be trivial, dim V", + ",' = O. 

There is a natural equivalence relation for gradings of a 
Lie algebra I L: Two gradings are equivalent if the corre
sponding grading decompositions of L are transformed into 
each other by an action of the group Aut(L) of automor
phisms of L. In particular, two gradings whose grading sub
spaces have different dimensions are obviously nonequiva
lent. 

The maximal subgroup of Aut(L), which preserves a 
grading decomposition r of L, is the grading group of r. 
Two gradings of L are equivalent if their grading groups are 
conjugate under Aut(L). It was established in Ref. 1 that 
there is a one-to-one correspondence between maximal abe
lian diagonable subgroups (MAD groups) of Aut(L) and 
fine gradings of L. 

For a fine grading a simple Lie algebra L it is sufficient 
to use only one or two suitably chosen elements of a MAD 
group with sufficiently many distinct eigenvalues when act
ing onL. 

III. ADDITIVE QUANTUM NUMBERS OF 81(2,C) 

There are exactly two fine gradings5 ofsl(2,C): 
I. sl(2,C) = VI EB Vo EB V_I 

[~,Vk] ~ ~+k' 

(j, k, j + keS = {l,o, - 1}). 

II. sl(2,C) = VII EB VOl EB VIO 

[Vab,Vcd ] ~ Va+c,b+d' 

(a,b,c,d,a, + c,b + d are integers mod 2). 

In the first case the grading subspaces are generated by the 
familiar infinitesimal operators L I' Lo, L _ I of angular mo
mentum theory in arbitrary normalization. The generators 
in the second case are the Pauli matrices u x ' uy, U z also 
arbitrarily normalized and denoted by a pair (a,b) of inte
gers mod 2 such that not both integers are simultaneously 
zero. 

Nonequivalence of the two gradings becomes clear once 
we notice that there are two subspaces, VI and V _I' in the 
first case consisting entirely of nilpotent elements of the Lie 
algebra, while in the second case there is no such grading 
subspace. 

In the first case the grading group is an SL(2,C) torus 
[cf. (34) below] while in the second one it is the adjoint 
action of the finite group5 11'2 of order 8 generated by the 
Pauli matrices that are normalized to be antihermitian and 
of determinant one. 

It is not an accident that among the infinity of possible 
choices ofsl(2,C) generators the two bases above are practi
cally the only ones used. Other choices are quite awkward 
and are used only for special purposes [cf. Ref. 6]. It is a 
direct consequence of the fact that bases dictated by fine 
gradings reflect structural properties of the algebra and are 
therefore far more convenient to use. 

2758 J. Math. Phys., Vol. 30, No. 12, December 1989 

IV. FOUR SETS OF ADDITIVE QUANTUM NUMBERS OF 
SL(3,C) 

From now on we assume that Vis the linear space of the 
Lie algebra of complex 3 X 3 traceless matrices, the simple 
Lie algebra denoted either by A2 or sl (3,e). The operators Q 
are either elements of the Lie algebra that can be diagonal
ized (semisimple elements), or they are the finite invertible 
transformations that act on any element X of A2 as QXQ - I 

and leave the whole Lie algebra invariant. In the latter case Q 
belong to the group of automorphisms of A2 that properly 
contains the Lie group SL(3,C). 

Let us consider the four gradings one by one. 
(1) Cartan decomposition, also called the root decompo

sition, or the toroidal decomposition, is well known: 

sl(3,C) = VoEB Va EB V -a EB V/3 EB V -/3 EB Va+/3 EB V -a-/3' 
(9) 

The grading implies the commutation relations in the form 
(7) where S = { ± a, ± /3, ± (a + /3),O} is the set of roots 
of the algebra (including two zero roots). If A + JiI$S one 
must have [ V/l' V", ] = O. The subspace Vo is two dimension
al, other grading subspaces are of dimension 1. Consequent
ly six generators are prescribed up to a normalization (mul
tiplication by a nonzero complex valued constant) by their 
quantum numbers. The two generators QI and Q2 of Vo are a 
matter of choice. In particular, the orthogonality (8) of QI 
and Q2 is not automatic, they must be chosen accordingly for 
that. Once those generators are chosen, eigenvalues AI and 
A2 of their commutation action 

( 10) 

on the elements X of sl(3,C), are the additive quantum 
numbers (coordinates of the roots). The commuting genera
tors QI and Q2 are therefore labeled by the same quantum 
numbers AI = A2 = O. Choosing instead of QI and Q2 their 
linear combinations, one does not change the grading of the 
Lie algebra; the roots will of course be given relative to a 
different basis of Vo. Therefore such choices are equivalent. 
A standard choice in physics makes one of the quantum 
numbers into the projection of the isospin and the other into 
the hypercharge, another common choice makes them the 
projections of u spin and v spin. A standard choice in math
ematics is that of ( 13) below. 

The generators of the decomposition (9) are often rep
resented by the 3 X 3 matrices Ejk = (t>jr8sk) satisfying the 
commutation relations 

(11 ) 

The grading decomposition is then the sum of six one-dimen
sional subspaces of off-diagonal matrices labeled in (9) by 
the positive and negative roots ± a, ± /3, ± (a + /3), and 
a subspace of dimension 2 of traceless diagonal matrices: 

3 

EB EB (CEjk ). 
j,k= I 

j"l'k 

(12) 

Here C denotes an arbitrary complex valued coefficient. 
Therefore 
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(13) 

The rest of the correspondence between (9) and (12) can be 
set up in many ways. For example, 

E I2EVa , E23EV/3' E 13EVa +/3' 

E21 EV -a' E32EV -/3' E 31 EV -a-/3' 

The seven distinct pairs of quantum numbers (coordinates 
of roots) is then drawn in the familiar hexagonal form with 
the origin containing the two weights (0,0). 

The grading group in this case is the maximal torus of 
SL(3,C) generated by a basis of Vo. 

(2). The grading of sl(3,C) by the finite group t?3 of 
generalized Pauli matrices is described in Ref. 5. On a num
ber of occasions this basis of sl(3,C) appeared7 in physics 
literature in a different context. Let us recall it briefly; 

1 

gl(3,C) = ED {C(a,d)} = C(O,O) EDsI(3,C) 
a.d= -I 

= C(O,O) ED ED {C(a,d)}. 
a.d= -I 
a=d#O 

The generators (a,d) satify the commutation relations 

[(a,d),(a',d ')] = (wad' - wa'd)(a + a',d + d '), 

w = exp(21TiI3). 

(14) 

(15) 

Here a, ai, d, d I and the sums a + a' and d + d I are taken 
mod 3. The grading property is evident in (15). 

A faithful matrix representation of the generators is, for 
instance, given by5 

(0, -1) ~G !} (0,1) ~ G 0 

~) 0 0 

0 

(I,Q) ~G 
0 

~ ) (- 1,0) ~ (~ 
0 

D W w2 

0 w2 0 0 

(1,-1) ~G 
w 

~,) (- 1,1) ~ G 0 

n-O 0 

0 w2 

H,-1) ~G 
w2 

D (1,1) ~G 
0 

w') 0 0 o , 
0 w 0 

(0,0) ~G 
0 

D 1 (16) 

0 

In this case the eight-dimensional Lie algebra s1(3,C) is 
graded into eight one-dimensional subspaces that are pair
wise orthogonal with respect to the Killing form (8). Hence 
all the generators in this case are prescribed by the grading 
up to a normalization. We say that the grading is not only 
fine but also finest. The appearance of the matrices (16) 
representing the generators is, of course, basis dependent. 
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Note that the matrices (16) under matrix multiplication 
generate a finite group of order 27 denoted by t?3 in Ref. 5. 

In the previous case relations between generators were 
conveniently visualized as six points of a regular hexagon 
and the origin at the center. In the present case it would be 
necessary to draw the similar picture on the surface of a two
dimensional torus with the origin at the point (0,0) on the 
torus. 

The quantum numbers now are the exponents a and d of 
the eigenvalues of the group action 

QaXQa -I = wax, QdXQd -I = wdX, 

w = exp(21TiI3), (17) 

of the matrices Qa = (0, - 1) and Qd = (1,Q) of (16), re
spectively. Equivalently, we could have chosen any other 
pair of noncommuting matrices (16) as the labeling opera
tors Qa and Qd' There is no other freedom in choosing the 
quantum numbers for this grading. 

(3). An essential part of the next case is an 0(3) grading 
ofs1(3,C). However, the grading ofs1(3,C) by the torus of 
o ( 3) is not fine. Therefore the torus has to be extended by 
the outer automorphism of sl(3,C) in order to produce a 
maximal grading group in Aut(sl( 3,e», which then yields a 
fine grading. As a result, one has the grading decomposition 

2 1 

sl(3,C) = ED (C(1,k» ED (C(O,k». (18) 
k=-2 k=-I 

The decomposition (18) is a grading, provided one has 

[(b,e),(b 'e')] kC(b + b I,e + e' ), (19) 

where the first components of generators are taken mod 2 
and the second ones as ordinary integers. As in the previous 
case the grading subspaces are one dimensional. The genera
tors are labeled by distinct quantum numbers and their orth
ogonality (8) is automatic. They are again determined by 
the grading up to a normalization. 

The conditions ( 18) and ( 19) are satisfied, for example, 
by the following matrix representation of the generators: 

(O'l)~G 
1 !} (0,0) ~G 

0 

~} 0 0 

0 0 -1 

(O'-l)~G 
0 n 0 

(1,2) ~G 
0 

~) (1,1) ~ G -!) 0 0 

0 0 

(I,Q) ~G 
0 n -2 

0 

O'-l)~G 
0 

~) 0,-2) ~G 
0 n (20) 0 0 

-1 0 

Note that (0,1), (0,0), and (0, - 1) generate the Lie algebra 
0(3) of the 0(3) subgroup ofSL(3,C). With this choice of 
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matrix representation of the generators of ( 18) and (19), it 
is obvious that the structure constants are integers. 

Consider now the labeling operators Qb and Qc' whose 
action on the generators (b,c) provides the quantum 
numbers band c. As one of them we have Qc = (0,0), the 
generator of an 0 (3) torus. Its action 

[Qc,(b,c)] = [(O,O),(b,c)] =c(b,c) (21) 

can be verified directly using (20). We cannot choose Qb as 
the other generator that commutes with (0,0), namely 
( 1,0), because then we would have a different grading than 
(18), namely, a grading equivalent to the Cartan decompo
sition (9). Therefore one has to look for Qb outside of the 
group SL( 3,C) and consequently the operator Qb cannot be 
realized as a 3 X 3 matrix. 

A faithful representation of the outer automorphisms of 
sl(3,C) is possible by matrices 6X6. For every generator 
(b,c) we consider the block diagonal 6 X 6 matrix 

(
b,c) ) 

_ (b,c) T • 
(22) 

Then we require that 

Qb(
b,C) ) 

_(b,C)T Qb~1 

= ( _ l)b(b,C) ) 
- (b,C)T . 

(23) 

Given the specific choice (20) of the generator matrices, the 
labeling operator Qb is determined. Namely, 

The grading ( 18) cannot be equivalent to ( 14) because 
the latter does not contain among its grading subspaces a 
subalgebra sl(2,C). It is also nonequivalent to (9) because of 
the absence of a two-dimensional grading subspace in it. The 
grading group consists of the SL(2,C) torus and by the outer 
automorphism of sl (2, C) . 

An analogous picture to the hexagon in the case of the 
root decomposition (9) now would be a set of eight distinct 
points on the surface of a cylinder with the quantum number 
c varying along the axis of the cylinder. 

The fact that the outer automorphism of sl(n,C) n;;,3, 
leaves invariant the o(n,C) subalgebra is well known. Its 
particular matrix representation (24) is a consequence of 
our choice of the 0 (3) generators in (20). Instead, if one is 
guided by the simplicity of Qb then a favorite choice might be 

Qb = (0 In) (24') 
In 0 ' 

where In is the n X n identity matrix. Then one has 

-X T). 
In this case the o(n,C) subalgebra corresponding to the + 1 
eigenvalue consists of all antisymmetric matrices X T 
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= - X, while the remaining sl(n,C) generators (eigenval
ue - 1) are symmetric matrices. These properties have been 
used many times in physics, for example, in connection of 
the Wigner-Inonii contractions, in defining the rotational 
bands8 of SU (3), and elsewhere. 

(4). In the last case the subalgebra sl(2,C) plays a promi
nent role but not gl(2,C). Let us first describe the grading: 

sl(3,C) = ® (C(O,k» EB (C(j,k»EBC(2,0), (25) 
k~O,±2 kJ~ ± 1 

[(j,k),(j',k ')] kC(j + j',k + k '), 

j,j',j + j' are integers mod 4; 

k,k ',k + k' are integers. (26) 

The generators of the decomposition (25) are denoted by 
( j,k). Since the decomposition contains eight terms, each 
generator is determined by it up to a normalization. Rela
tions (26) imply that QI = (0,0) must be the diagonal gen
erator of sl (2, C) and also that we have 

[(O,O),(j,k)] = k(j,k). (27) 

Furthermore, (0, ± 2) must be the remaining generators of 
the sl(2,C) subalgebra, and together with (2,0) they gener
ate gl(2,C) in sl(3,C). Ifwe would now adopt the generator 
(2,0) as Q2' the grading property (26) would not hold be
cause (0,0) and (2,0) would have to be labeled by the same 
quantum numbers; such a grading would be equivalent to 
(9). Therefore again, as in the previous case, we have to look 
for Q2 outside of the SL(3,C) group. 

A matrix representation of the generators of the grading 
decomposition (25) can be chosen with integer structure 
constants, for example, as follows: 

(om ~G 

(0,2) ~ G 

o 
-1 

o 
1 

o 
o 
n 0,-1) ~G 

o 
o 

-i 

0 !) 0 
0 

0 

~} (-1,1) ~G 
0 

0 0 
0 -1 

0 

~) -i 

0 2i 
(2,0) ~C~ 

(-1,-1)=( ~ 
-1 

o 
o 
o -D 

~} 

(28) 

The first label of each generator (j,k) is defined by the ac
tion 

Q2{(j,k) EB - (j,K)1)Q2 -I = ij{(j,k) EB - (j,K) 1) (29) 
ofQ2 on {(j,k) EB - (j,K) T} as in (22) and (23). Adopting 
the representation (28) of the generators, we have deter
mined Q2 as the matrix 
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0 

-1 0 0 

0 0 1 
(30) Q2= 

0 0 

-1 0 0 

0 0 1 

The grading (25) is not equivalent to (9) and (14) for the 
same reason that ( 18) is not equivalent to (9) and ( 14); it is 
also not equivalent to (18) because the grading subspaces of 
(18) and (25) decompose differently with respect to their 
respective subalgebras sl(2,C). 

The grading group now consists of the 0 (3) torus, gen
erated by (0,0), and by the outer automorphism ofs1(3,C). 

IV. MULTIPLICATIVE FORMS OF ADDITIVE QUANTUM 
NUMBERS AND EQUIVALENT GRADINGS 

The modular quantum numbers appear in gradings 
(14), (18), and (25) because the corresponding labeling 
operators Q act as finite transformations of finite order on 
the Lie algebra [cf. (17)] and because we replaced their 
multiplicative form by their additive form in the sense of (3). 

The nonmodular additive quantum numbers can also be 
replaced by the modular ones; in fact, in many ways. Such a 
replacement is equivalent for a limited number oflow repre
sentations, and it may sometimes prove advantageous. 
Therefore in this section we describe how it can be done. 

Consider the first grading of Sec. III explicitly in the 
lowest representation: 

Here the subscripts of the generators refer to the traditional 
choice of quantum numbers according to the commutation 
action of Lo on L+ and L_: 

(32) 

The role of Q is played by Lo. The grading is preserved by any 
diagonal matrix 

Q = exp(iLolJ> = diag{exp(iO),exp( - iO)} 

E SU(2),OER, (33) 

representing an element of the torus of SU (2). Indeed one 
has 

QLoQ -I = L o, QL+Q -I = exp(iO)L+, 

QL_Q -I = exp( - iO)L_. (34) 

Consequently, whole torus preserves that grading ofthe Lie 
algebra. It suffices to use just one element of the torus, i.e., to 
fix a value of 0 that is not an integer multiple of 1T, to provide 
the additive quantum number labeling the generators (31). 
With the simple choice 0 = 21T/3, the eigenvalues of (34) 
are third roots of 1. Thus the generators (31) are labeled by 
thepowersofw = exp(21Ti/3). Thus a grading ofsl(3,C) by 
a subgroup of the torus, namely the cyclic group of order 3 
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generated by Q = exp(21TiLoI3), produces the same grad
ing. However, the action of that cyclic group on representa
tions ofsl(3,(;) of dimensions> 3 produces a much coarser 
grading than that of the torus. 

In the example above we have taken a particular element 
of order 3 in SU(2) and used it to grade the Lie algebra 
sl(2,C). The element represents the SU(2) conjagacy class 
denoted9 by Refs. 1 and 2. A general element [so,s I] of finite 
order,9 where SO,SI are relatively prime non-negative inte
gers, in its diagonal form is then represented by the matrix 

Similarly, in the case ofsl(3,C) one may replace a quan
tum number defined as an eigenvalue of the commutation 
action of a diagonal generator of a torus of the Lie group by 
the quantum number which the eigenvalue of the action 
(34) of the "exponential form" of the generator with a fixed 
value of the parameter. In other words, one chooses a mini
mal number of particular elements of the grading group to 
provide a desired grading. In particular, combining a suit
able chosen element of SL( 3,C) torus with the outer auto
morphism, it is possible to replace the labeling operator (30) 
for instance, by 

0 t 7 

t 0 0 

Q= 
0 0 i t - e21ri

/
8 

0 t 5 0 
,- . (36) 

t 3 0 0 

0 0 i 

Unlike Q2 in (30), here Q this is an operator of order 8. 
Indeed, Q8 = 1 while Q4# 1. It has eight distinct eigenval
ues, eight roots of 1, which alone can be used to relabel the 
generators (28) of sl(3,C). Denoting a generator by (k), 

where k is the exponent of an eigenvalue t \ we have 

0 0 

-1 0 (0) ~G 
0 

~} (7) ~G 
-i ~} 

(2) ~G ~). (5) ~G 
0 

~} 0 0 

0 0 

(6) ~G 
0 

~} (3) ~G 
0 

~} 0 0 

0 -1 

C 
0 

~). (1) ~( ~ 
0 -D (37) (4) = ~ -i 0 

0 2i - 1 0 

It is the same set of generators graded as before although the 
commutation relations now look particularly simple: 

[(e),(j)] ~C(e + j), (38) 

where e,/, e + fare integers mod 8. In this case the genera
tors are easily visualized as the vertices of a regular octagon. 
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Two new gradings of the Lie algebra sl(3,C) are the refined sl(2,C) and 0(3) gradings. The 
grading in each case utilizes the sl(2,C), or 0(3), weight together with a new additive modular 
label. A complete set ofsl(3,C) representation basis states labeled by each of the two sets of 
additive quantum numbers is found. The new labeling operator in both cases fails to commute 
with the cubic sl(3,C) Casimir operator, and hence mixes states ofthe contragredient 
representations (p,q) and (q,p). 

I. INTRODUCTION 

The complex Lie algebra of traceless 3 X 3 matrices ap
pears in many applications in physics either in its own right, 
as a stepping stone to the SU (3) representations, or as a 
subalgebra of a larger symmetry algebra. The history of 
those applications is extensive and long. Superficially one 
may be inclined to share the opinion that "whatever is need
ed about sl( 3,C) and its finite-dimensional representations is 
already known." But recently new questions have been 
raised I about sl(3,C) (and any other simple Lie algebra), 
which should be of obvious interest to physicists. One of 
them concerns nonequivalent choices of additive quantum 
numbers. It turns outthat for sl (3, C) there are four different 
possibilities and that only one is generally known and used 
(in a number of disguises); only part ofthe others is used. 

An additive quantum number A. labeling physical states 
1.1 ) in the most general form I can be defined as a number 
satisfying one of the equalities 

1.1 1) 1.12) = 1.11 + .12 ) or 1.1 1) 1.12) = 1.1 1 . .12), ( 1.1) 

In the latter case one often speaks of a multiplicative quan
tum numbers; however, without loss of generality one may 
use In .11 and In .12 as labels instead of .11 and .12 and rewrite 
the relation in the additive form. 

Each set of additive quantum numbers of a given Lie 
algebra opens the possibility of using them in describing the 
representations of the algebra. Practically, that means that 
we label simultaneously the generators of the algebra and 
basis states of representation spaces by the same set of addi
tive quantum numbers. 

Two sets of additive sl(3,C) quantum numbers are 
equivalent for a space V if they decompose V into the same 
subspaces: 

( 1.2) 

such that 

[ VA, ' VA, ] !;; VA, + A,; A. I,A.2,A.1 + A.2eS. ( 1.3) 

In all our cases Vis a finite-dimensional representation space 
ofsl( 3,C). In the case of the adjoint representation V could 
be taken to coincide with sl(3,C). In particular, if two sets of 
quantum numbers SI and S2 provide the same decomposi-

tion of V, they are equivalent even if the actual values of the 
labels are different. Similarly different linear combinations 
oflabeling operators always produce only equivalent sets of 
additive quantum numbers. Thus, for instance, the projec
tion of isospin and hypercharge are not essentially different 
additive quantum numbers from, say, the projections of the 
u and v spins. 

It may be astonishing but the question about nonequiva
lent sets S was apparently not investigated before Ref. 2. 
Therefore the description of representations using the un
common sets S is undertaken here for a simple Lie algebra of 
rank > 1 for the first time. The traditional representation 
theory of semisimple Lie algebras has an elegant and fairly 
uniform form for each type of algebra; perhaps that is why 
the alternatives were not pursued with any vigor until now. 
It is conceivable that in some problems the new bases and 
new quantum numbers will prove advantageous. 

Nonequivalent sets of additive quantum numbers, 
which label a basis of the Lie algebra are in one-to-one corre
spondence with nonequivalent fine gradings of the Lie alge
bra. I

•
2 For two equivalent gradings the related quantum 

numbers are equivalent in principle but practically can be 
defined to look very different. Moreover, equivalent grad
ings of a Lie algebra may not be equivalent gradings of a set 
of representations. Then what is the optimal choice? The 
answer undoubtedly depends on the set of representations 
under consideration. 

This paper contains the first exploratory study of the 
alternative ways to describe sl(3,C) representations. We 
consider two of the four cases.2 The third and fourth cases 
are the traditional theory (with its additive quantum 
numbers) and the 1P3 grading of Refs. 3 and 4. The applica
tion of 1P3 gradings to representation theory is somewhat 
different because it is based on a finite group rather than a 
Lie one as here. The two cases considered here have in com
mon a prominent role played by a maximal simple subalge
bra of rank 1 in sl(3,C), namely, sl(2,C) or 0(3). These 
subalgebras have been used many times before but only here 
is the additive quantum number the subalgebra provides 
supplemented by a new additive quantum number, which is 
not an eigenvalue of the second diagonal generator of 
sl(3,C). 
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For convenience we identify the two cases considered 
here by the prominent simple subalgebra, either sl(2,C) or 
o (3). In both cases part of our construction is thus the reduc
tion ofsl(3,C) to the subalgebra and among the generators 
of sl (3, C) we find three generating the subalgebra. Among 
them must be at least one that is diagonalizable. Thus one of 
the two additive quantum numbers in each case is the eigen
value of the diagonal generator of the subalgebra (projection 
of angular momentum, spin, isospin, etc.). 

The traditional way to proceed in the sl(2,C) case is to 
use the second diagonal generator of sl (3, C), chosen in such 
a way that it commutes with the subalgebra and use its eigen
value as the second additive quantum number. Such a choice 
is equivalent to the exploitation ofthe Cartan decomposition 
as the relevant grading of the algebra. Indeed, both additive 
quantum numbers are provided by two simultaneously dia
gonalizable generators ofsl(3,C). Also let us point out that 
the two additive quantum numbers in this case do not define 
a complete basis of sl (3,C) nor of its representations in gen
eral. Indeed, the additive quantum numbers do not distin
guish the diagonal generators, being zero for both of them. 
The supplementary labels used in the traditional way are 
then nonadditive quantum numbers related to the subgroup 
Casimir operators. 

In the 0(3) case the first additive quantum number is 
the 0 (3) weight. In fact the corresponding diagonal gener
ator could be chosen to coincide with that of the s1(2,C) 
case. The two cases would then differ in how the remaining 
two generators are chosen. For 0 (3) that is done so that 
there is no other generator of sl (3, C) commuting with 0 (3). 
Then one faces what is often called the "missing label prob
lem." Over the years a number of ways were invented to cope 
with it.5- 7 

The second labeling operator in the 0 (3) contains the 
outer automorphism Q3 ofs1(3,C) often combined with an 
inner one. Its existence is well known and it was used in 
mathematics, for instance, in classifying the real forms of 
sl(3,C), more precisely sl(3,R) for Q3' In physics it is used 
for the Wigner-Inonii contractions.ofsl(3,C) and for classi
fication of rotational bands in SU (3). Note, however, that 
even in those situations irreducible self-contragedient repre
sentations labeled by two equal integers (p,p) are always 
involved. 

Abandoning the traditional scenarios above we define I a 
new quantum number of the additive type that can be used 
simultaneously with that defined by the corresponding sub
algebra. Such a number is an eigenvalue of a finite transfor
mation ofsl(3,C), which is not in the group SL(3,C). The 
purpose ofthis paper is to investigate how the finite-dimen
sional representations ofs1(3,C) can be described in a basis 
labeled by the new pairs of additive quantum numbers. The 

I 

(2,0,0) ~ T, ~ G 0 

D· (2,2,0) ~ - T+ ~ G -1 
0 

(2,-2,0) ~ L ~ (! 0 

~) Ci 0 (0,0,2) = - 3iY = ~ 
0 
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main features of the description are the following: (1) The 
sl (3, C) generators are labeled by two distinct additive quan
tum numbers; (2) one additive quantum number is of the 
"subalgebra type", the other is modular (mod N); (3) every 
representation space Vis simultaneously graded with the Lie 
algebra and then decomposes as in (1.2) into N subspaces 
V" , A = 1,2, .,. ,N or 0,1, ... ,N - 1; (4) a basis for each Vi 
has to be built resolving the degeneracies of the N-modular 
eigenvalues; (5) the choice of the modular eigenvalue is not 
unique. There are in general many ways to choose it, which 
are equivalent from the point of view of labeling the genera
tors but nonequivalent from the point of view of representa
tions. 

II. REFINED sl(2,C) GRADING 

Rather than the physicists' notation SU (3) :J SU (2), 
we use in this paper the nomenclature of the complexified 
Lie algebras, sl(3,C) :Jsl(2,C). We hope this does not com
plexify the reading. 

The two grading labels are described, for the sl(3,C) 
algebra, in Refs. 1 and 2. The first, m, is the eigenvalue of the 
diagonal generator To of the sl(2,C) subalgebra; it takes in
teger values. The second, a, is the exponent of the imaginary 
unit i in the eigenvalue of an outer automorphism operator 
Q2; the eigenvalue takes the values ± 1, ± i, so that a, an 
integer determined only modulo 4, may be limited to the 
values 0, 2, and ± 1. The labeling operators To and Q2 com
mute with each other; they also commute with the sl(2,C) 
Casimir operator T2, the square y2 of the sl(3,C) hyper
charge generator, the second degree sl (3,C) Casimir opera
tor C (2) and the square C (3)2 of the third degree sl (3, C) Casi
mir operator. However, Q2 does not commute with C(3) nor 
with the hypercharge operator Y. Consequently, a graded 
basis state cannot belong in general to a single s1(3,C) irre
ducible representation, nor have a definite hypercharge la
bel. However, we can choose it to lie in the representation 
space of the pair of contragradient representations 
(p,q) Ell (q,p) [or in the single representation space (p,p) 
only if the representation is self-contragredient]; similarly, 
the graded state may involve only the equal and opposite 
hypercharges ± y (or a single value only if y = 0). 

We review briefly the sl(3,C) generators in our graded 
basis and the action of the grading operator Q2 on them. The 
matrix of a generator takes the form 

(~ _~T)' 
suitable for acting on a state lying in the composite sl(3,C) 
representation (1,0) Ell (0,1) in which the basis states are the 
usual 1/1' 1/2' 1/3' 1/T, 1/T, 1/t· Then, the eight generators are 
[ we show only n, suitable for acting on (1,0) states referred 
to 1/1,1/2' and 1/3]: 

-1 

~). 0 
0 

0 

~). -i (2.1 ) 
0 2i 
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(I,I,I) ~ En - fE" ~ G 0 

~), (I, -1,1) ~ E" + iE" ~ G 0 

!). 0 0 

-i 0 

(I,I,-I) ~ En + iE" ~ G 0 

~), (1,-I,-I}~E"-iE,, ~( ~. 
0 

D 0 0 
-I 0 

The notation is (t,m,a). The label tis thesl(2,C) representa
tion label; it is not an additive grading label, but since the 
s1(2,C) Casimir commutes with the grading operators To 
and Qz, it is useful to retain it as an additional label; the 
generators are all distinguished without it, but it will be use
ful in labeling basis states of larger representations. In our 
basis, Qz takes the form 

0 

0 -i 0 0 

0 0 i 
Qz= 

0 0 
(2.2) 

-i 0 0 0 

0 0 
Then, the a labels in (2.1) are found from 

(2.3 ) 

The label m arises from [(2,0,0),(t,m,a)] = m(t,m,a). The 
action of Qz on the basis states of (1,0) Ell (0,1) is found from 
(2.2) to be 

Qz1h = - i1J!, QZ1J2 = i1Jf, QZ1J3 = i1JT, 

Qz1Jf = - i1Jz, Qz1J! = i1JI' Qz1JT = i1J3' (2.4) 

The common eigenstates of To and Qz in this basis are found 
to be 

10,0,1) = 1J3 + 1JT, 10,0, - 1) = 1J3 -1JT, 

11,1,0) = 1JI - i1J!, 11,1,2) = 1JI + i1J!, 

11,1,0) = 1Jz + i1Jf, 11, - 1,2) = 1Jz - i1Jf· 

(2.5a) 

(2.5b) 

(2.5c) 

Again the notation is It,m,a). Note that (2.5a) and (2.5b) 
are the highest states of sl(2,C) singlets and doublets, re
spectively. 

Products of powers of the four states (2.5a) and (2.5b) 
of total degree n lie in the space Vn of representations (p,q) 
with p + q = n (it is understood from now on that 1J i> 1Jf 
stand for the traceless variables defined in the Appendix). It 
can be verified that they span the subspace of V" with m = t. 
Thus a generating function for a basis of this subspace is 
given by 

1/(1 - U)z(1 - Un 2
• (2.6) 

The coefficient of U"T' in the power expansion of (2.6) is 
the multiplicity of the sl(2,C) representation tin s1(3,C) 
representations withp + q = n. The elements of the integri
ty basis corresponding to the respective denominator factors 
of (2.6) are 10,0,1), 10,0, - 1), 11,1,0), 11,1,2). States for 
which the exponents of these elementary multiplets are, re
spectively, a,b,c,d, with c + d = t, and a + b + c + d = n 
span that part of the sl(3,C) representation space for which 
p + q = n, and m = t. States with m < t are obtained by ap-
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blicationofT_ = (2,-2,0). Theavalueofansl(2,C) multi
plet with exponents a, b, c, d is a - b + 2d mod 4. Conse
quently the decomposition ( 1.2) of a representation space V 
is of the form 

(2.7) 

where the range of m depends on the particular case and the 
range of a is integers mod 4. 

If eigenstates of C(2) and y2, as well as of To and Qz, are 
desired, they can be projected from the states implied by 
(2.6); but it is complicated to specify from which states to 
make the projections in order to obtain a complete, indepen
dent set. Instead, we construct the states directly, starting 
with Gel'fand states. 

A Gel'fand state I~:i.m) (unnormalized) with m = t may 
be written5 

I
p, q ) = 1J\I/2)(I+Y) + (l/3)(p-q) 
y, t, t 

X 1J~ 1/3)(2p + q) - (1/2) (I + Y) 

X 1J!(I/2)(I- Y) + (1I3)(q - p) 

X 1JT(l/3)(p + 2p) + (I!2)(y - I). (2.8) 

The Gel'fand states with - t,m < t are obtained from (2.8) 
by using T_. 

For the graded states belonging to (p,q) Ell (q,p), we 
may then write, in an obvious notation, 

Ip>,p<)= IP>,P<)±lZI3)(P<-P»-yIP<'P» 
y,t,m,a y,t,m - y,t,m 

(2.9) 

with a = p + q - t or p + q - t + 2 mod 4 according to 
whether the positive or negative sign is taken in (2.9). For 
p = q, y = 0, the states are 

10~~~J I = (1JI1Jn(1I2)1(1J31JT)P~ (112)1 (2.10) 

with a = 2p - t. 
Finally the grading structure of the Lie algebra and its 

representation spaces can be expressed in terms of the sub
spaces Vma of (2.7) as follows: 

(2.11 ) 

In particular, if a generator (t,m.,a I) replaces Vm,.a" (2.11) 
becomes 

(2.12) 

III. REFINED 0(3) GRADING 

The algebra chain sl(3,C) :Jo(3) has been of impor
tance in many physical models. It appears, for example, in 
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the description of the simple three-dimensional harmonic 
oscillator,6 in the Elliott model of the nucleus,? and in the 
rotational limit of the Interacting Boson Model. 8 It is known 
that the sl(3,C) generators split into the components 
LI' (J.l = 0, ± 1) of a vector [i.e., the 0(3) or angular 
momentum generators] and the components QI' (J.l = 0, 
± 1, ± 2) of a five-dimensional irreducible 0(3) represen

tation, the so-called quintet. Since the early days of 
sl(3,C) :::>0(3), it was known that the commutation rela
tions satisfy 

[LI',Lv] -LI' + v' 

[LI',Qv] - QI' + v' 

[QI',Qv] -LI' +Y' 

(3.1 ) 

which displays the grading decomposition of sl(3,C) into 
the 0 (3) subspace Vo generated by L 's and the complemen
tary subspace VI generated by Q's. Hence one has 

(V;,V;,H;;V;+j' i,j,i+J mod 2. (3.1') 

Clearly, the index J.l refers to the projection of the angular 
momentum and provides an additive quantum number and 
hence an additive grading of the Lie algebra sl(3,C). What 
has not been stressed in the literature is the fact that this 
grading can be refined as a result of the splitting of the 
sl (3,C) Lie algebra to Land Q components and the relations 
(3.1). In fact, in Refs. 1 and 2, it is shown that this splitting is 
exactly one of the four fine gradings of the Lie algebra of 
sl (3,C). The sl( 3,C) generators can then actually be labeled 
by two numbers (m,{3). The first, m, is the eigenvalue of the 
diagonal generator Lo of the 0 (3) subalgebra and takes in
teger values. It is equal to the index J.l in (3.1). The second, 
{3, is the exponent of i in the eigenvalue of an outer automor
phism operator Q3 (not to be confused with one of the com
ponents QI' of the quintet); the eigenvalues of Q3 on the 
adjoint representation take the value ± 1, so that {3 is 0 or 2. 
Clearly, although {3 is a Z4 number, it defines only a Z2 
grading for the generators in the adjoint representation. 
Here, the LI"s have {3 = 0, and the QI"s have {3 = 2. The 
labeling operators Lo and Q3 commute with each other and 
with the total angular momentum operator L 2. Therefore lis 
still a good quantum number when we want to label basis 
vectors of sl( 3, C) representations by means of their Lo and 
Q3 eigenvalues. However, just as in the sl(2,C) case, Q3 
commutes with C(2) but not with C(3) . As a consequence, 
irreducible sl(3,C) representations do not in general allow a 
consistent refined 0 (3) grading. Only the self-contragre
dient representations (p,q) Ell (q,p) (r!=q) or (p,p) have 
graded refined 0 ( 3) basis states. 

Let us first recall the explicit form of the sl(3,C) genera
tors in the graded basis. As in Sec. II, they can be written in 
matrix notation 

and have a natural action on the composite sl( 3,C) represen
tation (1,0) Ell (0,1) in which the basis states are now de
noted by 'r/I' 'r/o, 'r/-I' 'r/r. 'r/t, and 'r/*:...I' The n matrices for 
the eight generators are 
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(1,0,0) ~G 
0 

~) (1,-l,O)~G 
0 

~) -1 0 
0 

(1,1,0) ~ G 1 n 0 

0 

(2,-2,2)~G 
0 

~J. 0 
0 

(2,-1,2) ~G 
0 

~) 0 

-1 

(2,0,2) ~G 
0 

~) -2 

0 

(2,1,2) ~ G ~~) (2,2,2)~G 
0 

~) 0 0 
0 0 

(3.2) 

The notation is ([,m,{3). The labell is the 0 (3) representa
tion label: it is unnecessary for the labeling of the generators 
and is retained in (3.2) only for convenience. The grading of 
the sl(3,C) Lie algebra follows from 

[(l,m,{3),(l',m',{3')] = coeff(l",m+ m',{3 +{3'). (3.3) 

The additive labels m and {3 arise from 

[(l,O,O), (l,m,{3)] = m ([,m,{3) (3.4 ) 

and 

(3.5) 

where 

0 0 

0 -i 0 

Q3= 0 0 
0 0 i 

(3.6) 

0 -i 0 

0 0 

Hence the action of Q3 on the basis states of 
(1,0) Ell (0,1) is 

Q3'r/1 = i'r/*-I' Q3'r/O = - i'r/t, Q3'r/-1 = i'r/r, 
Q3'r/r=i'r/-I' Q3'r/t= -i'r/o, Q3'r/*:...1 =i'r/I' (3.7) 

The common eigenstates of Lo and Q3 are now given by 

11, - 1,1) = 'r/-I + 'r/r, 11, - 1, - 1) = 'r/-I - 'r/r, 

11,0,1) = 'r/o - 'r/t, 11,0, - 1) = 'r/o + 'r/t, 

11,1,1) = 'r/I + 'r/*:... I' 11,1, - 1) = 'r/I - 'r/*:...I; 
(3.8) 

the notation is I/,m,{3), where Lol/,m,/3) = ml/,m,{3) and 
Q31/,m,/3) = ill I/,m,/3 ). Note that in the representation 
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(3.8) only ± i appear as Q3 eigenvalues. This implies that 
(3.8) is Z2 graded by the label {3, and that 

(l,m,{3)ll',m',{3') = coeffll",m + m',{3 +{3'). (3.9) 

A generating function for basis states of higher sl(3,C) 
representations with proper grading labels is given by 

(1 + U 2L/(1- U 2)(1- UL)2. (3.10) 

The coefficient of U" LI in the expansion of (3.10) is the 
multiplicity of the 0 (3) representation lin the space of repre
sentations (p,q) with p + q = nand m = I. 

The elements of the integrity basis implied by (3.10) are 

U
2
L-+1/01/*-1 + 1/11/t, 

(U
2

) 1""'1/6 -21/11/-1 +1/t2 -21/T1/*-I' 

(U
2

)2 ..... 1/6 - 21/11/-1 -1/t
2 + 21/T1/*-I' 

(UL) 1""'1/1 +1/*-1> (UL)2-+1/1-1/*-I' (3.11) 

The eigenvalues of Q3 on the five elementary states (3.11) 
are + 1, - 1, + 1, + i, - i, respectively. Contrary to what 
one might expect this does not lead to a Z4 but to a Z2 grad
ing, since on a single representation (p,q) Ell (q,p), (p/=q), 
or (p,p), it still has only two different eigenvalues: either 
+ 1 and - 1 or else + i and - i. Products of powers 

of the elements (3.11) with respective exponents z, a, b, c, d 
(z=O,l), with 2z+2a+2b+c+d=n and 
z + c + d = I, span that part of the sl(3,C) representation 
space for which p + q = nand m = I. Basis states with m < I 
are obtained by applying L _ = (1, -1,0). The product states 
formed from (3.11 ) have a good grading label 
{3 = 2a + c - d mod 4. It follows that the Q3 eigenvalues 
are ± 1 whenp + q is even and ± iwhenp + q is odd. 

Just as in the previous case, one can proceed in two 
ways. This first is to use the states in the explicit expansion of 
(3.10), which are eigenstates of L 2, Lo, and Q3' The graded 
states of (p,q) Ell (q,p), (p/=q), or (p,p) are then projections 
of the product states. However, it is not easy to specify which 
product states in (3.10) will give an independent set of basis 
states after projection. An alternative way is to construct the 
basis states explicitly, starting for example with the so-called 
stretched states for sl(3,C) ~0(3). In terms of the 1/ and 1/* 
variables, a stretched state with m = I may be written as5 

I p,q) = 'YI I''YI I - I'(2'Y1 'YI - 'YI2 )(1I2)(p-I,) 1
1
,/,1 'II '/ - I '11'/-1 '/0 

X(21/T1/*-1 -1/t2)(\/2)(q-I+1) (3.12) 

for p + q - I even, and as 

I p,q) = 'YII, -1'YI*1-1'(2'Y1 'YI - 'YI2 )(\/2)(p-I,) 
/

1
,/,1 '11 '/ - I '11'/-1 '/0 

X (21/T1/*- I - 1/t2) (1I2)(q -I + I, - I) 

X (1/11/t + 1/01/*-1 ), (3.13) 

for p + q -I odd. Using the notation p> = max{p,q}, 
p < = min{p,q}, we can now give an expression for the grad
ed basis states of the representation (p,q) Ell (q,p), (q/=p), or 
(p,p): 

(3.14) 
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E +iE 
23 31 

E- iE 
13 32 

FIG. I. The generators (2.1) in a Z. 
weight space. 

where {3 + = 21 - P - q mod 4 and {3 _ = {3 + + 2 mod 4. 
The Q 3 eigenvalues are then given by ifJ. Note that when 
p = q, (3.14) will give a basis for the irreducible sl(3,C) 
representation (p,p); then when I = 2/1, only the state with 
the plus sign survives in (3.14). As in the previous case, 
these are the only irreducible sl(3,C) representations for 
which the grading is possible. 

The grading properties are expressed by Eqs. (2.11) and 
(2.12), with a replaced by {3, when the additive quantum 
numbers m and{3are defined by (3.4) and (3.5), respective
ly. 

IV. CONCLUDING REMARKS 

It has been observed in Ref. 2 that the grading presented 
in Sec. II is equivalent to a Zg grading of the Lie algebra 
sl(3,C). Indeed, the basis elements (t,m,a) given in (2.1) 
can be renamed as follows: 

(0) = (2,0,0),(1) = (l,-1,-1),(2) = (2,2,0), 

(3) = (1,1,-1),(4) = (0,0,2),(5) = (1,-1,1), (4.1) 

(6) = (2,-2,0),(7) = (1,1,1). 

The fact that this provides a Zg grading follows from 

[(a),(b)] =coeff(a+b), a,b,a + iJEZg• (4.2) 

The Zg label a is again related to an outer automorphism 
operator Qg, explicitly given by 

where 

o 
(}3 0 0 

o 0 

o (j? 0 

() 0 0 

o o 
(4.3) 

() = e21Ti
/

g 
= (1 + i)/~. (4.4 ) 

It grades the basis elements (4.1) by 

Q (
( a ) O)Q _ I = () a( ( a ) 

g 0 - (a) T 8 0 o T)' (4.5) 
- (a) 

FIG. 2. The quark ('TJ,,'TJ2,'113) and 
antiquark ('TJf, 'TJt, 'TJn states in the 
Z. weight space. 
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TABLE I. Upper part of the commutation table of the sl(3,C) generators (2.1) modified as in (4.9). 

(0,0) (2,0) ( -2,0) 

(0,0) 0 2 -2 
(2,0) 0 1 
( -2,0) 0 
(0,2) 
( -1,1) 
(1,1) 
( -1, -1) 
(1, -1) 

It is interesting to see now what effect this Zs grading has on 
the representations. For the (1,0) $ (0,1) (Le., quark and 
antiquark states) representation, the following basis vectors: 

11) = 1" + i1]T, 12) = 1]3 + 1]t, 13) = 1]2 + i1]T, 

15) = 1]. - i1]T, 16) = 1]3 -1]t, 17> = 1]2 - i1]T, 
(4.6) 

satisfy 

Qslb)=Oblb), b=I,2,3,5,6,7. (4.7) 

This implies the grading for the representation (4.6): 

(a) Ib) -Ia + b), (a,b,a + bEZs)· (4.8) 

Just as for the Cartan decomposition, the present graded 
basis of generators and graded states can be described in 
weight space. This gives rise to unusual pictures, manifesting 
a different sort of symmetry and possessing very elegant 
properties. In Fig. 1, we give the "weights" for the genera
tors, following from (2.1) and (4.1); the "weights" of the 
quark and antiquark states (4.6) are depicted in Fig. 2. 
From (4.8), it follows, for example, that acting with T + on 
the states of Fig. 2 rotates the states by an angle 1T/2; acting 
with Y rotates the states by an angle 1T, etc. Also note that the 
commutator of two elements in Fig. 1 is proportional to the 
element obtained by adding the two angles of the original 
elements. This case illustrates very well that, although the 
gradings of the Lie algebra may be equal as in (2.1) and 
(4.1), their effect on graded representations is quite differ
ent. For example, the (2,0) $ (0,2) has two multiplicity 2 
subspaces when graded by the refined sl(3,C) labels (m,a) 
of Sec. II and has four multiplicity 2 subspaces when graded 
only by the Zs quantum number (b). 

The Cartan decomposition has the property of leading 
to integer structure constants, provided a proper normaliza
tion is chosen. The two different gradings discussed in this 

(0,2) ( -1,1) (1,1) 1, 1) (1, 1) 

0 
0 
0 
0 

-1 1 1 1 
-1 0 1 0 

0 -1 0 1 
3 -3 -3 3 
0 -I -2 -1 

0 1 -2 
0 1 

0 

paper share this property. Choosing the following notation 
(m,a) and normalization for the basis elements (2.1), 

(0,0) = (2,0,0), (2,0) = - (2,2,0), ( - 2,0) = (2, - 2,0), 

(0,2) = (0,0,2), 

(-1,1) = (1,-1,1), (1,1) = - (1,1,1), 

(-1,-1) = - i(l,-l,-l), (1,-1) = - i(1,l,-l) 
(4.9) 

the constants in the commutation relations 

[(m,a),(m',a')] = const(m + m',a + a') 

have the integer values given in Table I. 

(4.10) 

Similarly, for the basis (3.2), the structure constants in 
the relation (3.3) have the integer values shown in Table II 
[ we suppress the labell for the generators and use only the 
additive grading labels (m,p) ]. 

When a generator acts on a graded state, whether of 
refined sl(2,C) or refined so(3) type, the result is always a 
linear combination of graded states satisfying the usual addi
tivity rules for the grading labels. The generator matrix ele
ments are closely related to those for the conventional Gel
'fand basis, or stretched basis in the respective cases. We give 
one example for each case, with the states lying in the com
posite representation (1,0) $ (0,1 ). 

For refined sl(3,C), we have 

(1,1,1)10,0, - 1) 

= (1].a3 - i1]3a2 -1]ta T + i1]Ta t> (1]3 -1]t> 

= 1]. - i1]T = 11,1,0), 

and for refined 0 ( 3 ) 

(2,-1,2)11,1,1) 

(4.11 ) 

= (1]oa. -1]_.ao -1]Ta~ + 1]~a!.. )(1]. + 1]!..) 

= 1]0 + 1]~ = 10,0, -1). (4.12) 

TABLE II. Upper part of the commutation table of the sl(3,C) generators (3.2). 

(0,0) ( -1,0) (1,0) ( -2,2) ( -1,2) (0,2) (1,2) (2,2) 

(0,0) 0 -I 1 -2 -1 0 I 2 
( -1,0) 0 -1 0 2 3 -I -1 
(1,0) 0 1 1 -3 -2 0 
( -2,2) 0 0 0 1 -1 
( -1,2) 0 3 -I 1 
(0,2) 0 3 0 
(1,2) 0 0 
(2,2) 0 
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APPENDIX 

In order to extract the traceless (i.e., orthogonal to any 
state containing the scalar B = 1/11/T + 1/21/1 + 1/31/! as a 
factor, and therefore transforming by a lower representa
tion) part of any state, we adapt a prescription given by 
Lohe9 for orthogonal groups, and make the replacements 

1/;-+1/; = 1/; - B(N + 3)-lar, 

1/r-+1/;* = 1/r - B(N + 3)-la; (AI) 

in any polynomial in the starred and unstarred variables; 
N = ~; (1/;a; + 1/ra r) is the total degree of its operand. 

The criterion for a traceless state I1/') is 

(Bep I1/') = 0, (A2) 

where ep is an arbitrary state. Equation (A2) can be written 

(ep IBt 1/') = 0, (A3) 

or, since ep is arbitrary, 

(A4) 

We show by induction that a product of primed vari
ables is traceless by calculating 
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(A5) 

Thus, if B t annihilates a state, it also annihilates the state 
multiplied by 1/; (or 1/;*). 

It is also seen by actual calculation that the 1/; and 1/;* 
mutually commute, so the order of applying them is imma
terial. 

The primed and unprimed variables transform in the 
same way under sl(3,C) transformations. 
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Se~ond-order ~rdinary di~erential equations are classified according to their Lie algebra of 
pomt symmetnes. The eXIstence of these symmetries provides a way to solve the equations or 
to transform them to simpler forms. Canonical forms of generators for equations with three
point symmet~es are establ~shed. It is further shown that an equation cannot have exactly 
re{4,5,.6,7} pomt symme~nes. Representative(s) of equivalence class(es) of equations 
possessmg s e{I,2,3,8} pomt symmetry generator(s) are then obtained. 

I. INTRODUCTION 

It is by now well established that when one realizes a real 
low-dimensional Lie algebra in terms of vector fields in two 
coordinates more than one canonical form may occur. A 
familiar example of this is found in the two canonical forms 
of generators obtained for each of the two real two-dimen
sional Lie algebras 2A) and A2 given in Lie. ) 

Lie s~?wed that. if a second-order ordinary differential 
equation q = E(t,q,q) admits a two-dimensional algebra 
(Abelian algebra 2A) or the solvable algebra A 2 ) of point 
symmetries, then its point symmetries G) and G2 can be ei
ther connected [Le., there exists a functionp(t,q) such that 
G2 =p(t,q)Gd or unconnected [Le., for any function 
¢(t,q)G2"/=¢(t,q)Gd. Thus he was led to distinguish 
between connected and unconnected operators for each of 
the algebras 2A) and A 2, respectively. Consequently he had 
four cases (see Ref. 2) to consider (Types I-IV, see Ref. 3). 
Lie deduced that, if a second-order equation admits a two
dimensional algebra with operators G) and G2 satisfying 
G2 = p(t,q)G) for a suitable functionp (i.e., Type II orIV of 
Ref. 3, then it is linearizable via a point transformation, i.e., 
it has SL(3,R) symmetry (see Ref. 2). 

In Ref. 2 second-order equations having two commut
ing unconnected point symmetries (Type I) were investigat
ed for linearizability. It was shown that such an equation is 
linearizable provided the regular point transformation that 
brings these symmetries into their canonical form reduces 
the equation to one which is at most cubic in the first deriva
tive. Accordingly, for equations of this type, the complete 
symmetry group SL(3, R) and the corresponding lineariz
ing point transformations were obtained. 

The study of second-order equations admitting two 
noncommuting unconnected point symmetries (Type III), 
with a view to linearization, was undertaken in Ref. 3. It was 
found that such an equation has the SL(3,R) symmetry 
group provided the point transformation that casts these 
symmetries to their canonical form reduces the equation to 
the form 

tq = ail + bel + (1 + b 2/3a)q + b/3a + b 3/27a2
, 

(i) 

where a (#0) and b are arbitrary constants. 
A necessary condition for a second-order equation to 

admit the sl (3,R) algebra (see Refs. 2 and 3) is that it be of 
the form 

q = d(t,q)i/ + flI (t,q)i/ + C(f (t,q)q + ~ (t,q) , (ii) 

where the functions d, flI, C(f, and ~ are analytic. Suffi
cient conditions for a second-order equation to admit the 
sl ( 3 ,R) algebra are given by (see Ref. 3) 

3d ll + 3dt Cf: - 3dq..@ + 3dCf: t + C(f - 6d~ qq q 

+ flIC(f q - 2fl1 flI t - 2fl1 tq = 0, (iii) 

6dt..@ - 3fl1 q..@ + 3d ~ t + flI II - 2C(f tq - 3fl1..@ q 

+ 3.@ qq + 2Cf: C(f q - C(f flI t = 0, (iv) 

where the suffices refer to partial derivatives. 
In Ref. 2 and 3 we have treated all four cases (Types 1-

IV) of second-order equations admitting two-dimensional 
algebras of point symmetries which are linearizable via a 
point transformation. Thus, if an equation of the form (ii) 
passes the linearization test, i.e., conditions (iii) and (iv) 
hold, then one requires only two-point symmetries of the 
equation to obtain a linearizing point transformation for the 
equation. 

In this paper we thoroughly investigate second-order 
equations admitting real Lie algebras of dimension two and 
higher (and at most eight which is the maximum dimension 
for such equations). We give a complete and rigorous treat
ment of three-dimensional Lie algebra realizations in terms 
of vector fields defined on the plane (see Sec. II) since in this 
respect there have been omissions in the works of Lie. Lie did 
not take into account the realizations of the family of alge
bras A t7 (b is a real parameter) and the algebras A3 6 and 
A 3,9 (see Table I for their commutation relations). The ca
nonical realizations in two coordinates obtained for the low
dimensional Lie algebras (see Tables I-III) are utilized sys
tematically to derive all equivalence classes of second-order 
equations (see Sec. III) which admit point symmetry alge
bras. More precisely, we obtain five representatives [see 
(45) ] of equivalence classes of second-order equations hav
ing exactly three-point symmetries. It is also deduced that 
second-order equations possessing exactly two-point sym
metries can belong to one of two equivalence classes [see 
(46) ]. Moreover, we prove, in Sec. II, that a second-order 
equation cannot admit exactly r e{ 4,5,6, 7} point symme-
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TABLE I. Lie algebras of dimension 3. 

Algebra 

3A, 
A, EIlA2 
A,., (Weyl) 

A '.2 
A,., (D®, T2 ) 

A,.(E(1.I» 
A~'" (O<iai<1) 
A 36(E(2» 
AL (b>O) 

A ',8 (SL(2.R» 
A ,,9(SO(3» 

Nonzero commutation relations 

[G,.G,] = G, 
[G2.G,] = G, 
[G,.G,] = G,. [G2.G,] = G, + G2 

[G,.G,] = G,. [G2.G,] = G2 

[G,.G,] = G,. [G2.G,] = - G2 

[G,.G,] = G,. [G2.G,] = aG2 

[G,.G,] = - G20 [G2.G,] = G, 
[G,.G,] = bG, - G2• [G2.G,] = G, + bG2 

[G,.G2 ] = G,.[G2.G,] = G,. [G,.G,] = - 2G2 

[G,.G2 ] = G,.[G2.G,] = G,. [G,.G,] = G2 

tries. This in effect means that a second-order equation can 
admit exactly one of 0,1,2,3, or 8 point symmetries. 

II. LIE ALGEBRA REALIZATIONS IN TWO 
COORDINATES 

The Lie algebra classification used is the Mubarak
zyanov classification given in Patera et al.4 For the three
and four-dimensional algebras our list also includes the de
composable algebras. The notation is the same as given in 
Ref. 4. Thus when referring to A ~J we simply mean the jth 
algebra of dimension r. The superscript(s), if any, indi
cate (s) the parameter (s) on which the algebra depends. The 
range of parameters is restricted to avoid double counting 
and algebraic sums oflower algebras. Assignment of specific 
values to a parameter singles out special algebras, within a 
family, which are well-known and which in some cases result 
in the linearization of the associated second-order equation. 
There are 11 Lie algebras of dimension three4 (decompos
able and indecomposable) two of which depend on param
eters. For convenience and easy reference we present their 
commutation relations in a convenient basis {G; : i = 1,3} in 
Table I. 

The decomposable Lie algebras are the Abelian algebra 
3AI and the non-Abelian oneAl EI1A 2. In many cases we have 
indicated the corresponding Lie groups in parentheses. 
These are the Weyl group, the semidirect product of dila
tions and translations D ® s T2 , the Euclidean group E (2), 
the pseudo-Euclidean group E ( 1,1 ), the special linear group 
SL(2,R), and the special orthogonal group SO(3). 

The following easily verified identities will be used in the 
proof of theorems. Let GI,G2,G3 be operators of the form 

a a 
G = 5(t,q)- + 1/(t,q)-. 

at aq 

Then (a) [GI,G2] = ( - G'lfJ)G2, if GI =p(t,q)G2 for a 
suitablefunctionp, (b) [GI,G3 ] = (GI.,p)G2 + .,p[GI,G2 ], if 
G3 = .,p(t,q)G2 for a suitable function.,p. 

Theorem 1: A second-order ordinary differential equa
tion does not admit the Abelian Lie algebra, 3A I' 

Proof Suppose a general second-order equation of the 
form q = H(q,q,t) has the Abelian algebra. The generators 
of symmetry G; (i = 1,3) then satisfy the Abelian commuta
tion relations 3A I' This being the case, we firstly show that 
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one cannot have GI =p(t,q)G2 or G3 = .,p(t,q)G2 (for any 
nonconstant functions p and .,p). Assume the contrary is 
true. Then for the case G I = pG2 , the first and last commuta· 
tors of 3A 1 imply 

G-n = 1.- ap + 1/ ap = 0 
Q' ~2 at 2 aq , 

ap ap 
GJ!' = 53-+ 1/3-=0. 

at aq 

As p cannot be a constant, at least one of aplat or aplaq is 
nonzero. This in turn leads to 521/3 - 531/2 = 0 and conse
quently 

G3 = (53/ 52)G2· 

Invoking the second commutator, [G2,G3 ] = 0, we obtain 

G2(53/52) = O. 

Therefore we must have 53/52 =J(p) for some functionJ 
(since also G'lfJ = 0). Thus eventually we have 

GI = pG2, G3 = J(p) G2 with G'lfJ = O. 

Transforming G2 to O2 = a laQ and solving O;jj = 0 
[,0 = ,0 (Q, T) where Q = Q( t,q) and T = T( t,q) are the 
transformed coordinates] we obtain ,0 = g( T) for some 
function g. Without loss of generality we may set g( T) = T 
making the generators appear as (cf. Lie 1 ) 

- a - a - a 
GI = T-, G2 = -, G3 = J( T)- . (1) 

aQ aQ aQ 

Expressing the invariance of the differential equation for Q 
with respect to ( 1 ) results injbeing linear in T contradicting 
the linear independence of the G; 'so The preceding argument 
applies equally to the case G3 = .,pG2 since GI and G3 play 
interchangeable roles. It follows therefore that G I =/pG2 and 
G3 =/= .,pG2 for any functions p and .,p. This, however, leads to 
(upon reducing GI , G2 to canonical form) 

- a 
G=-

1 aT' 
- a - a a 
G2 =-, G3 =a-+{J-

aQ aT aQ 

(a, (J constants and a=/=O) which obviously are linearly de
pendent. 0 

An immediate consequence of the above theorem is that 
a differential equation does not admit a Lie algebra which 
contains the Abelian three-dimensional algebra 3A I' as a 
subalgebra. As a result we need not consider all the real Lie 
algebras of dimension four (24 if we include, as we have, the 
decomposable ones). Indeed we have tabulated only nine 
(see Table II below). Of the five-dimensional algebras, 
Theorem 1 eliminates all except three of the indecomposable 
algebrasA 5•36 , A 5•37 , andA 5,4o (see Table III) and two of the 
decomposable algebras A 3,8 EI1 A2 and A 3,9 EI1 A2 , We list the 
four-dimensional algebras (in convenient basis {G; : 
i = 1,4}) of relevance together with their three-dimensional 
subalgebras (Patera and Winternitz5

) in Table II. The su
balgebras listed in Table II are enclosed in parentheses 
(rather than in braces), e.g., (G1>G3 ;G2 ). This is to indicate 
that they are maximal subalgebras of the Lie algebras con
sidered. The generators of the derived algebra are written to 
the right of the semicolon. 

Concerning the five-dimensional real Lie algebras (in
decomposable), all but three of the algebras do not contain 
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TABLE II. Relevant algebras of dimension 4 and their three-dimensional 
subalgebras. 

Algebra 

2A, 

A 4.7 

A 4•K 

Ai> 
4,. 

A!." 

A~.<) 

A 4.10 

A ~.11 

A 4 . 12 

Nonzero 
commutators 

[G"G,] =G" 
[G"G.] = G. 

[G"G,] = 2G" 
[G"G,] = I, 
[G"G,] =G, 

[G"G,] =G" 
[G"G,]=G,. 

[G"G,]=G, 

[G"G.] = 2G,. 
[G,.G4 ] = G,. 

[G"G4 ] = G, + G" 

[G,.G,] =G, 

[G"G,] =G,. 

[G"G.] = G" 
[G,.G.] = - G, 

(G"G,] =G" 

[G,.G.] = (I + b)G" 

[G"G.] =G,. 

[G,.G.] =bG, 

[G"G,] =G" 

[G"G.] = 2G,. 

[G,.G.] = G" 

[G"G.] = G, 

[G,.G,]=G,. 

[G,.G.]=G,. 
[G,.G.] =G, 

[G"G,] =G" 
[G"G.] = - G,. 

[G"G.] = G, 

[G"G,] =G" 

[G"G.] =2aG" 
[G"G.] = aG, - G" 
[G"G.] = G, + aG, 

[G"G,] =G" 

[G"G,] =G" 

[G"G.] = - G" 
[G"G.] = G, 

Dimension 3 

A, EllA,: (G"G,;G,)(G"G.;G,) 

(G"G,;G.) (G"G,;G.) 

A",: (G,+G,;G"G4 ) 

A 'A: (G, - G,;G"G4 ) 

A';,,: (G, +xG,;G"G4 ), 

a_Ix' O<lxl <I, 
- I/x, 1 < Ixl < 00. 

A,EllA,: (G,.G.;G,) 

A",: (;G"G"G,) 
A".,: (;G"G"G,) 

A",: (G"G,;G,) 

Au: (G"G,;G,) 

A,EllA,: (G4 ,G,;G,), (G4 ,G,;G,) 

A",: (G"G,;G,) 

A;,,: (G4 ;G"G,), 

II+b, II+bl<l, 
U= 1/(I+b), II+bl>l, 
A'A: (G4;G"G,), b=-\ 
A';:,: (G4 ;G"G,), 
w=lbl(l+b), Ibl(l+b)I<I, 

(I+b)/b, Ibl(l+b)I>I. 
Au: (G"G,;G,) 

A\/~: (G4 ;G"cos ",G, + sin ",G,) 

0<",< rr 
A",: (G"G,;G,) 

A,EllA,: (G"G4 ;G,) 

Au: (G4 ;G"G,) 
A",: (G4 +xG,;G"G,) (x#O) 

A",: (G"G,;G,) 

A",: (G"G,;G,) 

A",,: (G,;G"G,) 

A ,',b: (G.;G"G,) 
A',~,: (G4 +xG,;G"G,) (x#O) 

3A t as a subalgebra. Their commutation relations in a con
venient bases {Gi : i = 1,S} are given in Table III. 

We shall discuss the Lie algebras listed in Tables II and 
III after investigating the three-dimensional Lie algebra re
alizations of Table I. 

Proposition 2: If a second-order equation admits the Lie 
algebra sl(2,R) (A 3.8 ), then it has either three or eight gen
erators of symmetry. 

Proof Suppose an equation admits the Lie algebra 
sl (2,R), i.e., the generators of symmetry satisfy the sl( 2,R) 
commutation relations. Proceeding as in Theorem 1 we can-
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TABLE III. Relevant algebras of dimension 5. 

Algebra Nonzero commutation relations 

A '.36 [G2,G31 = G" [G"G4 1 = G" [G2,G4 1 = G2 

[G2,G,1 = - G2, [G"G5 1 = G3 

A ',37 [G2,G3 1 = G" [G"G4 1 = 2G" [G2,G4 1 = G2 

[G3,G4 1 = G3, [G2,G,1 = - G3, [G3,G5 1 = G2 

A '.40 [G"G21 = 2G" [G"G3 1 = - G2 , [G2,G31 = 2G3 

[G"G4 1 = G5 , [G2,G4 1 = G4 , [G2>G5 1 = - G" 

[G3,G51 = G4 

not have G t = p(t,q) G2 or G3 = .,p(t,q)G2 (for any noncon
stant functions p and .,p) as, in the case G t = pG2, the first 
and last commutators yield 

G7P+P=o, G3=(1lp)G2, 

with the remaining one giving rise to 

G2(1lp) = lip, 

(2) 

(3) 

these in turn leading to the generators [on transforming G2 

to (;2 = Qca laQ) and choosing the simplest solution of 
(2a)] 

- a 
G2 =Q-, 

aQ 
- 2 a G3 =Q -, 

aQ 
(4) 

which as is seen by elementary calculation cannot be symme
tries of a second-order equation! It follows therefore that 
Gt =/-pG2 for any function p. Similarly it can be shown that 
no function 1/1 exists such that G3 = I/IG2. Hence G t =/-pG2 
and G3=/-I/IG2 for any functionsp and 1/1. Consequently, there 
exists a regular point transformation Q = Q( t,q), 

T= T(t,q) , transforming G t , G2 to the canonical form 

- a a 
G2=T-+Q-. 

aT aQ 
(Sa) 

The commutators involving (;3 then give us 

(;3= (2TQ+aT2)~+ (Q2+{3T2)~, (Sb) 
aT aQ 

where a,{3 are constants. 
It is now a simple matter to obtain the differential equa

tions for Q having at least the three symmetries (S). They are 

TQ" = 2 - 1 {( 2Q 1 + a)( 2Q 12 + 2aQ 1 - 2{3) 
(a + 4{3) 

+A(2Q I2+2aQ'-2{3)3/2}, (6) 

with a 2 + 4{3 =/-0, A constant and 

TQ" = _1-(QI + a/2) + B(Q' + a/2)3, (7) 
2 

with a 2 + 4{3 = 0, B constant. The emergence of two differ
ential equations (6) and (7) should imply the existence of 
two canonical forms for the generators. This in fact is the 
case. We find that the linear transformations 

and 

T= (i/2)(a2 +4{3)t/2T, i=FT, 

Q=Q+ (aI2)T, a 2 +4{3=/-0, 
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1'= B -)/zT, B =1=0, 

Q = Q + (aI2) T, a Z + 4/3 = 0, 

do provide reductions to the two canonical forms 

- a - -a -a 
G)=-_, Gz=T-- +Q--, 

aQ aT aQ 

- -- a -z -z a G3=2TQ-- + (Q - T )-_ 
aT aQ 

and 
- a G)=-_ , 

aQ 

- - a - a 
Gz=T-_+Q-_, 

aT aQ 

- -- a -z a 
G3=2TQ-- +Q -- . 

aT aQ 

The associated differential equations are 

TQ" = Q'3 + Q' + s1'(1 + Q,Z)3/Z, 

TQ" = Q'3 _+Q', 

(8) 

(9) 

(10) 

(11) 

where s1' is a constant. It now becomes clear that Eq. (10) 
has more than the three given symmetries (8) whenever 
s1' = O. This follows straightforwardly from the results of 
Ref. 3 [see Sec. I, (i)]. It is also evidentthat Eq. (7) is linear 
when B = O. For B =1=0 we have the form (11). Equation 
(10) has exactly the three symmetries (8) whenever s1' is 
nonzero. 

It should also be mentioned that the transformations 

T= Q + aT, Q = Q + bT, a,( =1= b) constants, 

with a = a + b, /3 = - ab and 

T=Q+aT, Q=T1IZ, 

with a = 2a, /3 = - aZ do provide reductions to the two Lie 
canonical forms 

and 

- a a G; = -=- +-=-, 
aT aQ 

- a G; =-=-, 
aT 

- - a 1 - a 
G; = T-=-+-Q-=-, 

aT 2 aQ 

-, -z a -- a 
G 3 = T -=- + TQ -=- . 

aT iJQ 
The corresponding differential equations are 

( 12a) 

(12b) 

(1'- Q)Q" + 2(Q' +.4Q'3/Z + Q'z) = 0, (13a) 

Q 3Q" + B = O. (13b) 

where .4 and B are constants. 
Proposition 3: If a second-order equation admits the Lie 

algebra A t 7 (b > 0) A 3,6' then it has either three or eight 
generators of symmetry. 

Proof: Suppose an equation admits the algebra A t7 
(b>O), A 3,6' Then we cannot have Gz =p(t,q)G) and 
G3 = tP(t,q)G) for any nonconstant functionsp and tPas this 
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would lead to pZ + 1 = O. We thus assume Gz =l=pG) for any 
p. This produces the following generators: 

- a - a 
G) = aT' Gz = aQ' 

(14) 

(;3= (bT+Q)~+ (bQ- n~. 
aT aQ 

The differential equation for Q is 
Q" =A(1 +Q,z)3/z exp(barctanQ'), (15) 

where A is a constant. It is fairly simple to observe that the 
rhs of Eq. (15) cannot be a polynomial which is at most 
cubic in Q ' unless A = O. Hence it follows from the conclu
sion of Ref. 2 (see Sec. I) that (15) is not linearizable via a 
.loint transformation if A =1=0. It has three symmetries. For 
A = 0 Eq. (15) clearly has five more symmetries. 

We next assume that G3=1= tPG) for any function tP. With
out loss of generality we may further assume that 
G) = ¢(t,q)Gz for some function ¢. Since we have 
[G),Gz] = 0, the reduction to canonical form of the genera
tors G) and Gz is given by 

- a - a 
G) = T-, Gz = -, (16a) 

aQ aQ 

and 

(;3= (1 + TZ)~+ (TQ+bQ)~, (16b) 
aT aQ 

following easily from the commutators involving G3 • The 
associated differential equation is 

Q" = B(1 + TZ) -3/Z exp(b arctan n, (17) 

where B is a constant. This equation clearly is linear. 0 
The canonical forms (14) and (16) are presented for 

the first time. The realizations of the family of Lie algebras 
A ~,7 (b> 0) and A 3,6 and the corresponding second-order 
equations were not considered by Lie. 

Remark: Suppose we have an equation of the precise 
form ( 15) or ( 17) but with b < O. Then we can introduce the 
basis {V) = (;Z, Vz = (;)' V3 = - (;3} so that the resulting 
Lie algebra is of the desired form A 3--:7 b ( - b> 0). 

Proposition 4: If an equation admits the Lie algebra A 3,Z , 
then it has either three or eight generators of symmetry. 

Proof Suppose an equation admits the algebra A 3,Z' We 
find that the symmetry generators Gi cannot be proportional 
to each other. Therefore we resort to proof by cases. In the 
first case we assume that no function tP exists such that 
G3 = tP(t,q)G). This, proceeding as before, gives rise to the 
following generators: 

- a - a a G - - Gz = a_ -In T- a constant, 
) - aQ ' fJ aT aQ' fJ 

(18) 
- a a 
G3 =T-+Q-

aT aQ 

(disregarding an additive constant multiple of G) ). Express
ing the invariance of a general differential equation for Q 
with respect to (18) yields 

TQ" = - 11/3 + A exp( - /3Q '), /3 =1=0 (19) 

and 
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TQ" = - Q' +B, /3= 0, (20) 

where A and B are constants. Equation (20) is linear. It is 
immediate from the results of Ref. 3 [see (i)] that (19) is 
not linearizable (via a point transformation) if A '# O. In this 
case (19) has exactly three symmetries. 

The transformations 

- T 
T=-, /3,#0, 

/3 
and 

Q = - Q, T = - In T, /3 = 0, 

give the Lie canonical forms 

- a G; =---=-, 
aQ 

- a G; =---=-, 
aT 

- - a - - a 
G 3 = T ---=- + (T + Q)---=- , 

aT aQ 

and 

a 
(;1'= --

aQ' 

- a - a 
G 3 = ---=- + Q ---=- . 

aT aQ 

The associated differential equations are 

Q" =A exp{ - Q'), 
Q" =Bexp(T), 

where A and B are constants. 

(21) 

(22) 

(23) 

(24) 

The case G2'#pG1 for p arbitrary gives the generators 
(21) above. 0 

Proposition 5: If an equation admits the Lie algebra A ~,5 
(0 < lal < 1), A 3,4, AI ffiA2' then it has either three or eight 
generators of symmetry. 

Proo!' Suppose an equation admits the algebra A ~,5 
(0 < lal < 1), A 3,4' AI ffiA2' 
Then we certainly must have G2'#P(t,q)G1 or G3 '#ifJ(t,q)G1 

for any functions p and ifJ. Otherwise the commutators 
would imply GlifJ = a ('# 1) and GlifJ = 1. Thus we first as
sume that no function p exists such that G2 = pG1• As a 
result the reduction to canonical form of the generators G I 
and G2 is immediate and we finally obtain 

- a - a 
G I =-, G2 =-, 

aT aQ 
(25) 

- a a 
G3=T-+a~. 

aT aQ 

The differential equation for Q invariant under at least the 
three symmetry generators (25) is 

Q" =AQ,(a-2)/(a-ll, (26) 

where A is a constant. It follows from Ref. 2 (see Sec. I) that 
Eq. (26) is not linearizable (via a point transformation) if 
A ,#0 and a,#O,!, 2. In this case (26) has three symmetries. 
Note that for lal > 1 we can introduce the basis {VI = (;2' 
V2 = (;1' V3 = (lIa)(;3} so that the resulting Lie algebra is 
A ~:5a(0 < lIlal < 1). 
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For the second part of the proof we assume G3 '# ifJG1 for 
any function ifJ. This gives rise to the symmetry generators 

G- a G- T 1 - a a /3T 1 - a a 1=-' 2=a -+ -, 
aQ aT aQ 

(27) 

(; -T~ Q~ 
3 - aT + aQ' 

where a and /3 are constants. The associated differential 
equations having at least these three symmetries are then 
given by 

TQ" = (1/a)(a - l)(aQ'-fJ) 

+B(aQ'_/3)(2a-I)/(a-lJ, a,#O, (28) 

TQ"= -aQ'+C, a=O, (29) 

where Band C are constants. Equation (29) being linear has 
eight symmetries, three of them given by (27) (with a = 0). 
By means of a linear transformation we can reduce (28) to 
the form [may as well set a = 1, /3 = 0 in (28)] 

TQ" = (a - l)Q' + flJQ ,(2a - I)/(a- I), (30) 

where flJ is a constant. Evidently this equation is not lineari
zable if flJ '# 0 and a '# 0, !. For a = 2 and flJ '# 0, (30) takes 
the form 

TQ" = flJQ'3 + Q'. (31) 

By a rescaling of time we can make the constant flJ unity, 
whence we have the familiar equation of Ref. 3 [see (i)] for 
which we obtained eight-point symmetries. 0 

Under the transformation 

(32) 

(25) (in lower case variables and with a ,#0) is equivalent to 
(27) (a = 1,/3 = 0). When a = 0 (a = 1,/3 = 0) thegener
ators (27) are reducible to the simple form 

(;_a (;_T a G'_Qa 
I - aQ' 2 - aT' 3 - aQ ' (33 ) 

where G 3 = (;3 - (;2' The generators (25) (in lower case 
variables and with a = 0) are now equivalent to (33) by 
means of the transformation 

T= exp q, Q = t. 

We also point out that the transformation 

Q=q, T=/3t l
-

a, /3,#0, 

maps (27) (in lower case variables with a = 0) to 

- a - a 
GI =-, G2 =T-, 

aQ aQ 

(;3= (1-a)T~+Q~. 
aT aQ 

The related equation is 
Q" =DT(I-2a)/(a-I), 

where D is a constant. 

(34) 

(35) 

In view of the above discussion we have two canonical 
forms for the generators. They are either the Lie canonical 
forms given by (25) and (34) or those given by (27) upon 
setting a = 0,/3 = 1 and a = 1, /3 = 0, respectively. 
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We now prove theorems relating to the linearizability 
(via a point transformation) of a second-order equation. 

Theorem 6: In order that a differential equation q 
= N(q,q,t) possesses s1(3,R) algebra it is necessary and suf

ficient that it has the algebra (A) AI EBA2' A t;, (B) A 3,3' 
(C) A 3,1> (D) A 3,9 [so(3)]. 

Proof (A): To prove sufficiency we need only refer to 
Proposition 5 and the discussion following it. We restrict our 
attention to (27) with a = 0, 13 = 1 and a = 1,13 = 0, re
spectively, bearing in mind that a can take on the values 0, ~, 
or 2. When a = 2 we always can introduce a basis so that the 
Lie algebra is A tr This much is apparent from the previous 
theorem. The relevant equations (29) and (30) each have 
eight generators of symmetry whenever a = 0, ~, 2. Thus 
they admit the sl(3,R) algebra. The original equation 
q = N( q,q,t) accordingly has the same algebra. Proof of the 
necessity is trivial because AI EB A2 and A rs2 are subalgebras 
ofsl (3,R). 0 

We proved part (B) of the above theorem in Ref. 6 
which deals with the reverse procedure to find the point sym
metry algebra from three given first integrals of a second
order equation that possesses sl(3,R) algebra. The algebra 
A 3,3 arises in connection with each of the three triplets of 
symmetry generators of the second-order equation. 

The proof of part (C) is given in Ref. 2. The algebra A 3,1 

plays an important role in the determination of linearizing 
transformations for equations of Type I considered in Ref. 2. 
In Ref. 2 the Lie algebra A 3,1 was referred to as the N algebra. 
Let us also mention that some of the structure of the proofs 
in this paper are closely patterned along the lines of the 
proofs of the propositions of Refs. 2 and 6. We now prove 
part (D). 

Proof (D): Suppose an equation has the Lie algebra 
so(3) (A 3,9)' Then we cannot have G1 =p(t,q)G2 or 
G3 = 7/I(t,q)G2 (for any nonconstant functions p and 7/1) as, 
in the case G1 = pG2, we deduce 

which in turn lead to the generators [on transforming G2 to 
62 = a /aQ and choosing the simplest solution of (36a)] 

G- ., Q a 
1 =ISlD -

aQ' 

-. a 
G3 = I cos Q7::- , i = f=T, 

aQ 

(37) 

which are not symmetries of a second-order equation. 
Therefore G1 =l=pG2 for any function p. Likewise we can 
show that no function 7/1 exists such that G3 = 7/lG2• Hence 
G1 =l=pG2 and G3 =1=7/lG2• This being the case we always can 
choose coordinates in which one of the generators appears as 
a generator of time translation. Thus the only admissible 
transformation from now on will be of the form 

Q = a(q), T= t + f3(q), (38) 

where a and 13 are as yet arbitrary. We write the three gener
ators as 
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(39) 
a a 

G3 = 53 - + 1/3 - , 
at aq 

where the 5 's and 1/'S are functions of t and q. Invoking the 
commutators [GI>G2 ] = G3 and [G 1,G3 ] = - G2 of the Lie 
algebra so ( 3 ), we obtain 

a!2 = 53' at: = - 52' 

which in turn imply 

a
252 +£" =0 at 2 !:>2 , 

Consequently 52 and 1/2 are 

52 = a cos t + b sin t, 1/2 = C cos t + d sin t, 

(40) 

where a,b,c, and d are functions of q. The coordinate func
tions 53 and 1/3 are immediately given by 

53 = - a sin t + b cos t, 1/3 = - c sin t + d cos t. 

The remaining commutator [G2,G3 ] = G 1 then yields 
the conditions 

cb'-da'=1+a2 +b 2
, cd'-dc'=bd+ac. (41) 

Since the generators G1, G2, and G3 are unconnected we must 
havec=l=Oord =1=0. We firstly assume that c=l=O. Without loss 
of generality we may further take d = O. The reason for this 
is straightforward. For under the transformation (38) G2 

transforms to 

where 

t2 = 0 cos T + E sin T, ~2 = C cos T + it sin T, 

with 

it = a' (c sin 13 + d cos 13) . 

Similar expressions hold for 0, E, and c. Hence, if d =1= 0 at the 
outset, we can make it = 0 by the requirement that 13 be 
determined from the relation cot 13 = - c/ d. This relation 
is not violated when G3 transforms to 63 , 

Henceforth we work in coordinates in which d = O. In 
order to preserve this property we further restrict the trans
formations (38) to be of the form 

Q=a(q), T=t. (42) 

The conditions (41) with d = 0 imply 

a = 0, cb' = 1 + b 2, 

making the generators appear in simplified form. By means 
of the transformation [set a = b in (42) ] 

Q = b(q), T= t, 

the generators Gj acquire the form 
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- a 
G1 =-, 

aT 
- a a 
G2 = Qsin T-+ (1 + Q2)COS T-, 

aT aQ 
(43) 

63 = Qcos T~- (1 + Q2) sin T~. 
aT aQ 

The generators (43) are reduced even further via the trans
formation 

T= tan T, Q= Qlcos T. 

They transform to 

(;1 = (1 + T2)~+ TQ~ 
aT aQ' 

- -- a - a G2 = TQ-_ + (1 + Q2) __ , 
aT aQ 

(44) 

(;3=Q~-T~. 
aT aQ 

The differential equation for Q is the free particle equa
tion. A similar argument holds for the case d -:/= 0, once again 
giving rise to the above generators (43). It therefore follows 
that the equation for q has the sl( 3,R) algebra, concluding 
sufficiency. The necessity is trivial since so (3) is a subalge
bra ofsl(3,R). 0 

We point out that the generators (43) were previously 
obtained by Wulfman and Wyboume7 in their treatment of 
the simple harmonic oscillator. 

The so ( 3) algebra when realized in two coordinates has 
a unique canonical form, viz., (44) which are generators of 
symmetry of a second-order equation. The so (3) realiza
tions derived above were omitted by Lie. 

We now concentrate on four- and higher-dimensional 
Lie algebras. The four-dimensional algebras of interest are 
listed in Table II. Each one of them contains a three-dimen
sional subalgebra which implies linearization by Theorem 6. 
Hence, if a second-order equation admits a four-dimensional 
algebra, then it is linearizable. However, there are four-di
mensional algebras which are not admitted by any second
order equation. In fact one can prove the following. 

Proposition 7: A second-order equation does not admit 
the Lie algebra (A) A 3,9 $AJ> (B) A 4,7' (C) A 4,10' and (D) 
A :,11 (a>O), respectively. 

Remark: We only prove the result for (A). The proofs 
for (B), (C), and (D) are similar and are therefore omitted. 

Proof Suppose a second-order equation admits the alge
bra A 3,9 $ A I' Then we can use the A 3,9 realization given in 
( 43) (now using lower case) since ( 43) is the only canonical 
realization of A 3,9 that generates symmetries of a second
order equation. 

Writing G4 in the general form G4 = s(a fat) + 1/(a I 
aq) and applying [G1,G4 ] = 0, we find that Sand 1/ are inde
pendent of t. The remaining commutators then require that 
both Sand 1/ be zero, contradicting the assumption. 0 

A second-order equation does not admit the five-dimen
sional algebra A 3,9 $A2. This is a consequence of Proposi
tion 7 by noting that A 3.9 $ A 1 is a subalgebra of A 3.9 $ A2. 
Moreover, it is not difficult to verify A 3,8 $ A2 is not admitted 
by a second-order equation. Each of the Lie algebras A 5.36 , 

A 5,37 , and A 5,40 (see Table III) has a four-dimensional sub-
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algebra and hence imply linearization for a second-order 
equation that admits it. 

We now investigate the case of a second-order equation 
which admits a six- or seven- dimensional real Lie algebra. 
The only simple algebra of dimension less than eight 
(greater than five) is so( 3, I) (see, e.g., Ref. 8). If a second
order equation admits so( 3, 1) then it is linearizable since 
so(3,1) contains so(3) asa subalgebra which implies lineari
zation by Theorem 6. Every six- or seven-dimensional non
semisimple real Lie algebra is Levi decomposable or can be 
written as a direct sum oflower dimensional Lie algebras. A 
six- or seven-dimensional nonsemisimple real Lie algebra 
has a four-dimensional subalgebra (see Ref. 8). This in tum 
implies linearization for a second-order equation that admits 
a six- or seven-dimensional nonsemisimple Lie algebra. 

An immediate consequence of the preceding proposi
tions, theorems, and related discussions is the following in
teresting result. 

Theorem 8: A second-order equation does not admit ex
actly an rE{ 4,5,6, 7} dimensional point symmetry algebra. 

III. EQUIVALENCE CLASSES OF EQUATIONS 

A second-order ordinary differential equation has either 
0,1,2,3, or 8 point symmetries. We exclude the case of equa
tions possessing no point symmetry as we cannot in general 
write representatives of equivalence classes for such equa
tions. If an equation has one-point symmetry, it can be re
duced to an autonomous form by means of a point transfor
mation which brings the symmetry to a generator of time 
translation. Thus an equation with a single point symmetry 
belongs to the equivalence class of 

q =/(q,q), 
where a lat (realizes A 1 ) is the standard form forthesymme
try and/is a definite function of q and q. We treat the case of 
equations possessing two-point symmetries after investigat
ing the three-point symmetry case. For the equivalence 
classes of equations having three-point symmetries we need 
only recall the results of the previous section. It follows that 
there are five representatives of equivalence classes (in each 
case A -:/=0 and a ER). They are 

tq = q3 + q + A(1 + q2)3/2, 

tq =Aq3 - ~q, 

tq = (a - l)q +Aq(2a- 1)/(a -I) or q 

=Aq(a-2)/(a-l), a-:/=0,~,1,2, 

tq = - 1 + A exp ( - q) or q = A exp ( - q), 

q =A(1 + q2)3/2 exp(a arctan q). 

(45a) 

(45b) 

(45c) 

(45d) 

(45e) 

It is now simple to deduce that equations possessing two
point symmetries belong to either of the equivalence classes 

q = / (q), tq = g(q), (46) 

where/is not a polynomial which is at most cubic in q and it 
is not of the form given in (45) and g is not linear in q and 
neither is g of the form given in (i) nor of the form given in 
( 45). 

Equations admitting the richest number of point sym-
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metries belong to the equivalence class of the free particle 
equation, ij = O. 

IV. CONCLUSION 

In this work we have shown how second-order ordinary 
differential equations can be classified by investigating the 
realizations of real low-dimensional Lie algebras in terms of 
vector fields in two coordinates. In this way we were able to 
associate differential equations to those realizations that are 
generators of symmetry of a second-order equation. Our re
sults show that an equation admitting exactly an r-dimen
sional (re{I,2,3,S}) Lie algebra of point symmetry genera
tor(s) possess (es) a canonical representative for the 
corresponding differential equation. 

For the case r = 1 the differential equation can be trans
formed to an autonomous form. The case r = 2 resulted in 
two classes of representative equations. For equations hav
ing three-point symmetries (r = 3 case), we obtained five 
representatives of equivalence classes. The subject oflineari
zation (r = S case) was addressed and a number oflineariza
bility results were proved. 

We have in fact obtained a general (local) structure the
ory for second-order equations which admit point symmetry 
algebras. 

Finally, let us note that many further questions remain 
open. We, however, content ourselves with just a few of 
them. It would certainly be of great interest to compare the 
Lie classification of equations given here with the Painleve 
classification which produces SO equations (see Refs. 9-11 
and references therein). The transformation up to which the 
Painleve classification was done is given by 

T= a(t), Q = P(t)q + r(t) . 
8(t)q + r(t) 

The question which arises is this. Is there an overlap between 
the Lie classification and the Painleve classification? The 
first step in answering this question would be to determine 
the symmetries of the Painleve equations. Alternatively, one 
may attempt to reduce some of the Lie equations to the Pain
leve ones. This certainly is not a trivial task. For example, 
how would one go about reducing Eq. (4Se) to a Painleve 
equation since (4Se) contains a transcendental function. If 
one cannot perform such a reduction, then this would mean 
that the Painleve classification is inexhaustive and needs 
supplementation. Moreover, the Painleve classification was 
achieved under the restrictive point transformation given 
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above so one would expect incompleteness. However, the 
Lie classification also requires supplementation in the case 
of equations possessing no symmetry as we cannot write re
presentatives of such equations. Even in the case of equa
tions having one symmetry the Lie classification is found to 
be too general. To remedy this requires further investigation. 
Nevertheless, it should be pointed out that a preliminary 
investigation shows that the Painleve classification does pro
vide representatives for equations having zero or one sym
metry. 

Recent investigations (Kamran et 0/.
12

, Kamran and 
Shadwick13

) using Cartan's equivalence method have stud
ied the equivalence of differential equations of the form 
ij = F(q,q,t) under the restricted point transformation 

T=f/J(t), Q=",(t,q). 

This was motivated by the Painleve classification and as 
such should be viewed against the Painleve background dis
cussed above. 
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In this paper a geometrical description is given of the theory of quantum vortices first 
developed by Rasetti and Regge [Physica A 80, 217 (1975)] relying on the symplectic 
techniques of Marsden and Weinstein [J. Phys. D 7,305 (1983)], and Kirillov-Kostant
Souriau geometric quantization. The RR-current algebra is interpreted as the natural 
Hamiltonian algebra associated to a certain coadjoint orbit of the group G = SDiff(R 3), the 
KKS prequantization condition of which is related to the Feynman-Onsager relation. This 
orbit is also shown to possess a G-invariant Kaehler structure, whence, in principle, it is 
possible to quantize it in a natural way. 

I. INTRODUCTION 

In this paper we investigate the possibility of carrying 
out the Kirillov-Kostant-Souriau (KKS) geometric quan
tization program for a rotational perfect fluid in R 3 and in 
particular for a perfect fluid with vortices. 

Three-dimensional vortices arise in nature as topologi
cal excitations in a superfiuid medium (e.g., 4-He) and fur
nish the only known example of an extended quantum ob
ject. The phase space of this system is T*G, with 
G = SDiff(R 3), the "Lie group" (in the sense of Ref. 1) of 
measure preserving diffeomorphisms of R 3, which rapidly 
approach the identity at infinity, the "Lie algebra" of which, 
;g, consists of smooth divergence-free vector fields on R 3 
rapidly vanishing at infinity. This allows us to avoid unphy
sical divergences. 

The fluid motion is governed by the right-invariant 
Hamiltonian 

H = J... i d 3x lv (x) 12
, 

2 R' 

with v(x, t)E;g the velocity field obeying Euler's equation 
which, in terms ofthe vorticity field w = curl v, reads 

_ aw = [w, v] 
at 

([ , ] is (minus) the usual Lie brackets of vector fields). 
We shall be mainly concerned with the (singular) case in 
which w is a distribution supported on a smooth closed (pos
sibly knotted) curve r on R 3 (or a finite collection thereof) 

w(x) = kt 8(x - y)dy, 

kER being the strength of w. 
The canonical quantization scheme has been developed 

by Rasetti and Regge2
,3 using quantum field theoretic meth

ods. Their discussion abuts at the consideration of the cur
rents (in the sense of Refs, 4-6) 

J(b) = 1, v'b d 3x 

= (in the singular case) 

= i kBdy, 

b = curl B E;g. 

These are found to give a Lie algebra representation of ;g 
with respect to the Dirac-bracket operation and provide a 
complete description of the system. 

Thus the problem of constructing a quantum theory of 
vortices becomes equivalent to that of finding a suitable uni
tary representation for SDiff (R 3), and this is a difficult 
problem (also see Refs. 4-6). 

Difficulties arise when one looks for representations em
bodying the topological features of vortices. For an unknot
ted vortex line a many-particle representation is found that 
allows us to portray a macroscopic vortex as an assembly of 
microscopic vortices glued to each other.3 Otherwise one has 
to find an explicit description of the Casimir operators, relat
ed to the topological invariants of the vortex, considered as a 
knot. 2,3 

A different way of describing classically the rotational 
fluid is given by employing the coadjoint orbit picture,7 

which we recall in Sec. II: the Euler equation given above 
expresses the fact that the fluid motion takes place on a single 
coadjoint orbit M (labeled by the vorticity field at a fixed 
time) which, according to KKS theory, is endowed with a 
natural symplectic structure B. 

In this framework the RR current algebra appears as the 
natural Hamiltonian algebra pertaining to a coadjoint orbit 
of a Lie group (Theorem 1). 

In order to apply the KKS method, the De Rham coho
mology class [B] induced by B must be integral, i.e., it 
should belong to H 2 (M, Z). In the case of a vortex line we 
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find that this fact is connected to the Feynman-Onsager 
quantization condition: 

k=Nhlm, NEZ, 

where h is Planck's constant and m is the 4-He atom mass. In 
the general case it is related to the topological charge of K uz
netsov and Mikhailov (see Refs. 8 and 9). 

The representation space for G then consists of square 
integrable (with respect to a suitable metric) sections of a 
line bundle L on M having first Chern class C1 (L) = [B]. 

Nevertheless, in order to obtain an irreducible represen
tation, one has to "polarize," Le., to reduce the representa
tion space; in the case of a vortex line, and this is the main 
result of this paper, Mis Kaehlerian (Theorem 2), whence 
the line bundle becomes holomorphic and we only have to 
focus our attention to square integrable holomorphic sec
tions thereof. 

The principal ingredient of the construction is the deter
mination of a (local) Kaehler potential. At this point we 
recall that a preliminary analysis of the G.Q. procedure for 
quantum vortices has also been differently developed by 
Goldin, Menikoff, and Sharp.1O In particular they discuss 
the problem of finding a real polarization claiming its nonex
istence (in particular) in the case of vortex filaments (closed 
or not): this seems to be consistent with our analysis since we 
have used a "partial" holomorphic polarization, see Sec. III. 

The layout of this paper is the following: after briefly 
reviewing in Sec. II the KKS theory and quantization of 
Kaehler manifolds we apply it to rotational fluids in Sec. III 
following Ref. 7 and we elucidate the geometrical meaning of 
the RR current algebra; the Kaehler structure is displayed 
(in the vortex line case) in Sec. IV; finally geometric quanti
zation is outlined in Sec. V. 

II. COADJOINT ORBITS OF LIE GROUPS AND 
GEOMETRIC QUANTIZATION OF KAEHLER 
MANIFOLDS 

In this section we give a condensed survey of the Kiril
lov-Kostant-Souriau (KKS) theory tailored for our pur
poses; for a more extensive treatment we refer the reader to 
Refs. 11-13 and also to Refs. 14-16. A Lie group G acts on its 
Lie algebra f1 through the adjoint representation Ad [if G is 
a matrix group Ad (g) X = gXg- 1

, X Ef1, g EG], which in
finitesimalizes to an action (also called adjoint and denoted 
by ad) of f1 on itself explicity given by 

ad(u)v:=[u,v], U,VEf1. (2.1) 

It induces the so-called coadjoint action ad* of f1 on f1 * 
(the dual of f1) via the position: 

(ad*(u)(/), v) = - if, [u, v]), (2.2) 

u, v Ef1,fEf1*,( , ) the pairing between f1 and f1*. At 
group level we have the coadjoint action Ad * of G on f1 *: 

(Ad*(g)(/), v): = if, Ad(g-l)v), (2.3) 

which, of course, infinitesimalizes to ad* with the above defi
nitions. The pairing ( , ) becomes G-invariant: 

(Ad*(g)(/),Ad(g)v) = if, v), vEf1, fEf1*. 

GivenfoE f1* the orbit Mf,.: = {Ad*(g)(fo),geG} is a ho
mogeneous manifold: 
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Mf,. =G IGf,. 

with Gf,. the isotropy group oflo, Le., 

Gf,. = {g EG 1 Ad*(g)fo =Io}· 

(2.4 ) 

(2.5) 

Here, Gf,. is a closed subgroup of G, thus a Lie group. Clear
ly, 

Mf,. =MAd*(g)f,.' g EG. 

The isotropy algebra f1 f,. (the Lie algebra of Gf,.) is then 
characterized as follows: 

f1 f,. = {u Ef1 1([0' [u, v]) = 0, 'If v Ef1}. (2.6) 

Clearly, 

f1 Ad*(g)f,.=Ad(g)f1f,.' gEG. 

Here, Mf" is actually a symplectic manifold, i.e., it is en
dowed with a closed, nondegenerate two-form B (the KKS 
form) defined as 

B(u!, vf) = B(ad*(u)J, ad*(v)f): = (J, [u, v]), (2.7) 

f EMf,. ,u,VEf1. The claimed properties of B are easily veri
fied, the second one being evident from the very definition of 
Mf,.' Moreover B is G-invariant: 

(Ad*(g»*B = B. (2.8) 

Thus G acts on Mf,. via canonical transformations. The ac
tion ad* is Hamiltonian, i.e., (J denotes contraction) 

U f J B = (d Au) f' 

where Au (/) = if, u),fEMf,.' In fact, 

(d Au )f(vf ) 

= AJad*(v)f) = (ad*(v)J, u) = if, [u, v]) 

= B(uf , vf) = (uf J B)(vf)' 

Defining Poisson brackets through the position: 

{Au, Av}(f) = B(uf , vf) 

we have trivially 

(2.9) 

(2.10) 

{Au, AJ(/) = A[u. vJ(/)· 

We shall call the Lie algebra (A, { , 
the current algebra. 

(2.11 ) 

}), A = {Au, u Ef1} 

Since B is closed, it determines an element [B] in 
H 2 (Mf,.' R), the second De Rham (or Cech) cohomology 
group. If (and only if) [B] is integral, namely, 

[B ]EH 2 (Mf,.' Z), 

there exists a Hermitian line bundle (L, h) on Mf,.' equipped 
with a connection V compatible with the metric h, i.e., 

X(h(s, s'» = h(V xs, s') + h(s, V xs'), (2.12) 

where s, s' are smooth sections of L, X a vector field on Mf,.' 
such that (the pull-back to Mf,. of) its curvature form 0. is 
equal to - 21riB, whence the first Chern class C1 (L) is equal 
to [B]. We recall that 

o.(X, Y) = [Vx , Vy] -V[x.YJ' X, YE~(Mf,,>' (2.13) 

Kostant's theorem l2 asserts that [B] is integral iff the Lie 
algebra map (infinitesimal character) 

Xf,.:f1 f,. -+iR 

given by 
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XI.. (u): = 21Ti(jo, u) (2.14 ) 

extends to a one-dimensional representation X of fi.r. •. When 
this is the case, the representation space for the group G is 
given by J¥'(L) the space of square integrable sections of L 
with respect to h [Hilbert space completion of r(L), the 
space of smooth sections of L] with 

Ilsll2= fM h(s,s)(j)Bnln!, sEJ¥'(L), xEM.r.., (2.15) 
f" 

where n = dim MI.. 12 and Bn In! is the natural Liouville vol
ume on (MI.., B). 

At the infinitesimal level fi acts on (a suitable dense 
domain of) J¥'(L) via the formula 

(u's) (j): = (V u/) (j) + 21TiAu (j)s(j) (2.16) 

(the condition [u, il] = [~] is easily verified). Inparticu
lar, if U Efi r , V u =0 and 

Jo J" 

(u's)(fo) = 21TiAu(fo)s(fo), (2.17) 

and by hypothesis, this expression integrates to a one-dimen
sional representation of fi.r.., so J¥'(L) can be thought of as 
being obtained from this representation via the standard 
Mackey's procedure (see Ref. 11). 

In the general case, the above construction does not 
yield an irreducible representation of G. Kostant's notion of 
polarization furnishes a mechanism that overcomes this 
problem. We shall illustrate this notion only in one case, 
namely, when MI.. is endowed with a (G-invariant) Kaehler 
structure. This means that MI.. is a complex manifold and in 
terms of any system of local complex coordinates 
[z = (Zl"'" Zn )] 

i " .. B = - L.J hij (z)dz' /\ dZ', 
2 i,j 

(2.18 ) 

withH= (hij),i,j= 1, ... , nHermitianandpositive;thisbe
ing the case, it is always possible to find locally a function F 
on MI.. (the Kaehler potential) such that 

i a a F = B. (2.19) 

Then G acts on MI.. through biholomorphic transforma
tions. Given the integrality condition, L becomes a holomor
phic line bundle. The metric h is given locally by 

h (s, s/) (j) = exp( - F(j) s(j)s/ (j) 

=h(j) s(j)s/ (j), (2.20) 

(s, s/ sections of L) and the connection V takes locally the 
form: 

Vzs = (Z's)(/)so, 
(2.21 ) 

Vzs = (Z's)(/)so - 21T(Z'F)so, 

where s = s( 1 ) So, So is a local nowhere vanishing holomor
phic section (local frame), Z (Z) is a type (1, 0) « 0, 1» 
vector field, i.e., a vector field of the form 

x - iJX (X + iJX) , (2.22) 

X EX (MI.. ) and J the complex structure on MI.. (see below 
and Refs. 17 and 18). The natural candidate for J¥'/ (L) is 
then the space of square integrable holomorphic sections, 
i.e., those sections in J¥'(L) for which 

Vzs = 0 (2.23) 
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't/ Z since, according to the "fundamental lemma of Hermi
tian geometry" (see, e.g., Ref. 17), V defined above is the 
only connection compatible with h and the holomorphic 
structure of L. J¥" (L) should not be empty, of course: in the 
compact case according to Kodaira's theory, this is not the 
case if CI (L) is sufficiently "positive." 19 

According to the Borel-Weil-Bott theory, the irreduci
ble representations of compact semisimple Lie groups arise 
in this way. Such "holomorphic" representations are the 
most natural from the point of view of the theory of general
ized coherent states. 15,16,20,21 Explicitly, following Ref. 20, 
the (projective) representation of G on J¥"(L) is exhibited 
by the formula (valid on a trivialization of L on an open 
dense set in M) : 

(Tgs) (z) = e- ¢(g-',z)S(g-1 z), (2.24) 

where .,p is an analytic function of z at fixed g, fulfilling 

2 Re .,p(g, z) = F(gz, gz) - F(z, z), (2.25) 

with its imaginary part determined up to a two-cocycle of G. 
Before turning to the applications, we recall the notion 

of almost complex structure l8 on a smooth manifold M; an 
almost complex structure J is a smooth section in r (End 
TM) fulfilling J2 = - I, i.e., 

J:x-+Jx , 

J:Tx M -+ TxM, (2.26) 

J; = - Ix (identity on TxM). 

The Nijenhujs tensor N of J is defined through the formula 

4 N(X, Y) = [X, y] + J [JX, y] 

+J[X,JY] - [JX,JY], (2.27) 

where X, YEx(M). The Newlander-Nirenberg theorem l8 

asserts that J is integrable, i.e., M becomes a complex mani
fold iff N = O. This condition is also equivalent to the follow
ing: the vector fields of type ( 1, 0) « 0, 1», defined through 
(2.22), should form Lie algebras. In this case J is called a 
complex structure. 

III. THE GEOMETRIC STRUCTURE OF THE RASETTI
REGGE THEORY 

The group G which is to be considered when dealing 
with the theory of perfect incompressible fluids is SDiff (M), 
the group of measure preserving diffeomorphisms of a 
smooth Riemannian manifold (M, g) (the measure being 
induced from the Riemannian volume. 1,7) In this paper we 
shall be concerned with G = SDiff(R 3) (R 3 equipped with 
the usual Euclidean metric). G is actually not a Lie group in 
the usual sensei; nevertheless, following Ref. 7 we shall imi
tate the steps taken in the finite-dimensional situation. The 
Lie algebra fi of G consists of the smooth divergence-free 
vector fields of R 3: 

The Lie bracket [ , ] is given by (minus) the usual bracket 
between vector fields. 

In view of the identity 
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curl(vXu) = [v, U] = (U·V)v - (v·V)U (3.1) 

( X denoting vector product in R 3) and since div curl = 0, it 
is checked that f1 is indeed a Lie algebra. 

Here, f1 can also be identified with the Lie algebra of 
right invariant vector fields on G via the map: 

v(x)-+ [77-+V,,=V(77(X»] 

77 EG, V" ET" G, TI G = f1; this isomorphism expresses 
the transition from an Eulerian to a Lagrangian point of 
view. The adjoint action of f1 on f1 is given by 

ad( UI )u2 = [u l, U2 ], U1> U2 Ef1. 

Following Ref. 7 a coadjoint orbit of G will be specified by 
fixing the velocity field v regarded as an element in f1 *. 

Equivalently, we can use W = curl v (the vorticity field) 
or, in terms offorms, the two-form won R 3 such that *w has 
the same coefficients as w (everything is in Cartesian coordi
nates), where * is the Hodge operator in R 3. The coadjoint 
action on forms naturally becomes Lie derivation. 7 

We recall the following: 
Theorem (Marsden-Weinstein 7 ): The Kirillov form on 

Mw is given by 

Bw (Lu , w,Lu, w) = (v, [UI' u2 ]) 

= r V· [UI' U2 ] JR .~ 

Proof Taking into account the general Kirillov formula 
and the above discussion immediately yields (3.2). 

Let us supplement the above result by the following: 
Proposition 1: 

f1 w = {u Ef1 Iu(x) = a(x)w(x), V a·w = O}, (3.3) 

whenever w(x) #0. 
Proof Using (3.2) we have, iful Ef1 

0= r w·(U IXu2 )d 3x, VU2 Ef1, 
JR' 

whence, whenever w(x) #0, UI (x) = a(x) ·w(x) follows 
[the condition Va(x)·w(x) =0 is an immediate conse
quence of the requirement div UI = 0]. 

Let us specialize the above discussion to the case when w 
is a distribution supported on a closed oriented (possibly 
knotted) smooth curve r in R 3 (a classical vortex line; a 
finite collection of such curves can be dealt similarly) 

w(x) = k i 83 (x - y)dy, (3.4 ) 

where k ER is the "strength" of the vortex. Then a point in 
Mw can also be represented by a curve obtained from r by 
the action of G. From the calculation in proposition 1 we 
easily obtain: 

Proposition 2 (see also Ref. 7, Sec. 10): (i) In the case of 
a vortex line, the Kirillov form reads 
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Bw (L u , w, L u , w) = - k f t· (U I Xu2)ds 

= -kf UI (tXU2)dS, (3.5) 

with t the unit tangent vector to r in a generic point of it. 

(ii) 

f1 w = {u Ef1/ul It on n. (3.6) 

We shall further discuss (3.5) later on. We can now state one 
of the main results of this paper. 

Theorem 1: (i) The current algebra A pertaining to M w 

consists of the functions (Rasetti-Regge currents) 

Au (Vi) = L, v/·u d 3x, (3.7) 

where U Ef1, v' EMw. 
(ii) The Euler equation can be written in terms of the 

R-R currents language as 

(3.8) 

where Av, is the time-dependent Hamiltonian governing the 

motion, S, = Ad~, (So), 77, EG, and holds for any w Ef1. 
(iii) In the case of a vortex line: 

Au (Vi) = i a·dy, U = curl a. (3.9) 

(iv) Given any smooth oriented closed curve r I distinct 
from r, let 

WI =,.c 83 (x - y)dy, Jr, 
then 

Aw , (v) = k 2"(r, r l ), (3.10) 

where 2" (r, r l ) is the (Gauss) linking number. We are 
formally treating w as an element of f1. 

( v) In all cases 

I: = L, w·v d 3x (3.11) 

is a constant of motion (Kelvin'S theorem). 
Proof (i) and (iii) are straightforward, given the pre

ceding discussion. Thus we have recovered the R-R current 
algebra in a completely intrinsic way. 

(ii) The (vorticity) form of the Euler equation reads: 

aw, - -at = [WI' v,] ([WI' v,] = curl(w, Xv,», 

where w, = Ad", (w) and v, is the right logarithmic deriva
ti ve of 77" the Euler flow (see Ref. 22). Set v, = Ad - I ( v, ) . ", 
Then, for any SEf1*, 

r S(x)~w,(x) d 3x= r S(x)·[w,(x),v,(x)]d 3x 
JR' at JR' 

(3.12) 

and resorting to (2.3) 

~ r Ad~,(S)·w d 3x= r S·Ad",([w, v,]) d 3x,(3.13) 
atJR' JR' 
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i.e., using the definition ofP. B. 

a -a Aw (St) = {Ay (St), Aw (St )}. 
t ' 

(iv) A direct computation yields 

Aw , (v) = r d 3x V'W I = j v'dy (w = curl v). 
JRl Jrr. 

Now 

v = kcurl j dy 
Jr 41Tlx - yl 

(x not on n; substituting 

Aw (v) = k j dx curl j dy 
, Jr, Jr 41Tlx - yl 

=k j j (x-y) '(dxAdy) 
Jr, Jr 41Tlx _ yl3 

= k'2"(r, r l ). 

(3.14 ) 

(3.15 ) 

(3.16 ) 

(v) If r moves under the action of the velocity field 
(3.15), the constancy of 1 follows directly from the G-invar
iance of the pairing ( , ). 

We must also observe at this point that, by a theorem of 
Ref. 9,1, which is meaningful as an integral onS 3, forw EY, 
is, up to a scalar, the Hopfinvariant (see Ref. 23) of the map 
f S3 -+S2 given by (n-field representations): 

f(x) = n(x)ES 2
, XE R 3 (stereographic coordinates of S3) 

Inl2 = 1, Wj (x) = 2kcjab n' (aa n Xab n). 

Remark: The topological meaning of 1 can also be ob
tained by interpreting v as a connection one-form, with wits 
curvature two-form so that 1 is the Chern Simons action for 
an Abelian gauge theory.24.25 In this language Aw , (v) gives 
the exponent of the holonomy of v around r I' 

IV. THE KAEHLER STRUCTURE OF VORTEX 
COADJOINT ORBITS 

We begin with the following important observation: 
Theorem 2: M w is a homogeneous Kaehler manifold. A 

local Kaehler potential is given by the formula: 

F(n = t logO + Iz(s) 12)ds, (4.1) 

if {z(s) }sEr are suitable local complex coordinates of r. 
Proof: Recalling Proposition 2, we realize that the tan

gent space Tr Mw is given by smooth periodic functions 

u:s Er -+u(s)ER 3, 

(s denoting the arc length computed from an arbitrary point 
of n with u(s) situated in the normal plane to r in s. The 
symplectic form becomes, for U I ' U2 ETr Mw (temporarily 
omitting - k) 

Br (u l , u2 ) = t I(S) '(u l (s) X u2 (s»ds 

=t w(s)(u l (s),u2(s»ds, (4.2) 

where w(s) is a copy of the symplectic form on the sphere 

2782 J. Math. Phys., Vol. 30, No. 12, December 1989 

S2=p I, the complex projective line. Then w(s) becomes the 
Kaehler (Fubini-Study) form on pI: 

w(s) = dz(s) A dies) 
o + Iz(s) 12)2 

= aa 10g(1 + Iz(s) 12), (4.3) 

where z(s) is a local complex coordinate given by stereogra
phic projection whence 

(4.4) 

if 

0: = r ds-o-dz(s), ;5: = r ds-o-di(s). Jr &(s) Jr oz(s) 

The theorem is proven once we ascribe a precise meaning to 
the coordinates {z(s)}. This is done as follows. Given a 
smooth curve r 0 in R 3, it is completely determined by fixing 
its length Lo, the position of a point Po Er 0 and giving its 
tangent vector field 

SoE[O, Lo] -+/(So)ER 3 

(Po has So = 0, Lo). Since II/(so) II = 1, r 0 can be associated 
to a curve 

Yo: So E[O, L ] -+Yo(so)ES2. 

Now, \;/ So, consider the complex coordinate system corre
sponding to stereographic projection from the antipodal 
point to Yo (so): the ensuing complex coordinate of Yo(so) 
will be zero. Thus the reference curve is associated to the 
zero function 

soE[O,Lo] -+z(so) ==OEC. 

Let us now examine the action of Y at r. Let ~Ir be repre
sented by a function 

[0, L ]3s-+~(s)ER 3, 

~(s) = a(s)b(s) + y(s)/(s) + (:J(s)n(s), 

with (I, n, b) the Frenet trihedron (assume it everywhere 
defined). 

Here, c ~ I r , c infinitesimally small, carries r in a near
by curve r + 0 r==r'. An easy computation involving 
Frenet formulas yields the position of r', its shape and its arc 
length as follows: 

r' (s) = res) + c ~(s), 

s' = s + c f(r(s) - (:J(s)k(s»ds, 

(4.5) 
I'(s') = I(s) + cHil(s) + (:J(s)r(s»b(s) 

+ (iJ(s) - a(s)r(s) + y(s)k(s»n (s)}, 

where an overdot == d Ids, and rand k denote as usual the 
torsion and the curvature of r, respectively. Let 
[0, L] 3s-+r(s)ER 3 the position vector ofr (s arc length). 
The position vector of r' = r + or is then 

r'(s) = res) + c{a(s)b(s) + (:J(s)n(s) + y(s)/(s)}. 

Thus 

i"(s) = I(S) + c{( - {:Jk + r)1 + (P - a r + y k)n 

+ (+{:Jr+il) b}, 
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ds' 
-= IIr (s)11 
ds 

and 

= 1 + E( - 13k + r) ( + higher-order terms) 

:::::}s' = s + E f (r - {3 k)ds 

ds . 
-= l-E(y-{3k), 
ds' 

whence 

t'(s') = dr'(s') = dr'(s) ~= (4.S). 
ds' ds ds' 

Equation (4.S) shows how r' depends on y(s), the compo
nent of S parallel to r. This component must be ignored 
since it belongs to the isotropy algebra ~ wr: this amounts to 
setting y=O (-r=O) in (4.S) and we get the explicit coad
joint action of ~ at r. If also {3=O, there is no length vari
ation (this happens for instance in the self-induction approx
imation7

). 

Actually the position of r' can be reconstructed from 
r'(O) =E{a(O) b(O) + {3(O) n(O)} and from t'(s'). 

Interpreting a finite transformation g EG as an infinite 
sequence of infinitesimal transformation and throwing the 
isotropy algebra component at every step, we get for r = g r 

t'(s')=R(s)·t(s), s'=s'(s), 

r' (0) = r'(r(O», 
(4.6) 

whereR(s) ESO (3),s' is a monotonic smooth function ofs, 
and r' (0) is a smooth function ofr (0). This is possible for 
the elements g EG embedable in flows. In terms of the com
plex coordinate introduced above, (4.6) reads as 

r'(O) = r'(r(O» = r'(ro(O», 

z'(s') = a(s)z(s) + b(s) , 
a(s) - b(s)z(s) 

s' = s'(s) = s'(so), 

with 

[ 
a(s) 

- b(s) 
b(S)] ESU(2) 
a(s) 

representing R(s) (determined up to ± 1). 

(4.7) 

Ifwe disregard the "hidden" variable r' (0) which does 
not appear in the symplectic form B, we may interpret our 
dynamical variables as smooth, closed, oriented loops on 
S2=P'. 

This is the precise sense in whichMw acquires a Kaehler 
structure. 

Remark: Changing Po on r 0 amounts at a change of 
coordinates. A change of a reference frame in R 3 yields no 
change in the complex description. 

Our use of this sort of "partial" complex polarization 
seems to fit with the analysis of Ref. 10, where the actual 
position of r is an obstacle at finding a real or complex polar
ization, for two-dimensional point vortices. 

Remark: In passing we notice that the endomorphism 

J:r-Jr:TrMw -TrMw 

given by 
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(JrU)(P) = t(P) Xu(P), PEr (4.8) 

is the complex structure of Mw (since it is obviously integra
ble) pertaining to the complex charts of Mw given above. 

V. OUTLINE OF GEOMETRIC QUANTIZATION 

In this section we tum to geometric quantization: we 
have to tackle the question of the integrality of [B]. Using 
heuristically Kostant's theorem we shall find it related to the 
Feynman-Onsager relation,z.3 namely, we have the follow
ing theorem. 

Theorem 3: (i) If [Bw] is integral, then k is quantized: 

k = N him, NEZ(F-O relation). (S.I) 

(ii) Bw I\Bw 1\ ... I\Bw (p times) induces the gener-
ator of 

H 2P(fl+ (S2»=Z. (S.2) 

Prool (i) If the map (compare Sec. I) 

Xw:~w-R, 

Xw (u): = 21T(V, u) = 217' 1, V'U d 3x, 

is going to be lifted to a one-dimensional representation of 
Gw then, in particular, for u = w, we have that 

w,-21Til V'W, d 3x = 21Tik 2"(r, r,) (S.3) 
R' 

should lift to a group homomorphism S ' - S ' ifw, is thought 
of to induce rotations on r, which is possible only if k is 
quantized, k EZ. Introducing physical units k = N him, 
NEZ, we have that the F-O relation follows. 

We also notice that the topological quantization it la 
Kuznetsov and Mikhailov8 obtained by passing from R 3 to 
S 3 amounts to KKS quantization. Z6 

In general, the map X of Sec. I should be defined, if 
UE~ w: 

x(exp u): = exp(21Ti 1, V'U d 3X ). (S.4) 

Using heuristically the Baker-Campbell-Hausdorff for
mula (see Refs. 22 and 27) we may check that it is well 
defined ifu E~ w' j = 1,2, 

x(exp u, exp u2 ) 

= x(exp(u, + u2 + lUi' u2 ] 

+ ([u,[u"u2 ]] + [uz, [uz,ud] + ... ) + ... » 

(S.S) 

However, we must say at this point that exp is not even local
ly surjective (see Ref. 1), i.e., not every g EG in any neigh
borhood of the identity can be written as 

exp X=g 

for some X E~ (so it would be embedable in a flow). 
(ii) The Kaehler form B is a closed, not exact two-form 

since otherwise the Kaehler form on S z = p' (see Theorem 
2) would be exact: 
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Bw = i w(s)ds 

= D{} = (15 + 6){} 

= i dsd{}(s) 

=>w(s) = d{}(s) 

globally on S2, which is absurd. 

(5.6) 

If we restrict Bw to n + (S2), the space ofnon-self-inter
secting oriented loops on S 2 we get a nonzero representative 
of 

H2(O+(S2»=Z (see Ref. 28). 

Since H 2p (0 + (S 2 » = Z as well, (ii) is proven. 
Once we have the integrality of [B], the Kaehler poten

tial, and the R-R currents, we have all the ingredients need
ed to build up, at least formally, representations of Gala 
KKS, via the formula (2.16) or (2.24) of Sec. II. 

Some remarks are now in order. Reinserting - k in the 
formulas, we see that in order to get a nontrivial representa
tion space we have to ensure that N is non positive. This can 
always be achieved eventually by changing the orientation 
on S 2. The reason can be traced back to the fact that a holo
morphic line bundle .!i' on P possesses holomorphic sections 
if 

{CI(.!i'), [pI]} 

[evaluation of C I (.!i') on the fundamental two-cycle of pI] 
is non-negative (see Ref. 19). 

Let us observe that, using Theorem 1, and formally re
garding the vorticity fields belonging to curves r as elements 
in [ff w , we see that they can effectively be used as representa
tion labels: this is consistent with the R-R point of view: the 
topology of knot determines the representation. It goes with
out saying that the formal measure 

dj.t(r) = ,,_1_ e-/Cf') B OO(r)" 
:¥ 

(with :¥ "some renormalization constant") should be given 
a definite mathematical meaning. There also seem to exist 
deep connections between RR theory and Witten's work. 24 

We hope to tackle these problems in a later study. 
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New aspects of the path integrational treatment of the Coulomb potential 
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The well-known treatment of the path integral for the Coulomb potential, by means of the 
Kustaanheimo-Stiefel transformation and a time transformation, is made more transparent by 
reducing the problem to the equality of two measures on the space of paths. For this equality 
two proofs are given: an elementary computational one and a short one recurring to general 
features of stochastic processes. It is shown that the time transformation is a special case of the 
well-known time change for a continuous local martingale, by which the process is changed to 
a Brownian motion and which is determined by its quadratic variation. 

I. INTRODUCTION 

In this paper we present a clear-cut derivation of the 
propagator for the Coulomb potential by path integration in 
configuration space. We use well-known tools, see Refs. 1 
and 2: the Kustaanheimo-Stiefel transformation (KS) and a 
path-dependent time transformation (n. By them the Cou
lomb path integral is converted to a Gaussian one. (This 
approach does not make explicit use of the spherical symme
try of the system, cf. Ref. 3.) 

The purpose of this paper is to show that the procedure 
performed in the literature t

•
2 can be made much more trans

parent by reducing the whole problem to the equality of two 
measures on the space of paths. For this equality we give two 
proofs, one by an elementary computation and a short one by 
a general argument from the theory of stochastic processes. 
In the course of the following consideration three important 
points are emphasized, which remain hidden in the litera
ture. 

(i) The two roles of the KS transformation. As a map
ping from ]R4 onto R3 it gives rise to a transformation from 
the space of paths in ]R4 to that of paths in ]R3. It also gives rise 
to new, i.e., non-Cartesian, coordinates for]R4 (although it is 
not one to one). See Sec. III A. 

(ii) The time transformation T as a global transforma
tion of the space of paths into itself. It is a special case ofthe 
well-known time change for a continuous local martingale, 
by which the process is changed to a Brownian motion, and 
which is determined by its quadratic variation. See Sec. III B 
and Sec. VB. 

(iii) The actual path integrational content of the proce
dure. This is the previously mentioned equality of two mea
sures, see Eq. (11) and Sec. V. 

II. STATING THE PROBLEM 

The propagator p(y,y',t) for the Coulomb potential is 
the fundamental solution of the diffusion equation 

(:t - 2~ a - I~I f(y,y',t) = 0, 

p(y,y',O) = 8\y - y'). (1) 

It is given by the Feynman-Kac path integral, which for the 

general solution w(y,t) of (1) with the initial distribution 
w(y) =w(y,O), reads 

w(y,t) = r w(,p(t»exp [ r'_e_
2 

-dS]dW;(,p). (2) 
Je; Jo l,p(s) I 

Here ~; = {,p: [0,00 [ .... R31,p continuous with ,p( 0) = y} is 
the space of paths and W; denotes the Wiener measure on it. 
The problem consists in evaluating (2). 

III. TRANSFORMATIONS 

A. The KS transformation 

The KS transformation is a mapping k from]R4 onto ]R3 
given by y = k(x) with 

y t = xi - x~ - xi + x~, 
Y2 = 2xtx 2 - 2X3X4' (3) 

Y3 = 2x tX3 + 2x2x4 • 

Particularly interesting in the sequel is its property 

Iyl =x2
• (4) 

Obviously k induces the transformation of paths 

K: 'G'! .... 'G';, Krp:=korp, withy=k(x) (5) 

for any xE]R4, and where ~! denotes the space of paths in ]R4 
starting at x. 

The KS coordinates (y,rp )E]R3 X [ - 1T,1T[ of XE]R4 are 
given by 

x t = (1/20' )(Y2 cos rp + Y3 sin rp), X2 = 0' cos rp, 

X3 = 0' sin rp, X4 = (1/20') (Y3 cos rp - Y2 sin rp), 

with 0': = [~( IYI - Yt)] 112. 

(6) 

It is easy to see that x = x (y,rp) runs exactly through the set 
of inverse images ofyunder kifrp runs through [-1T,1T[. In 
this context the coordinates (6) are interesting because of 
the integration formula 

r g(x)d 4x = r fTT g(x(y,rp»drp d
3
y. (7) 

JR4 JR' - TT 81yl 
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B. The T transformation 

To each path t/JE~ ~, a new time is associated by 

u:=u",U):=4i'II/'(S)ldS. (8) 

For almost all I/' one has u > 0 and u ( 00 ) = 00, see Ref. 
4. In particular, one gets for the inverse mapping of (8) the 
implicit relation 

1 (U ds 
t=t",(u) =4 Jo l¢(t",(s»1 (9) 

It induces the transformation of paths, the new-time trans
formation 

(10) 

IV. COULOMB PROPAGATOR 

The main result of this paper is contained in the follow
ing formula: 

W;=TK(W~), withy=k(x), (11') 

where TK is the composition of the transformations (10) 
and (5), and where the right side denotes the image of the 
Wiener measure on ~ ~ under TK. If L is any functional on 
C(J;, then (11') is restated equivalently by the formula 

We shall give two proofs of (11) in Sec. V. 
In this section let us take ( 11 ) for granted. Using ( 11) it 

is easy the convert (2) to a Gaussian path integral without 
performing any path integration. Indeed, applying (11") to 
(2) and using the relation (9) one has with the abbreviation 
X: =K<p, 

w(y,u) = L! w(X(tx (u»)exp(4e2tx (u»dW~ (<p) 

= ('" dr ( 8(tx (u) -r)w(x(r»e4e'rdW~(<p) 
Jo J<c! 

(8),(9) ('" . ( 

= Jo drJ<e! 8(u - Ux (r»4Ix(r) I 

X w(x(r) )e4e'r dW~ (<p) 

(4) 1 f'" Sa'" =- dEeiEu dr 
21T - '" 0 

X [L! w(<p(r»exp(f VE(<p(s»ds )dW~ (<p) l 
(12) 

Here, as announced, the potential 

(13) 

is quadratic and, therefore, can be treated by path integra
tion. Dependent on the initial distribution w(y), one obtains 

w(x): = 4x2w(k(x» (14) 

as the initial distribution for (13). 

2786 J. Math. Phys., Vol. 30, No. 12, December 1989 

By the Feynman-Kac formula the remaining path inte
gral in (12) yields the solution of the diffusion equation for 
the (generalized) oscillator potential (13) with the initial 
distribution (14).1t is well known how to compute the pro
pagator for (13) by path integration; it follows 

(E ') 2iEmexp(4e2r) 
p ;x,x ,r = ----=----

~sh 2(r~8iE 1m) 

xexp{ - ~iEml2 [(x - X,)2 cth(r~2iElm) 

+ (x + x')1:h(r~2iE 1m) n. (15) 

So in the case w(y) = 83 (y - y') the path integral in (12) 
yields explicitly 

w(E;y,y',r) == J 4X'28~k(x') - y)p(E;x,x',r)d 4x' 

2iEm exp (4e2r) [ f]!l3C'E = exp - -y .<.lnm 

1Tsh 2(rJ8iE 1m) 

xcth(r~8iElm)(IYI + ly'I)] 

X10[ ~ (-21(IYIIy'1 + yy,)V
12

]. 
sh (r-y 8iE 1m) ') 

(16) 

As expected, the integral in ( 16) does not depend on x but only 
on its imagey==k(x) under the KS-transformation. The inte
gral is not hard to do with the aid of the integration formula 
(7). Here 10 denotes the modified Bessel function of the first 
kind. Combining (12) and (16) one obtains for the Coulomb 
propagator 

p(y,y',u) =-I-f'" dEeiEu ('" dr w(E;y,y',r). (17) 
21T - '" Jo 

For a further evaluation of ( 17) see the partial-wave decompo
sition of the Green's function in Ref. 2. 

Remark: Because of the factor exp( ~r) the integrals in 
( 17) do not exist in the Lebesgue sense. So there is the question 
about the meaning of (17). For instance, it is not hard to show 
by means of Fubini's theorem and the theorem of monotone 
convergence that 

p(y,y',u) = lim- dEeiEu 1 f'" 
elO 21T _ '" 

xi'" dr w(E;y,y',r)!-er2. 

V. EQUALITY OF W~.., and TK(W!). 

It remains to show this equality, which constitutes the 
path integral content of our derivation of the Coulomb propa
gator. We give two proofs of it. 

A. Computational proof 

It suffices to show (11") for cylindrical functionals, 

L(I/') = R..1/'(u l ),I/'(U2), .. ·,l/'tlm », (18) 

where 0 < u I < U2 < ... < u m and F is any continuous and 
bounded real-valued function on (JR3)m. We first consider the 
case m = 1 and then generalize the result to an arbitrary m. 
Applying the Fourier transformation, as in ( 12), we obtain for 
the right side of ( 11 " ) 

D. P. l. Castrigiano and F. Stark 2786 



                                                                                                                                    

l/( TKqJ)dW! (qJ) 

= _1 foo dEeiEu (00 dr( ( 4Ix(r) IF(r(r» 
21T - 00 Jo J,-;! 

with U = uland X = KqJ. In order to evaluate the path integral 
I=.I(E;x,r) in (19), one passes to a discrete version IN of it 
approximating Ux (r) by 

rN-11 (r )1
2 

4- L qJ -n . 
N n=1 N 

(20) 

Let 

p<d)(a,b,s): = (~)dI2 exp ( _ m la _ b 12) 
21TS 2s 

denote the free propagator in d dimensions. Then by definition 

IN = ( ". ( d 4xI" 'd~N_I d 4x' 4x,2F(k(x'» 
JR4 JR4 

xex~ -i4~(xi + ". +X~_I»)'P<4(X'XI'~) 

XP<4) (X I,X2, ~) .. . p<4( XN _ 1 ,x,,~). (21) 

The integrals with respect to the variables x I'''',x N _ 1 are 
Gaussian and can be done. It follows by induction that 

IN = ~ (1 -~) ( d 4x' 4x,2F(k(x'» 
4~yZ aN_ 1 JR4 

Xexp {[ ~G -aN) + i4~( 1 - aN)] (x2 + X,2) 

N ( a )112 } +_ I __ N_ xx', 
raN_I 

(22) 

where 

1 - qN + 1 1 + ~1 - 4v 
aN: = , with q: = -----'---

1 - q 1 - ~1 - 4v 

[ 
i8EyZ]-2 

andv:= 2+~ . (23) 

The path integral I in ( 19) is the limit of IN for N .... 00 • Since 

aNIN .... (e.5-1)18with8:=4r~2iE, (24) N-oo 
one obtains 

I(E;x,r) = ( 4x'2F(k(x'»po(E;x,x',r)d 4x', (25) JR4 

where Po is given by (15) in the case of zero charge e = O. 
Thus applying the definition of the Wiener measure to the 
left side of ( 11" ), it remains to show [cf. (19)] that 

J F(y')p<3)(y,y',u)d3y' 

= - dE eiEu dr I(E;x,r), 1 foo Loo 
21T - 00 0 

(26) 

with y = k(x). This equation contains only ordinary inte
grals and relates the propagator of the three-dimensional 
free particle to that of a four-dimensional oscillator. Of 
course, (26) is the special case of ( 17) for vanishing charge 
e. It is verified by elementary computations using (7). 

Now, we accomplish the proof of (11") considering the 
case of a general functional ( 18). Then the right side of ( 19) 
is replaced with 

__ I eiE,ul drl __ 2 eiE,u, dr2'" _m_elEmum drm f
OO dE Loo foo dE 100 foo dE . foo 

- 00 21T 0 - 00 21T r , - 00 21T rm _ 1 

X [l! 4Ix(rl ) I" '411<r m) IF(r(rl ),'" ,X(rm »exp ( - iE1uX (rl ) - ". - iEmux (r m »dW! (qJ)]. (27) 

Introducing Ej: = l:;"=j E, and s/ = rj - rj _ I,j = 1, ... ,m, ro: = 0 one obtains l:j= 1 EjuX (r) = l:j': 1 cj4S~_ 1 IqJ(S) 12 dsand, 
hence, by a computation analogous to that for m = 1, 

f. ... f. d 4x l" ·d~m 4xi" '4x~F(k(xI)"" ,kVcm »Po(E1;X,XI,sl )Po(E2;XI,X2,S2)" 'PO(Em;Xm _ l>Xm,sm) (28) 
R4 R4 

for the path integral. Now CI" ',Em and sl,,,,,Sj are chosen as new integration variables, replacing E1,,,.,Em and rl, ... ,rm, 
respectively. By (28) and by this change of variables (27) becomes 

( ". ( d 4xI" 'd 4xm . IT {4xlfOO ~ (00 dSj exp [iEj (uj - uj_ I) ]Po(Ej;Xj_ I>Xj,S)}' F(k(x l ),'" ,(kxm» (29) JR4 JR4 j= 1 - 00 21T Jo 

with Uo: = 0 and Xo: = x. Here the variables x m up to X 1 are 
partly integrated out applying (26) . We end up with 

L, .. 'L, F(YI',,·,Ym )p<3)(Y'YI,U I)P(3)(YI'Y2,U2 - u1) 
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(30) 

and Y = k(x). This is the left side of (11") by definition of 
the Wiener measure. 
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B. General argument 

For an alternative proof of (11) we use the language of 
stochastic processes. 

Starting point is the four-dimensional Brownian motion 
(X, ) ,;;.0 realized as the natural process X,fP: = fP(t) on the 
probability space ('G'!, w! ). This gets transformed to KX by 
means of the KS transformation: KX,fP: = k(X,fP) = KfP(t) , 
still on ('G'!, w! ). Of course, KX is equal by law to the natural 
process Y,¢: = ¢(t) on ('G'~,K( w! », y = k(x). By the Ito 
formula, see, e.g., Ref. 6, Sec. 5, thejth component (j = 1,2,3) 
of the stochastic differential of KX is given by 
d(KX')j = m-1/2~ (t)dX" where ~ = V(KX)j' i.e., expli
citly 

Ml = 2(X!> - X 2 , - X 3 ,X4 ) , 

M2 = 2(X2,X1, - X4 , - X 3 ), 

M3 = 2(X3,X4,Xt ,X2 )· 

(31) 

Hence it follows that the quadratic variation ( (KX) j ), is given 
by fb~(S)2 ds (cf. Ref. 6, Sec. 5), which by (31) becomes 
4fbX;dsindependently ofj. Transferred to Y this result reads, 
because of ( 4 ) , 

OJ)! = 4L I Ys Ids, (32) 

independent ofj = 1,2,3. Evaluated for an individual path ¢ 
the right side of (32) yields exactly (8). 

It is not by chance that (32) and (8) coincide. Indeed, 
the quadratic variation of a continuous local martingale con
stitutes an intrinsic clock. By means of it the martingale can 
be time changed to a Brownian motion. Explicitly, 

(Y,(u) ) u;;.o , with t(u) given by (9) (33) 

2788 J. Math. Phys., Vol. 30, No. 12, December 1989 

is indistinguishable from three-dimensional Brownian mo
tion. The proof follows by the same kind of reasoning as in 
Ref. 6, Sec. 9.3, where the one-dimensional case is treated. 
From this the assertion (11) follows immediately. 

We should emphasize that this relation between the new
time transformation T and the intrinsic clock is revealed in Ref. 
7, see also Ref. 8. 

I In this context these transformations have been applied for the first time in I. 
H. Duru and H. Kleinert, "Solution of the path integral for the H atom," 
Phys. Lett. B 84, 185 (1979); "Quantum mechanics of H atom from path 
integrals," Fortschr. Phys. 30, 401 (1982). 

20ur treatment is more related to R. Ho and A. Inomata, "Exact-path-integral 
treatment of the hydrogen atom," Phys. Rev. Lett. 48, 231 (1982). 

3 An alternative method to do the path integral for the H atom, which should be 
mentioned here, takes advantage of the spherical symmetry of the system. By 
it the full path integral is reduced to the one-dimensiona1 radial part of it: A. 
Inomata, "Alternative exact-path-integral treatment of the hydrogen atom," 
Phys. Lett. A 101, 253 (1984); F. Steiner, "Space-time transformations in 
radial path integrals," Phys. Lett. A 106,356 (1984); "Exact path integral 
treatment of the hydrogen atom," 106, 363 (1984); In particular, because of 
the literature cited therein see also F. Steiner, in Path Integrals from me V to 
MeV, edited by M. C. Gutzwiller, A. Inomata, I. R. Klauder, and L. Streit 
(World Scientific, Singapore, 1986). 

"This is true, since for a d-dimensional (d:;.3) Brownian motion every pre
scribed point (different from the starting point) is nonattainable and every 
compact subset is transient. 

sF. Oberhettinger and L. Badii, Tables of Laplace Transforms (Springer, Ber
lin, 1973). 

6K. L. Chung, R. J. Williams, Introduction to Stochastic Integration (Birk
hiiuser, Boston, 1983). 

7Ph. Blanchard and M. Situgue, "Treatment of some singular-potentials by 
change of variables in Wiener integrals," J. Math. Phys. 22, 1372 (\981). 

"A. Young and C. DeWitt-Morette, "Time Substitutions in Stochastic Pro
cesses as a Tool in Path Integration," Ann. Phys. 169, 140 (1986). 
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The series development of the quantum-mechanical twisted product is studied. The series is 
shown to make sense as a moment asymptotic expansion of the integral formula for the twisted 
product, either pointwise or in the distributional sense depending on the nature of the factors. 
A condition is given that ensures convergence and is stronger than previously known results. 
Possible applications are examined. 

I. INTRODUCTION 

The self-contained approach to quantum mechanics on 
the flat phase spaces R2n has been growing since the seminal 
paper by Moyal' 40 years ago. In this approach, the Weyl 
correspondence2 between operators and their symbols fades 
into the background and the main role is assumed by the 
twisted product of two symbols, corresponding to the usual 
composition of operators. 

The paradoxical fact is that two different definitions of 
twisted product coexist more or less peacefully in the litera
ture. The first one, historically speaking, probably goes back 
to Groenewold's3 paper. With the notational conventions 

a a, a an a an + , a a2n 
X---···-"----···--, 

aU:'+ , aU~~ aU~n + , aU:2n 

it is written 

(1) 

This form was used in the influential papers by Bayen 
et al. 4 It has a geometric appeal, because the terms in the 
development are classical invariants. 5 It also lends itself to 
semiclassical considerations. Indeed, one can obtain (1) by 
the following heuristic argument: try to build a quantum 
mechanical product with the ordinary product and the clas
sical Poisson bracket {','}p as raw materials. One writes 

which include the firsttwo terms in (1). The product *Ii fails 
to be associative, by a term of order fz2. The natural correc
tion to the previous definition includes the third term in ( 1 ); 
the new product fails to be associative by a term of order fz3, 
and so on. 

The second definition probably appeared in print for the 
first time in Ref. 6, although it was already implicit in a 
remarkable paper by Baker,? and is 

(jxlig)(u) = (1Tfz) - 2n 12n i2/(U + v)g(u + w) 

xexp(~ U[V,W])d 2nvd 2nw. (2) 

In the formula, the symplectic form u is defined on R2n by 
n 

u[v,w] =u[(q,p),(q',p')]:= 'LqiP;+n -p;qi+n' (3) 
;= 1 

The most direct rou te to (2) is by group-theoretical con
siderations. 8 The rather obvious shortcoming of the first de
finition is that it is not clear what can be made of series such 
as (I) in general. Moreover, at least one of the factors in (1) 
has to be smooth; thus the validity of that formula is a priori 
restricted. 

Formula (2) appears at first sight even more restrictive, 
as it seems to demand stringent integrability conditions. 
However, the important equality 

(4) 

makes the extension of (2) by the methods of duality (i.e., 
distribution theory) a relatively easy task. The strategy to 
follow was sketched by Antonets9 and carried out in detail 
by two of the present authors in Ref. 10. Hereinafter, when 
we refer to (2) or to the integral form of the twisted product, 
we understand this extension, which we call the standard or 
Antonets extension; necessary details will be given later. 

The main advantage of (2) is, then, that it can be ex
tended to a large class of symbols, each step in the extension 
process being given a precisely defined functional-analytic 
meaning. 

Formula (1) is handy when one of the factors to be 
twisted-multiplied is a polynomial. We note that formula 
(2) gives, of course, the same result in that case; nothing 
other than integration by parts is involved and, in fact, if 
integration by parts is formally carried on indefinitely in (2), 

we recover (1). On the other hand, there is no way that 
beautiful (and useful) consequences of (2) such as 

(5) 

where {j is the Dirac measure concentrated at the origin of 
phase space, can be extracted from (1). 

The purpose of this paper is to establish some rigorous 
general relations between (1) and (2). Results concerning 
relations of this kind are very scarce in the literature. Voros" 
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proved that ifbothfand g are GLS symbols 12,13 of class rand 
s, respectively (see the definition in Sec. II), then the differ
ence between (2) and the sum of the n first terms in (1) is a 
GLS symbol of the class r + s - 2n. In Ref. 10, it is proved 
that, under rather favorable circumstances, ( 1 ) converges to 
the standard extension of (2). A similar weaker result is 
found in Ref. 14. Kammerer also mentions a couple of re
sults of this type without proof in Refs. 15 and 16. 

Formula (1) looks like, and is, an asymptotic develop
ment of (2). By and large, questions relative to the correct
ness and the meaning of semiclassical expansions in the 
framework of phase-space quantum mechanics boil down to 
the link between the two formulas. The range of applicability 
is very wide, as such semiclassical phase-space expansions 
have found frequent use in nuclear physics, 17 scattering the
ory,18 transport theory, and so on. 

Maybe what has deterred potential researchers of the 
aforementioned link is that application of the usual methods 
of stationary phase l9 seems awkward here. Fortunately, 
there is no need for that, Kanwal and one of US

20,21 have 
developed a new distributional theory of asymptotic expan
sions. This theory encompasses many classical results for 
asymptotic developments of integrals and turns out to be 
very well suited to our task. 

One of the advantages of the chosen framework is that a 
sense can be given to the asymptotic development of (2) 

even when one of the factors is a distribution; and thus a 
comparison between (1) and (2) can be made under fairly 
general conditions for (1) to make sense. More can be said 
when smoothness or analyticity are present. Roughly speak
ing, smoothness guarantees that (1) is the asymptotic ex
pansion of (2) as litO in the classical sense and analyticity 
gives coincidence of both expressions. 

In Sec. II, the Antonets extension and other function 
and distribution spaces employed in the sequel are intro
duced. 

In Sec. III the distributional theory for asymptotic ex
pansions is developed and the results on the relation between 
the two definitions of twisted product are proved. 

In Sec. IVan application of the formulas of the previous 
section to computing expansions for the quantum evolution 
of states is given. The proof of Theorem 4-a mathematical
ly interesting result on its own-is deferred to the Appendix. 

II. SUITABLE SPACES OF FUNCTIONS AND 
DISTRIBUTIONS 

It is a characteristic of distributional asymptotic expan
sions that their validity depends on the space of distribu
tions in which the expansion is made.21 So we first briefly 
discuss the relevant spaces. 

We will write XERn and, as before, a: = (aw .. a n )ENn, 

lal: = a l + ... + an' x a : = X~'" 'x~", and a!: = a l !" ·an!. 
The Schwartz space22 Y = Y(Rn) is the space of 

smooth functions h on Rn such that xa a f3h(x) vanishes at 
infinity for all a and {3. Its dual space Y' = Y' (Rn) is the 
space of tempered distributions of Rn. The space of all 
smooth functions on Rn is denoted ~ = ~ (Rn) and its dual 
is the space ~' of distributions of compact support on Rn. 
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Intermediate spaces of smooth functions are tJ M and 
tJ c' 23 Here tJ M is defined as the space of smooth functions 
that, together with all of their derivatives, are of polynomial 
growth at infinity; tJ c is the subspace of tJ M for which the 
bounding polynomials are of the same degree for all deriva
tives. More precisely, for any real number r we can define tJ r 

as24 the set of smooth functions I for which 
aal(x)=O(lxn as Ixl-.oo for all aENn; then 
tJ c = U IER tJ r' 

Two other useful subs paces are the space % consisting 
of those smooth functions I for which, for some r, 
a al(x) = O( Ixl r - 1al ), for all aENn (for n even, % is called 
the space of "GLS symbols," I 1-13 and r is called the "class" 
of the symbol/); and 10 the space (3 T of those smooth func
tionsl for which, for some r, aal(x) = O( Ixl r + lal ) for all 
aENn. Clearly % C (3 c C tJ T C tJ M' 

The Paley-Wiener-Schwartz theorem yields another 
space of smooth functions, tJ exp' If Y denotes the Fourier 
transformation, Y g(t) = fIR" exp( - ix . t)g(x)dnx, then 
(3exp(Rn): = Y(~'(Rn» consists of smooth functions on 
Rn that extend to entire functions on en of exponential 
type. 19,22 Let us write !l' for the space of smooth functions 
that extend to entire functions on en; then, of course, 
tJ exp C !l' C ~ . 

The Fourier transformation takes each of the spaces 
tJ M and tJ c onto the dual of the other: Y ( tJ M) = tJ e, 
Y( tJ c) = tJM: see Refs. 25 and 26. The duals ~', tJe, and 
tJ M are all spaces of tempered distributions. 

Iff, gEY, we write 

(f,g): = f I(x )g(x)d nx. 
JR" 

If (T,h ) = (T(x),h(x» denotes the evaluation of a distri
bution TEY' on a test function hEY, we can regard Y as a 
subset of Y' and the (".) notations are consistent. Now, the 
twisted product of two functions in Y also belongs to Y. 
From (2) it is easy to verify the tracial property (4) of the 
twisted product. As an immediate consequence of ( 4 ), 

(/x"g,h) = (f,gx"h) = (g,h x"f) 

= f (/x"gx"h)(u)d 2nu. (6) JR2n 

The Antonets extension of the twisted product is now 
defined, in two steps, as follows: first, if nY' (R2n) and 
fEY (R2n ), T x"f and I X" T are defined as tempered dis
tributions by 

(Tx"j,h): = (T,fx"h), (/X"T,h): = (T,h x"f), 
(7) 

for hEY(R2n ); clearly this notation is consistent with the 
inclusion Y C Y' by (6). It turns oueo that the distribu
tions T x"f andl X" T are, in fact, smooth functions lying 
in the space tJ T (R2n ). 

The second step is to introduce the multiplier algebras 
Jl1 (resp. JI~ ) of those TEY' (R2n) for which 
T X"fEY(R2n ) [resp./x" nY(lR2n)], for all/EY(R2n ). 
The twisted product is extended to these spaces by defining 
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(T X"S,J): = (T,S X,J), (R X" T,J): = (T,JX"R ), 

whenever TE .. 9'''(lR2n ), SEJt1, REJt~,jEY(lR2n). The in
tersection 1": = 11 n1~ is then a ·-algebra of distribu
tions called the Moyal ·-algebra. [The involution is complex 
conjugation, since (J x"g)· = g. X,J· in general.] Since 
we can also extend (7) by writing 

(TX"S,J): = (S,JX"T), (R x"T,J) = (R,TX,J), 

whenever R,SEO'~(R2n), we obtain that O'~(R2n) C1" 
and, as a consequence, that 1F'(R2n ) C1" and 
tJ ~ (R2n) C1". (The necessary topological details to com
plete this formal argument are given in Ref. 10.) 

It should be noted that the spaces 1" for different val
ues of the parameter fz> 0 are all distinct. Indeed,27 it is 
straightforward to check28 that fa (q,p): = expq iaq . p) 

lies in 1" if a> 0, a#fz, but thatJ"Ef.v«"". 
The Fourier transformation on lR2n permutes the 1" 

spaces; indeed, 07(1") = 1 4/
" so that 12 is Fourier in

variant. From this we obtain that & exp (R2n) C1" and 
tJ e (R2n) C1", for allfz > O. In particular, the twisted prod
uct is defined via the Antonets extension if at least one factor 
belongs to either & exp (R2n) or & e (R2n) and the other be
longs to Y'(R2n ). 

We do not have & r(lR2n ) C1", since J"EO' r(R2n ). 
Nor is & r (R2n) an algebra: Lassner and Lassner29 have giv
en an example of two functionsJ and g in & r (R2n) for which 
{X"g is defined and not in IF(R2n ). However, Figueroa3o 

has recently shown that & e (R2n) is an algebra under the 
twisted product, of which the space %(R2n) ofGLS sym
bols is a subalgebra. Also, he has shown that if/EO'M (R2n ), 
gEO' e(R2n ), thenJX"gEO' M(R2n ). 

Finally, it should be noted that & exp (R2n) is an algebra 
under the twisted product: indeed, it has been shown in Ref. 
10 that the series (1) converges in & exp (R2n) if both factors 
belong to O'exp (R2n ). 

III. ASYMPTOTIC EXPANSIONS 

Many authors have used the techniques of generalized 
functions to study asymptotic expansions (see Refs. 31-33, 
for example.) As is shown in Ref. 21, the asymptotic expan
sion of generalized functions is closely related to classical 
problems of the asymptotic development of integrals. In 
many cases, the power of distribution theory permits one to 
obtain the asymptotic development in a very simple fashion; 
and, in fact, that is what happens in the present case. 

One of the simplest, and yet more useful, asymptotic 
expansions of generalized functions is the "moment asymp
totic expansion.,,21 It can be written as 

00 (- 1) lalJ-ta aa8(x) 
T(AX) - I as A-> 00, (8) 

lal ~ 0 aU lal + n 

or, more precisely, 

N (_ 1) Iailla aa8(x) 
T(AX) = I r- + O(A -N-n-I) 

tal ~ 0 aU lal + n 

as A-> 00. (9) 

where the J-ta are the moments of T, namely, 
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J-ta = (T(x),xa). 

The interpretation ofthe asymptotic expansion of gen
eralized functions is in the weak or distributional sense. Thus 
(8) or (9) means that for any test function h we have 

N II aah(O) 
(T(AX),h(x» = I r-a +O(A -N-n-I) 

tal ~ 0 aU lal + n 

as A-> 00. ( 10) 

The moment asymptotic expansion will be valid in some 
spaces of generalized functions, but not in others. 21 General
ly speaking, this asymptotic expansion holds if the distribu
tion T is of "rapid decay" at infinity. More specifically, we 
have the following lemma. 

Lemma: Let /IF be a space of smooth functions on Rn 

that contains all polynomials, and let /IF q denote the vector 
subspace of those hE/lF that vanish at 0, together with all 
derivatives of orderless than q. WriteA"h(x) = h(X/A) and 
suppose, moreover, that the topology of /IF is determined by 
seminormsp for whichp(A" h) = O(A - q) as A -> 00, for all 
hE/lFq. Then 

q (- 1)1alJ-t aa8(x) 
T(AX) = ) a + O(A -q-n-I) 

lal=O aU lal + n 

as A-> 00, (11 ) 

for all TE!!E". 
Proof Choose hE/lF and let Pq be the Taylor polynomial 

of order q of h at O. Then 

q II aah(O) 
(T(AX),Pq(x» = ) r-a 

lal=O aU lal + n 

and hI: = h - PqE/lFq+ I' Moreover, for some seminormp, 
we have 

I(T(AX),hl(x»1 =A -nl(T(x),hl(A -lx»1 
<A -nCp(A"h l ) =O(A -q-n-I). • 

Take, for example, /IF = IF. It suffices to consider the 
family of seminorms given by 

Pa,R (h): = sup{laah(x) I: Ixl <R}, 

foraENn andR > O. IfhEIF q' Ixl- qh(x) remains bounded as 
Ixl->O, so Ih(x) I <Clxl

q
, for Ixl < 1, and so 

PO.R (A"h)< sup ClX/A Iq <CR qA -q, for A>R, 
Ixl<R 

Pa,R(A"h)<A -lapO,R(A,,(aah»<C'A -lalA -q+lal 

= C'A - q, for A>R. 

For /IF = & r' write g(t): = 1 ifO<t< 1, g(t): = t - r if t> 1. 
Then a suitable family of seminorms for a topology of & r is 
given by 

Pa (h): = sup{g( Ixl) laah(x) I:XERn}. 

It is straightforward to verify that Pa (A"h) = O(A - q) for 
hE/lFq. 

If TEO'~, then TEO';, for some r, and so the expansion 
(11) is valid for T. On the other hand, if TEO'~, hEO' M' then 
o7hEO'~, o7-ITEO' e, and so 

(T(AX),h(x» = (o7-IT(y),o7h(Ay» 
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shows that ( 11) likewise holds for TE{7~. 
In summary, the distributional asymptotic expansion 

(10) is valid for h in one of the spaces'll, {7 M' or {7 e, and T 
in 'll', {7~, {7e, respectively. However, the expansion does 
not hold if, say, TEY' and hEY. 

The same basic technique provides partial moment ex
pansions for functions or distributions of two variables 
(both in Rn, say). In this case we write 

00 (-I)lalaa8(x),ua(y) 
T(A.x,y) - I as A. -+ 00 , 

lal = 0 aU lal + n 

(12) 

where the partial moments,ua are distributions whose action 
on a test function g is given by 

(,ua (y),g(y»: = (T(x,y),xag(y» x,Y' 

(Hereinafter we subscript the symbol (".) to indicate the 
variables over which functions or distributions are to be inte
grated, whenever two or more variables are involved.) 

Let us write (Tog)(x): = (T(x,y),g(y» y' In order for 
(12) to hold for a test function h(x,y) = /(x)g(y), one sees 
from the above lemma that / should belong to one of the 
spaces'll, {7 M' or {7 e, while Tog should belong to'll', {7~, 
or (7e, respectively. In such cases it is easy to show, by ap
propriate norm estimates, that (12) continues to hold for h 
in the completed (projective) tensor product ofthe spaces to 
which/ and g must belong. 

In particular, let us consider the Fourier kernel 

T(x,y) = eix . Y, x,yERn, 

In this case we find that 

and the partial moments are given by 

(,ua,g) = f f eix'yxag(y)dnxdny 
JRIl JR" 

= (21T)n « _ i)lal aa8(y),g(y» 

or 

,ua = (21T)n ( - olal aa8. 

Thus the partial moment expansion of the Fourier ker
nel takes the form 

eiAx ' y_(21T)n f i
1al

a
a
8(x)aa8(y) as ..1.-+00, 

lal=O aU lal + n 

and the expansion is valid for test functions h in either of the 
A A 

spaces'll (Rn) ® (7 exp (Rn) or tJ M (Rn) ® tJ e (Rn). 
Replacing y by Ay, where A is a nonsingular matrix, 

allows one to develop an asymptotic expansion for 
exp{iA.x . Ay). In particular, ifv,WER2n and ifJis the matrix 

J= (0 In) -In 0' 
so that v . Jw = u[v,wl as in (3), we obtain 

ei'<<T[v,wl _ (21T)2n f ilal aa8(v)aa8(w) as ..1.-+ 00, 

lal= 0 aU lal + 2n 

where we have used the fact that aa8(Jw) = aa8(w). 

If we now use this asymptotic expansion with A. = 2/ Ii in 
the integral (2) that defines the twisted product, we immedi
ately obtain that, as Ii-+O, 

(/ X "g)(u) = (1TIi) - 2n i f /(u + v)g(v + w)exp( 2i u[ v,w l)d 2nv d 2nw 
RhJRh Ii 

( 

00 (ili)lal 1 A ) - I - ~a8(v)aa(w),J(u + v)g(u + w) . 
lal =0 2 a. v,W 

Therefore, we have established the following theorem. 
Theorem 1: Let/and g be smooth functions on R2n that 

satisfy one of the following conditions: (a) /E'll (R2n ), 
gE{7 exp (R2n ); or (b) /E{7 M (R2n ), gE{7 e (R2n ). Then 

N (ili)lal 1 A 
(/X"g)(u) = I - ,aa/(u)aag(u) 

lal =0 2 a. 

+O(IiN + 1
) as Ii-+O, (13) 

for every uER2n. • 
Since gXJ= (/*X"g*)*, the expansion also holds 

for/E{7 exp' gE'll, or for/E{7 e, gE{7 M' Note that the integral 
form (2) of the twisted product is defined in the second case 
in a distributional sense, via the Antonets extension, since 
(7 e is contained in JI". Note, also, that (13) in particular 
applies when both/and gbelong to %(R2n ). 

Clearly, pointwise expansions of the twisted product 
such as (13) can hold only if both factors are smooth func-
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tions. If we consider distributional asymptotic expansions, 
one of the factors can be a generalized function, as long as the 
other remains smooth. That ( 13) need not hold in any sense 
when both/ and g are generalized functions is illustrated by 
the example (5). 

Theorem 2: Let/EY(R2n ) and TEY'(R2n ). Then (13) 
holds in the distributional sense, that is, 

+ O(IiN + I) as Ii-+O, 

for every hEY(R2n ). 

Proof: Let R be the distribution on R4n given by 

R(v,u): = (T(u + w), ei<T[V,W1)w 

= (1' _uT(w), exp( - iw' Jv»w 

Estrada, Gracia-Bondla, and Vlflrilly 2792 



                                                                                                                                    

=Y(1"_u T )(Jv) 

= exp(iu . Jv) (YT) (Jv), 

where 1" _ u T is the translate of Tby u. Then 

(Roh) (v) = i exp(iu' Jv)h(u)d 2" u YT(Jv) 
R2n 

= YT(Jv)Yh( - Jv) = Y( T.h)(Jv). 

[Here h (u) = h ( - u).] Since convolution of a distribution 
in Y' with a test function in Y lies23 in tJ e, we find that 
Rohe.7 (tJ c) = tJ M' Thus the moment asymptotic expan-

I 

and so 

(jx"T,h) = (17'Ii) -2"(R((2IIi)v,u),g(v,u»u.v 

sion (12) of R(AV,U) holds for test functions in 
A 

tJ M(R2,,) ® Y(R2
,,) and thus for test functions in 

Y(R2,,); Y(R2,,) = Y(R4,,). In particular, if we set 
g(v,u) =j(u + v)h(u), thengeY(R4

,,). 

The partial moments of R given by 

<Jta(u),k(u» = (R(v,u),ifk(u»u.v 

= (T(u + w),e i<7[v.w1vak(u»u.v.w 

= (21T)2"(T(u + w),( - i)lal aac5(w)k(u»u.w 

= (21T)2"ilal (aaT(u), k(u», 

a> ( Ii )Ial + 2" ( 1) lal 
_(17'Ii)-2" ') - - , (aac5(v)ll-a(u),f(u+v)h(u»u.v 

lal=O 2 a. 

_ (21T) -2" f (~)Ial 1, (aaj(U)ll-a (u),h(u» 
lal=O 2 a. 

a> (ili)lal 1 A _ ') - ,(aaj(u)aaT(u),h(u», 
lal=O 2 a. 

as required. • 
Finally, let us examine the question of the convergence 

of the twisted product expansion. Asymptotic series may be 
divergent and even if convergent its sum is, in general, differ
ent from the function that was developed. A striking exam
ple in the present context is the following. If j and g both 
belong to ~ (R2

,,) but their supports do not meet, then the 
twisted productj X fIg extends to an entire analytic function 
and thus is generically nonzero on R2

,,; however,jX"g-O 
to all orders as 1i ..... 0. 

Even so, the asymptotic development of the twisted 
product becomes a convergent series in some cases. The ba
sic step for obtaining convergence results is the following. 
Suppose he!r (R"); then, since h extends to an entire func
tion in e", its Taylor series 

hex) = f ..!.aah(o)xa 
lal=O a! 

converges in the topology of ff (Rn). Since 
(T(AX),Xa) = A -Ial- nil-a' we obtain the convergent series 

00 aah(O)ll-a 
(T(AX),h(x» = ') I I ' 

lal=O aU a +" 

for every A, if Teff'(R"). 
Use of this result immediately gives the following 

theorem. 

Theorem 3: Let je,q'(R2,,), getJ exp (R2
,,) (or vice 

versa). Then 

00 (ili)lal 1 A (jx"g)(u) = ') - ~aj(u)aag(u), (14) 
lal=O 2 a. 
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for every Ii> 0, the convergence being uniform on compact 
subsets ofR2

". • 

This theorem strengthens the previous result of Ref. 10, 
where the convergence was proved when bothj and g belong 
to tJ exp (R2

,,). In Ref. 12, under the same hypothesis of Ref. 
10, only convergence in Y'(R2

,,) was proved. 
Note that, as !r qY', the twisted product (14) is not 

defined via the Antonets extension in general. 
To summarize, using moment distributional asympto

tics, we have developed a rigorous methodology for giving 
precise meaning to the "folk wisdom" concerning the semi
classical expansion of twisted products. In this context, to 
strive for maximum generality is perhaps pointless. The in
terested reader, we believe, will have no difficulty in employ
ing variants of this methodology to get statements tailored to 
his particular needs. 

IV. A PHYSICAL APPLICATION AND OUTLOOK 

Let Po (a generalized Wigner function) represent a 
quantum state. We shall assume that Po belongs to Y; this is 
at any rate the case with the explicit examples below.34 

Let H be the classical Hamiltonian governing the dy
namics of a quantum system. We shall assume that H is real, 
smooth, and with bounded derivatives of order >2. [In par
ticular, ifH=p2/2m + Vex), then laa VI<Ca for lal>2.] 
This ensures (i) the operator associated to H by the Weyl 
correspondence2 is essentially self-adjoint; (ii) thus, there 
exists a one-parameter group U"(t) of distributions in phase 
space corresponding to the unitary evolution group [more
over, U"(t)eJ(" for all t 35

]; and (iii) the solution of the 
classical Hamilton equations associated to H yields a global
ly defined group of diffeomorphisms (tPt ) of the phase space. 

The "classical evolution" of Po is given by 
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Pc (t) = PoOI/l- I' 

where Pc satisfies the differential equation 

aPe { } at = H,Pe p, Pe(O) = Po· 

The quantum solution is given by 

pZ(t) = Ufi(t)XfiPOXfiUfi(t). 

If we define the Moyal bracket { ., .}~ by the formula 

{J,g}~ = - (ilfz)(!Xfig - gXJ), 

then pZ verifies the equation 

apZ {H fi}fi fi (0) at = ,Pq M' Pq =Po· 

We can derive asymptotic formulas for the Moyal 
bracket from the previous results. Under the hypothesis of 
Theorem 2, for instance, we have 

(15) 

in the distributional sense as fz-+O. 
Now we derive an expansion for pZ in terms of the classi

cal dynamics. Introduce, for O,t' ,t, 

ct>~ (t,t'): = Ufi(t') XfiPe(t - t') XfiUfi(t'). 

Note that ct>~(t,0) =Pe(t) and <I>~(t,t) =pZ(t). If we de
note 

p~ (Y.): = (1/fz2) [ {H,pe (Y.)}~ - {H,Pe (Y.)}p ], 

then we can write 

pZ(t) = Pc (t) + fz2f dt' Ufi(t') XfiP~ (t - t ') 

XfiUfi(t'), 

Now we "classically evolve" p~ in tum. Let, for O,t II ,t' 

<I>~ (t,t ',t 1/): = Ufi(t 1/) Xfi(P. (t - t ')ol/lt" _ t' )X fi Uli(t "). 

If we denote 

p~ (Y.,Y2): = (1/fz2) [ {H,p~ (Y. )ol/l_y)~ 

- {H,p~ (Y.) 01/1_ y)p ], 

we then obtain 

pZ(t) =Pool/l- t + fz2f dt' p~(t - t')ol/l_ t' 

+ fz4f dt 'f' dt II Ufi(t ") 

XfiP~ (t - t ',t' - til) Xli Uli(t "), 

Continuing in this vein, after k iterations we get the expres
sion 

I (' t (k - 1) 

+'''+ fz2k i dti dtll .. ·i dt(k)p~(t'_t',t'-t", ... ,t(k-·)_t(k»)ol/l_t(k) 

where Po is given, and the pJ are defined recursively by 

pJ(Y., ... ,Yj ): = (1/fz2) [ {H,pJ - • (y.,"·'Yj - • ) 01/1_ Yk}~ 

- {H,pJ-. (Y.'''·'Yj-l )ol/l_y)p]. 

In principle, (16) is an asymptotic expansion for the 
quantum evolution of a state. However, in general, Po will 
depend on fz in a fairly singular way, which can introduce 
negative powers of fz, thus spoiling the expansion; not unre
latedly, one usually finds that limfi _ o p~ does not lie in Y. 

We have, for instance, for the translates of the funda
mental state of the (one-dimensional) harmonic oscillator 
(with mass and frequency 1), 

p~,~;~(q,p) = (1l1rli)exp[ - [( p - PO)2 + (q - qo)2]1fz]. 

For the translates of the fundamental state of the (one-di
mensional) Morse oscillator with the same characteris
tics36

•
37 one has 
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MOfi 2 
Pqu,p,: (q,p) = 1rlir(2/(a2fz) - 1) 

X __ e-a(q-qu) 
( 

2 )2I(a2
fi) - 1 

a 2fz 

( 
2 -a(q-qo») 

X K 2i(P - p,,)/ali a 2fz e , 

where a is a nonzero real parameter. Although p~,~;~ and 
pr:.,~:1i both lie in Y for any fz> 0, they both tend to 
8(q - qo)8( p - Po) as fz-+O, and this is not a Schwartz 
function. In general, we expect classical states to be elements 
only of &~. 

Under these conditions, in order to get a rigorous mean
ing for the classical limit, one would have to impose strong 
and unnatural restrictions on the Hamiltonian,9 which 
we do not wish to do. This does not gainsay the fact that the 
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very first correction term of ( 16) can sometimes give very 
accurate approximations.36 

These difficulties seem to vanish when we consider ther
mally averaged states. The Gibbs state for a collection of 
harmonic oscillators in phase space at temperature Tis given 
by 

pHO. T.II (q,p): = _1_ tanh(~) 
, 7Tfl 2kT 

xexp[ - q2!p2 tanhC:T)]' (17) 

Here k is Boltzmann's constant. Note that this state is classi
cal (i.e., non-negative) for all Tand that as Ii->O, 

pHO.T.II(q,p)->(21Tkn-'exp[ _ !(q2+p2)/kT], 

which lies in Y. 
Ifwe takepHO,T.II as the initial state Po, then the asympto

tic development (16) makes perfect sense. 
Indeed, we expect classical limits of quantum states that 

retain smoothness to be elements ofthe Schwartz space Y, 
in view of the following result (which may be thought of as a 
kind of Tauberian theorem). 

Theorem 4: & Mn&:w- = Y and & cn&e = Y. 
This important mathematical result was established 

only recently by Ortner and Wagner,38 using the theory of 
the distribution spaces 9) ~p, We give in the Appendix a dif
ferent but quite elementary proof. 

The interesting point raised by some recent investiga
tions39

,4o is that there exist large families of quantum 
(mixed, of course) states that are also classical states and not 
necessarily Gaussian in general. It is tempting to interpret 
them, in keeping with Wigner's seminal intent4 '-to wit, the 
calculation of quantum corrections to the classical distribu
tion functions in thermodynamic equilibrium-as thermally 
averaged states of some sort [the machine that two of us 
built in Ref. 39 to produce such quantum-classical states is 
able to tum out states of the form (17)]. It is also apparent 
that the introduction of mixed states gives a new dimension 
to the subject of semiclassical mechanics, as the introduction 
of incoherent superpositions of states tends to wash out oscil
latory behavior; this point of view is reinforced by examples 
in finite-dimensional quantum mechanics (see Sec. 5.6 of 
Ref. 42). We have conjectured that in that context (16) con
stitutes a valid expansion; the question is currently under 
examination. 

APPENDIX: PROOF OF THEOREM 4 

For the proof of Theorem 4, we first remark that, on 
account of the Fourier invariance of Y, it is enough to estab
lish that & cn&e = Y. 

Lemma 1: LetfE& cn&e, with.t>O. Then 

(Ixl'llx)dnx<oo, forallr;;;d. JRn 

Proof: Let hE9) (R) be a compactly supported test func
tion satisfying h(t) = 1 for It I.;;;; 1, and h '(t).;;;;O for t>O. De
fine hmE9) (Rn) byhm (x): = h(lxl!m). Thenhm -- 1 in tJ c 
as m-- 00. Thus 
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(J,1) = 2~"!" (J,h m) = 2~ i/(X)hm(X)dnX 

= { f(x)dnx 
JR" 

using the monotone covergence theorem. Hence f EL '( Rn). 

If we now replace f(x) by IxI 2j"(x), which also lies in 
tJ cntJe, we find that Ixl 2mfEL '(Rn

), for all m = 1,2, ... , 
and the result follows. • 

Lemma 2: LetfEC '(Rn
) with.t>O, and suppose there 

are constants K> 0, M> 0 such that 

I af (x) I';;;;K IxI M, for Ixl>!. 
ax; 

Let m > Mn. Then for each E> 0 and each C> 0, we can 
find A >0 so that if lal >A andf(a»2E, then 

{ IxI 2"1(x)d nx>C. Jlx_al<lal- 2M 

Proof: If Ix - al < lal- 2M, choose Y = (1 - O)a + Ox 
with 0.;;;;0.;;;;1 sothatf(x) -f(a) =Vf(y)·(x-a). Then 

f(x) =f(a) + Vf( Y)'(x - a»2E - K lylMlal- 2M 

>2E-K(lal + lal- 2M)Mlal- 2M. 

Now 

(Ial + lal- 2M)M lal- 2M --0 as lal-- 00; 

so 

(Ial + lal- 2M)Mlal- 2M <ElK 

if lal >A, for A, large enough. Thus f(X»E whenever 
lal>A,.!(a»2E and Ix - al < lal- 2M

• Now 

{ Ix I2mf(x)d nx 
Jlx - al < lal - 2M 

>E( lal - lal - 2M) 2m la l- 2MnBn, 

where Bn is the volume of the unit ball in Rn; the right-hand 
side exceeds C for lal>A with A large enough, since 

(Ial - lal- 2M) 2m la l- 2Mn __ 00 as lal-- 00. • 

Proof of Theorem 4: Let gEt} cn&e. Then if aEN", 
mEN, the functionf(x): = IxI 2m la ag(x) 12 also belongs to 
tJ en tJ e and is non-negative. Let E> 0 and use Lemma 2 
with 

C: = 1 + ( IxI 2mf(x)d nx 
JR" 

to obtain the existence of A > 0 such that if lal >A, then 
f(a) <2E. We conclude that limx_ oo f(x) =0 and conse
quently limx_ 00 Ixl m a ag(x) = O. • 
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A general method for reduction of coupled spherical harmonic products is presented. When 
the total angular coupling is zero, the reduction leads to an explicitly real expression in the 
scalar products of the unit vector arguments of the spherical harmonics. For nonscalar 
couplings, the reduction gives Cartesian tensor forms for the spherical harmonic products; 
tensors built from the physical vectors in the original expression. The reduction for arbitrary 
couplings is given in closed form, making it amenable to symbolic manipulation on a 
computer. The final expressions do not depend on a special choice of coordinate axes, nor do 
they contain azimuthal quantum number summations, or do they have complex tensor terms 
for couplings to a scalar; consequently, they are easily interpretable from the properties of the 
physical vectors they contain. 

I. INTRODUCTION 

A common occurrence in quantum mechanical calcula
tions for multiparticle systems is the product of several 
spherical harmonics coming from the operators and eigen
states of particle or cluster wave functions. For example, in 
three-body models of6Li, the quadrupole form factor begins 
with up to five spherical harmonics coupled to zero total 
angular momentum, each with a different argument (two 
each in the initial and final states, one in the quadrupole 
operator). There are a variety of ways to evaluate transition 
amplitudes and expectation values involving these products. 
This paper will present an alternative that can be applied to 
arbitrary tensor couplings. When those tensors are built 
from physical vectors in the problem, the method leads to 
scalar couplings expressed as polynomials of the scalar prod
ucts of those vectors. 

Several methods for handling a series of spherical har
monic couplings have been suggested in the literature. One 
technique applies when only three are coupled, and makes 
use of the freedom of choice for the orientation of the spatial 
axis system. One of the spherical harmonic argument vectors 
is aligned with the azimuthal quantization z axis, and an
other pair defines the xz plane. (See, for example, the paper 
by Balian and Brezin. I ) Putting coplanar vectors all in the xy 
plane also simplifies the explicit form of the spherical har
monics. In either case, a sum over azimuthal quantum 
numbers remains for scalar expressions. An extension of the 
above method takes advantage of the three-dimensional 
character of the underlying space. The vector argument 
within any spherical harmonic in a product expression is 
written in terms of any three independent vectors in the 
problem. Those spherical harmonics with an argument di
rection determined by a pair of vectors can be expanded as a 
product of spherical harmonics in each of these vectors.2 

Spherical harmonics with the same argument are then com
bined. The result of the reduction will be a sum over prod
ucts of no more than three spherical harmonics in three dif
ferent solid angles. The technique described above can then 
be applied to these remaining spherical harmonics. 

For the case of a pair of coupled spherical harmonics 
with angular arguments determined by two different unit 
vectors a and b, each spherical harmonic with high angular 
indices (/1 and 12 ) coupled to a total angular momentum of 
low angular index (such as L = 1, 2, or 3), it is possible3 to 
express the coupled pair in terms of a basis set of pair-cou
pled spherical harmonics each with minimal angular index, 
times Legendre functions of argument a·b. Such results will 
turn out to be special cases of the method given in the follow
ing. 

In this paper, we wish to present a general method for 
the reduction of products of spherical harmonics which we 
have been using for some years.4 When the total angular 
coupling is zero, the reduction leads to an explicitly real 
expression in the scalar dot prod ucts of the vector arguments 
of the original spherical harmonics. For nonscalar cou
plings, the reduction gives Cartesian tensor forms for the 
spherical harmonic products; tensors built from the physical 
vectors in the original problem. The advantages of the meth
od are the following: (1) The result is readily interpretable 
from the known properties of the physical vectors it con
tains. (2) No special choice of coordinate axes are needed. 
(3) The final expression contains no azimuthal quantum 
number summations and no complex terms for couplings to 
a scalar. (4) The reduction for arbitrary couplings can be 
given in closed form, making it easily programmable in a 
computer calculation. As there are no spherical harmonic 
origin-shift expansions, numerical convergence problems as
sociated with this reexpansion are avoided. Section II intro
duces how the reduction of the scalar couplings of spherical 
harmonics can lead to simple results in terms of the corre
sponding vector dot-product expression. In Sec. III, we set 
up a method for transforming between Cartesian and spheri
cal tensors. Section IV gives the general results for expand
ing the coupling of Cartesian tensors into an irreducible ten
sor sum. A by-product of this work is a general formula for 
the Cartesian Clebsch-Gordan coefficients. Section V shows 
how the Cartesian coupling can reduce arbitrarily coupled 
spherical harmonics with different arguments, using a few 
simple rules. Finally, Sec. VI gives our conclusions. 
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II. EXAMPLES OF SCALAR COUPLING REDUCTIONS 

As a way of introducing the general scheme for Carte
sian recoupling, consider the following expression: 

[y[21(i) X [y[II(C) xy[ll(d) ]121] [01. (1) 

We use here the angular coupling notation of Fano and Ra
cah,5 i.e., 

[A [/,]XB[/21]~:1 

(2) 

The phases for the contrastandard y~ I spherical harmonics 
are fixed by 

y~1 = ( - i)IYlm (3) 

which insures that the y~ I behave as the eigenstates of L 2 

and L z under conjugation and time reversal according t06 

t/J~I' = (_1)j+mt/J~m' (4) 

This phase choice also has the advantage of eliminating ex
plicit phase factors in matrix element angular recoupling al
gebra.6,7 

It is well known that the Ylm (i) can be constructed 
from the irreducible Cartesian tensors of rank I built from 
the unit vector i. For example, 

Ybll(i) = + (- i)(I/{41i)a3, 

y[~11 (i) = + ( - i) (i;{41i) (1/-J2) (a l ± ia2), 
(5) 

Using the traceless nature of aij and Q(c,d) ij in the form 

and 

Yb21 (i) = + ( - i)2<21{41i)a33, 

y[;11 (i) = + ( - i) 2 <2/..]41i).jI(a 13 ± ia23 ) , (6) 

yl;12 (i) = + ( - i)2(21{41i).J1(a ll - a22 ± 2ia 12 ) 

where 1 is used for ~21 + 1, and 

(7) 

The irreducible Cartesian tensors such as aij constructed 
from direct products of a unit vector with itself are normal
ized to make contraction with that vector give the corre
sponding next lower rank tensor. The expressions above for 
the spherical harmonics can be verified using 

i = sin 8 cos <p ex + sin 8 sin <p ey + cos 8ez (8) 

and then comparing to standard forms for the spherical har
monics8 written in terms of the spherical angles (8,<p). 

Similarly, the angular components of [ylll(C) 

xylll (d)] 121 can be expressed in terms of the components of 
the irreducible Cartesian tensor 

Q(c,d)ij=~(cA + cjd; - (j)(c'd)l5ij)' (9) 

The identity 

[ylll(C)Xylll(C)]!,;1 = 1·1 1(1 1 2)1 y!,;l(c) 
..]41i 0 0 0 

(10) 

is employed to determine the constant factor in the result 

(m =0) 

(m = ± 1) 

(m = ± 2). 

(11) 

aII Q(c,d)22 + a22Q(c,d) II = a33Q(c,d)33 - aIIQ(c,d) II - a22Q(c,d)22' 

one finds 

[ y[21(i) X [y[lI(C) xy[11 (d)] 121] 101 = J..-.. ~. ~ 2·3 ~ a.Q(c d) ". 
41T 3 5·41T 7: Ij 'Ij 

The last factor, }:.aijQ(c,d) ij' is just 

~i'Q(c,d)'i = (~)2{(a·c)(a·d) - (j)(c·d)}. 

(12) 

(13) 

Aligning vector directions to help find the connection between the spherical harmonic recoupling and the corresponding 
contracted Cartesian tensor products will not work if the couplings have odd parity, such as in the expression 

[[yI21(i) XyI2I(l»] [lIX [y[21(C) XyI21(d)] [1][01]. 

Two of the couplings above produce an axial vector from the direct product of two tensors of rank two. If we define the 
pseudovector 

4 
R(a,b);=- L Eijkajlbkl = a·b(axb); 

9 jkl 

(14) 

(Eijk is the completely antisymmetric tensor in three dimensions with EI23 = 1), then 

[y[21(i) XyI21(b) ]!.!I = (1/{41i) '~(3'5)/2 {( - i)~3/41TR(a,b)3 (m = 0), (15) 
+(-i)~3/41T(1/-J2)(R(a,b)l±iR(a,b>Z) (m= ±l)' 
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In this odd parity case, the coefficient in the first line of the 
expression can be determined by the explicit Clebsch-Gor
dan recoupling of the spherical harmonics with total axi
muthal quantum number m = O. We now write the double 
pair coupling to zero as 

[[y[21(i) xy[21 (6)] [II X [y[21(C) xy[21 (d)] [I~[OI 

=(-13)(_1 ~(3'5)r 
41T..[4ii 2 

XL R(a,b)iR(C,d)i' (16) 
i 

The summed factor above becomes (a·b) (c·d) (axb·cXd). 
In Sec. V, we show that expressions such as Eqs. (12) 

and (16) can be written by inspection for arbitrary cou
plings. 

III. GENERAL TRANSFORMATION BETWEEN 
IRREDUCIBLE SPHERICAL AND CARTESIAN 
TENSORS 

In this section, we will find a covariant connection 
between spherical and Cartesian tensor components of arbi
trary rank. This will lead to the generalization of the results 
of Sec. II to arbitrary couplings of spherical harmonics. 

To establish our notation, we first review the connection 
between the generators of rotations and angular momentum. 
An orthonormal basis ei in Euclidean three-space can be 
defined through the infinitesimal displacements in that 
space by 

dr= Ldxi ei • 

i 

In a coordinate transformed frame, they become 

~, dXj ~ 
e i =L-,ej • 

j dXi 

The condition 

(17) 

(18) 

~ dXk dX1 D. = okl (19) 
£"d'd,IJ 
iJ Xi Xj 

makes the transformation a rotation. For infinitesimal or
thogonal transformations, Eqs. (18) and (19) give 

(20) 

where Ii is a unit vector along the axis of rotation in the right
hand sense and 08 is the rotation angle. Taking fYt to be an 
element of the rotation group, an infinitesimal rotation can 
be represented by 

(21) 

Comparing with Eq. (20), we can read the generator for 
infinitesimal rotations of the Cartesian basis vectors to be the 
well known result: 

(22) 

Apart from Planck's constant, these are a representation for 
the angular momentum operators for a spin-one field in 
quantum theory. However, the z component of the angular 
momentum operator is usually taken as diagonal with ele
ments being the possible measured values of this Sz. The 
matrix Sz is diagonalized by the unitary matrix 

[ l/~ -illi 

!J. (~mi) = 
- i _ ~11i 0 

-illi 

(23) 

giving 

~S, ~-. ~ [~ 
0 

~ ] 0 

0 -1 
(24) 

The vector basis set in this contrastandard spherical rep
resentation is that given by Danos6 (note that this differs 
from Fano and Racah9

): 

(25) 
~ [I I i ( .) ~ [I I .~ 
e ± I = ± Ii ex ± ley' eo = - lez • 

Furthermore, 

(26) 
m 

where I is the unit dyadic operator. 
The arbitrary phase in the unitary transformation has 

been taken to make the spherical basis vectors conform with 
the conjugation property of angular momentum eigenstates 
given in Eq. (4). A contrastandard spherical tensor carries a 
superscripted square bracket enclosing its rank index. High
er-weight spherical tensors irreducible under the rotation 
group can be constructed from angular couplings of the vec
tor basis set: 

e~1 = [e[l]Xe[l]xe[IIX···(l)···xe[lI]~I. (27) 

Individual pairwise couplings on the right-hand side of Eq. 
(27) taken in any order give the same result. This fact comes 
from the "stretched" form of the tensor, i.e., it has the high
est rank which can be constructed from 1 vectors of rank 1. 
Explicitly, the Clebsch-Gordan products in Eq. (27) give 

e[/I=[(l-m)!(l+m)!]1I2 L [ 1 ]1I2 e[1]"'e[l) 
m /!(2l-I)!! m'sfrom (l-ml)!(l +m l )!"'(l-m l )!(1 +m/)! m, m,' 

(28) 

-I to I 

The summation expression in Eq. (28) implicitly depends IThe rank-l tensors e~) satisfy 
on m, since the coupled terms on the right-hand side ofEq. 
(27) must have their azimuthal quantum numbers add tom. e~lt . e~1) = omn 
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and 

(30) 
m 

where 9 [I J is a projection operator on rank-I Cartesian ten
sors which picks out only the irreducible part. The dot prod
ucts which appear between higher rank tensors imply con
traction over all Cartesian tensor indices. 

A Cartesian tensor irreducible under the rotation group 
and of rank-I must be both completely symmetric in its I 
indices and traceless. Suppose T

i"
" i, is such a tensor. Then a 

natural connection between this Cartesian tensor and its 
spherical representation is given by the scalar expression: 

(31) 
m 

Contrastandard Cartesian tensors will be denoted by putting 
their rank index in curly brackets. With Eq. (31), the trans
formation coefficients between Cartesian and spherical ten
sors become 

(32) 

Thus, 

T{,l,} ... , = 1 [T[/J X ~ll/"i ] [OJ 
12 I 12 I 

(33) 

and 

T~J = L T~l"il~~i~i'il 
t. 

(34) 

The transformation coefficients satisfy the orthonormality 
conditions 

L ~ ~i~~il ~ ~~'~'il = omn· 
t. 

(35) 

With 
0).[IJ _ ( .) £ 
-u m.

1 
- - I Umo, (36) 

we find from Eq. (28), 

~[/J - i I . 0 
[ 

I , ]112 
mJ3 - (-) (2/-I)!! mO' 

(37) 

The coefficients ~ ~ J. . are completely symmetric and 
I, l~' •• 'I 

traceless in the Cartesian indices i l to i l • Thus, they are irre
ducible in the space of both their spherical and Cartesian 
indices. 

We use Eq. (37) to set the scale for normalization of 
Cartesian tensor components relative to spherical ones: 

TV}. = i l . T[/J. 
[ 

I , ]1/2 
33 (2/-I)!! 0 

(38) 

IV. CARTESIAN TENSOR RECOUPLING 

A symmetric and traceless tensor of rank I can be con
structed from a unit vector a in the form: 

aW = [ (2/- I)!!] [IJ 
(_ 1)'[ (2/- 2r- I)!!] 

l! , = 0 (21 - I)!! 

x{a"·(/-2r)"·ao·"(r)"·0}. (39) 

These are the Cartesian equivalents of the spherical harmon
ics, which we will refer to as the Cartesian harmonic tensors. 
In this expression, as in Eq. (27), the parenthetical value 
between continuation dots shows the number of repetitions 
of the factor shown before and after the dots. The I-Cartesian 
indices have been suppressed on aW and in each term of the 
summation. The 8's above are double indexed Kronecker 
deltas. The curly brackets in the right-hand side ofEq. (39) 
direct that the terms inside are to be summed over all permu
tations of the un symmetrized indices. For a given summa
tion index r, there will be [/!I( (/ - 2r)!2' r!) 1 such terms in 
the symmetrization bracket. Our choice for normalization of 
a{/} leads to (all vectors, even when not marked with a caret, 
are unit vectors) 

aW·b,,· (1- contractions)'" b = PI (a'b), (40) 

where b is a second unit vector and PI ( a'b) is the Legendre 
polynomial. As an example, Eq. (39) for I = 3 becomes 

a{3} =~aa.a· -l(ao. +a.o .. +ao .. ) (41) ',';2'1 £','2 '.1 2 ','2'1 '2 '.1', '1 ,,'2 . 

We will represent Cartesian harmonic tensors constructed 
from a unit vector (a) by the corresponding lower case latin 
letter (a). By using Eq. (38) and 

Yb/J(a) = « - i)II.,f4ii)IPI(a·e3 ) (42) 

it follows that the irreducible Cartesian tensors defined by 
Eq. (39) are related to the Cartesian transformed spherical 
harmonics by 

yWCa) = ~[ l! ]1I2aw. 
.,f4ii (2/- I)!! 

(43) 

Now consider the coupling of two irreducible tensors of 
rank II and 12 , The result can be decomposed into a sum of 
irreducible tensors from rank II + 12 to III -/21. This sum
mation is well known in the case of spherical tensors, giving a 
Clebsch-Gordan series. The irreducible Cartesian tensors 
following from this decomposition must again be completely 
symmetric and traceless. By explicitly constructing symmet
ric and traceless tensors from the products oftwo irreducible 
tensorsA{/,} and B{/,} , it is straightforward to show that the 
general form for the irreducible rank 13 tensor is given by 

min [I, - k,/, - k J ( 21 - 2r - I)" 
X L ( - 1 )'2' 3 " .. {A {I,}, (k + r)B{I,}o'" (r)" 'o}, (44) 

,=0 (2/3 -1) .. 
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when II + 12 -/3=2k is even, and by 

[AV ,} BV,}] V) =D [«(11 -/2 + 13 - 1)/2)!«(12 -II + 13 -1)/2)!] . _I_ 
X l,I,I, I , r;; 

~ V2 
min[I,-k'-I,I,-k'-IJ (21 -2r-l)II 

X I ( - 1 )'2' 3 .. {€:A Wo(k' + r)BV'}8'" (r)" '8} (45) 
,=0 (2/3 - I)!! 

when II + 12 -/3=2k' + 1 is odd. 
In these expressions, a single dot followed by a parenthe

tical value (k) between two Cartesian tensors indicates a 
tensor contraction of order k. In addition, the colon indi
cates a double contraction of the form 

(46) 

In Eq. (44), terms within the curly bracket are summed over 
permutations of the indices across A,B, and 8, leading to a 
symmetric tensor with 

[ 
13! ] 

(II - k - r)!(l2 - k - r)!2'r! 
(47) 

terms for each r, while for Eq. (45), the symmetrization 
bracket gives 

[ 4! ] (48) 
(II - k' - r- 1)!(l2 - k' - r-l)!2'r! 

terms for each r. The factors C""" and D""" will be deter
mined by specializing the tensors in Eqs. (44) and (45) to 
ones constructed from vectors. The square-bracketed coeffi
cients in Eqs. (44) and (45) are the inverse of the number of 
terms in the first symmetrization bracket of the following 
summation. The (1I1i) factor in Eq. (45) is inserted in 
anticipation of the concurrence of the C and D coefficients. 

For A {I,} = a{I,} and B V,} = aV,\ the right-hand side of 
Eq. (44) must be proportional to aV,}. With these substitu
tions, the summations in Eq. (44) can be performed, giving 

[ aV'}xaV,}]{I,} = C N!J2!!J3!!(J 12)! aV,} (49) 
1,I,l, ll!i

2
!(2/

3 
- 1 )!! ' 

where J=/I + 12 + 13 and J; =J - 21; - 1, and ( - 1 )!!= 1. 
With the spherical harmonic coupling identity 

[VV'}(C)XV[I,J(C)]~,J= ~ I(~ ~ ~)I V~,J(c), 
(50) 

together with Eq. (43), we find 

C _/ [ (2/1)!(2/2)!(2/3)! ]1/2 
1,1,1, - 3 (JI + 1)!(J2 + 1 )!(J3 + 1 )!(J + I)! . 

(51) 

For odd II + 12 + 13 , one can compare relation (45) for 
A V,} = a{I,} and B {I,} = b {I,} with the corresponding spheri-
cal harmonic coupling. Using the Clebsch-Gordan coeffi
cients for m3 = 0, it follows (after some tedious algebra) 
that 

(52) 

The relations (44) and (45) with (51) and (52) consti
tute an explicit solution for the Clebsch-Gordan coefficients 
in an expansion of a product of irreducible tensors in Carte
sian form. 
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to APPLICATIONS TO SPHERICAL HARMONIC 
COUPLINGS 

We now are in a position to reduce any set of spherical 
harmonic couplings to Cartesian form. Repeated applica
tion of the pairwise coupling formula (44) and (45) will 
necessarily lead to a Cartesian expression in the original vec
tors of the problem. For couplings to a scalar, clearly the 
result will be a polynomial in the scalar products of these 
vectors, with order no greater than the smaller of the ranks 
of the two spherical harmonics entering with these vector 
arguments. If the coupling is to a pseudoscalar, a "box" 
product (e.g., aobxc) of three independent vectors must be 
an overall factor. 

The reduction of an arbitrary series of spherical har
monic couplings proceeds as follows: For each spherical har
monic, introduce the rescaling factors shown in Eq. (43). 
For each pair coupling, write the appropriate Cartesian cou
pling as in Eq. (44) or (45). Finally, perform the indicated 
Cartesian tensor contractions, starting with Eq. (39) for 
each spherical harmonic. In this process, the traceless nature 
of these tensors greatly simplifies the reduction, since the 
Kronecker delta's within one such tensor contracted with 
another irreducible tensor will vanish. 

For example,1O the above method can be used to show 

[V[I)(a) xv[I) (b)] ~J 

= (- i) [ 3(21 + 1) ] 1I2p, [iXb] (53a) 
417 /(1+1) I m' 

and 

[V[I-I)(a)XV[I)(b)]~J = (;;) [+r2 

X [Pibm - «(1- 1)P,- 2 

+ a'bPi_2)am] , (53b) 

where P, =P, (aob) is the Legendre function of order 1 and 
P,' is its derivative. Similarly, higher-order couplings of the 
form [V[I,J(a)xy[I,J(b)][LJ for L = 2,3, ... can be ex
pressed in terms of the order-L "stretched" even or odd par
ity couplings of the vectors a and b times Legendre functions 
and their derivatives. They are most easily derived by ex
panding the given form in terms of an independent set of 
stretched couplings with unknown scalar coefficients, then 
contracting with each tensor of the set to form scalar rela
tions for the coefficients. 

In matrix element calculations, spherical harmonic cou
plings to total angular momentum of zero arise. In these 
cases, we have found it convenient to introduce a set of rules 
for generating the final scalar expression given the initial 
coupling. These rules result from the Cartesian recoupling 
formalism of the last section and are taken in a form which 
allows for an easy verification of each step. 
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The rules are as follows: 
Step ( 1 a) : For each interior pair coupling of even parity, 

introduce the Cartesian tensor factor 

Q 
(A B) == [/1!l2!(2/3 - 1)!!«JI + 1)/2)!«J2 + 1)/2)!] 

1,/,1, ' 13!JI!!J2
!!J3!!(J 12)! 

min[/, - k,/, - k] (21 _ 2r - 1)" 
X L ( - 1),2' 3 •• 

,=0 (2/3 - I)!! 
X{AV,L(k+r)BV'}8"'(r)"'8} (54) 

coming from the coupling in Eq. ( 44 ). As before, 
I 

J==/I + 12 + 13, J; ==J - 2/; - 1, 2k==/1 + 12 + 13, 
( - 1 )!!== 1, and the bracketed terms contain an implicit 
symmetrization sum, with the number of such terms given 
by the expression in (47). This rank-/3 tensor has been nor
malized so that when A {I,} = aV ,} and B {I,} = aV,}, Q re-

duces to aV,}. Thus the Q 's are a natural generalization of the 
Cartesian harmonic tensors. Note also that 

QI,/,I, (a,a)0(/3)b = PI, (iob) 

and thus 

QI,/,I, (a,a)0(/3)i = 1. 

Step ( 1 b): For each interior pair coupling of odd parity, introduce the Cartesian tensor factor 

R (A B) - [ 2/1!/2!(2/3 - 1)!!(J1/2)!(J2/2 )! ] 
1,/,1, ' - (/3 - 1 )!(JI + 1)!!(J2 + 1 )!!(J3 + 1)!!«J + 1 )/2)! 

min[/,-k'-I,I,-k'-I] (21 -2r-l)" 
X L ( - 1 )'2' 3 •• {€:A V'}o(k' + r)B {/'}8' •• (r)" '8} (55) 

,=0 ( 2/3 - 1)!! 
coming from the coupling in Eq. (45) (J == II + 12 + 13, J; ==J - 2/; - 1, and 2k' + 1 == II + 12 + 13), As before, the bracketed 
term contains an implicit symmetrization sum, with the number of such terms given in ( 48). This tensor has been normalized 
so that, for A V,} = aV,\ B V,} = b V,} and as the vector b approaches i, we have 

. IR/I,I (a,b )0(/3 - 1 )al 
hm ' - , = 1. (56) 
b_a laXbl 

Step (2a): For even parity couplings, introduce a factor 

_ 1112 1 (II 12 13) 1 
ql,I,I, =.j41i 0 0 0 

or 

1112 [ J1!!J2!!J3!!(J 12)! ]112 
ql,I,I, = .j41i «JI + 1)/2)!«J2 + 1)/2)!«J3 + 1)/2)!(J + I)!! . (57) 

Our normalization for Q makes this the same factor which 
one would ordinarily use in coupling spherical harmonics 
with identical arguments. 

Step (2b): For odd parity couplings, introduce a factor 

r =1112[/1(/1+1)/2(12+1)]1121(/11 12 13)1 
1,/,1, - .j41i 2/3

, 2/3 _ 1 0 

or 

1112 
rl,/,I, = 2/3.j41i 

X [ (JI + 1)!!(J2 + 1 )!!(J3 + 1 )!!«J + 1 )/2)!] 112. 
(JI/2)! (J2/2)! (J3/2) !J!! 

(58) 

Step (3): For the final L X L coupling to 0, use a factor 

S = L 0 L! 59 
L- 417' (2L-l)!! ( ) 

and fully contract the final pair of Cartesian tensors. The 
factors in Eqs. (12) and (16) have been arranged to exhibit 
these steps. 

As another example, consider the fourfold coupling 
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I A A 

[[y[2] (i) xy[2](b)] [2] X [y[l] (c) Xy[3] (d)] [2]][0]. (60) 

Performing each step from right to left on the above cou
pling, we have 

J5 o~o ~ 30

3 ~ 20

5 Q222(a,b):Q132(c,d), (61) 
417' 3 50 417' 70 417' 

where 

Q 222(a,b) = ~{aob(ab + ba - (j)aob 8) 

- j(aa - (V8) - j(bb - q)8)} (62) 

and 

Q 132 (c,d) = ~{eod(dd - q)8) 

+ !(ed + de - (j)eod 8)}. (63) 

The last contraction to a scalar is simplified by noting that all 
contractions of the Kronecker deltas in Q 222 (a,b) with 
Q 132 (c,d) must vanish. The surviving terms for 
Q222(a,b):Q 132 (c,d) are 
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H - 5(a'd)2(c'd) + l5(a·b)(c·d)(a·d)(b·d) 

- 5(b'd)2(C'd) - 3(a'b)2(c'd) + 2(c·d) 

+ 2(a'c) (a·d) - 3(a·b) (a'c) (b'd) 

- 3(a·b) (a·d) (b·c) + 2(b·c) (b·d)}. (64) 

Inserting in Eq. (61) gives the final answer for the fourfold 
coupling shown in the Appendix as Eq. (A9). 

Evidently the above procedure will work for spherical 
harmonics of arbitrarily high rank and argument, coupled to 
each other any number of times. The algorithm is susceptible 
to algebraic coding within a reasonably sophisticated alge
braic manipulation program. 

In the Appendix of this paper, we give results for a selec
tion of spherical harmonic couplings as a reference and as a 
check of the implementation of our method. 

VI. CONCLUSIONS 

Although a large body of work covers angular coupling 
ofirreducible tensors, explicit results for the coupling of Car
tesian tensors of arbitrary rank have not been available. For 
many physical applications, using Cartesian coupling has 
some distinct advantages over the corresponding spherical 
case. We have shown that the Cartesian coupling of spheri
cal harmonics can be performed in a straightforward man-

I 

ner, following a well defined procedure. The results are rela
tively simple and easy to interpret. Specifically, a simple 
algorithm permits one to write down directly a scalar expres
sion for the coupling to zero of any number of spherical har
monics in terms of the unit vectors involved. 

Note added in proof: After this manuscript was submit
ted, R. F. Snider brought to our attention earlier work on 
irreducible Cartesian tensors that the reader may find use
ful. 11 
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APPENDIX 

In this appendix, we give examples of the reduction de
scribed in the paper for some commonly found spherical 
harmonic couplings to a scalar. The results serve to show the 
simplicity of the expressions, to exhibit their usefulness for 
physical interpretations in terms of the initial vector direc
tions contained in the spherical harmonics, and to act as 
reference. [Note: All vectors on the right-hand side of the 
equations below are unit vectors.] 

[y[2J(a) x [y[IJdi) Xy[3 J(C)] [2 J][OJ = _3_{5(a'c)2(b.c) - 2(a·b) (a'c) - (b·c)}. 
l6~/2 

(Al) 

[[y[2J (a) xy[2J (b)] [2J xy[2J (c)][OJ = 5 {9(a'b)(a'c)(b'c) - 3(a.b)2 - 3(a'c)2 - 3(b'c)2 + 2}. 
8~~/2 

[y[IJ(a) x [y[IJ(b) xy[2 J(C)] [IJ][OJ = ,j3 {3(a'c)(b'c) - (a'b)}. 
8{2~/2 

[[y[lJ (a) xy[lJ (b)] [2J X [y[IJ (c) xy[lJ (d)] [2 J][OJ = _3_{3(a'c)(b.d) + 3 (b·c)(a·d) - 2(a·b )(c·d)}. 
32..)5ffl 

(A2) 

(A3) 

(A4) 

[[y[IJ(a)xy[IJ(b)] [2JX[y[IJ(C)Xy[3J(d)]l2~[OJ = 3Jf5 {5(a'c)(b'c)(c.d) - (a·c)(b·d) - (b·c)(a·d) - (c'd)(a.b)} 
80.J2ffl 

[[y[IJ (a) xy[3J (b)] [2J x [y[IJ (c) xy[3 J (d)] [2~[OJ 

= 3..)5 {_ lO(c.d)(a.d)(b'd) + 25(c'd)(b.d)2(a'b) 
l60ffl 

(A5) 

- 3 (c·d)(a·b) + 2(a·c)(b·d) + 2(b·c)(a·d) - lO(b·c)(b·d)(a·b)}. (A6) 

[[y[2J (a) Xy[ 2J Cb)] [lJ x [y[IJ (c) xy[1] (d)] [lJ][OJ = 3Jf5 (a'b)(a'c){(b'd) - (b·c)(a·d)}. (A7) 
32ffl 

[[y[2J(a)y[2J(b)] [2JX [y[IJ(C) Xy[IJ(d)] [2 J]l0J = Jf5 {- 6(c.d)(a'b)2 + 4(c'd) - 6(a'c)(a'd) 
32,ftffl 

+ 9 (a·c)(b·d)(a·b) + 9(b·c)(a·d)(a·b) - 6(b·c)(b·d)}. (A8) 

[[y[2J (a) xy[2J (I»] [2J X [y[IJ (c) xy[3J (d)] [2J][OJ 

3..)5 {_ 5(c.d)(a'd)2 + l5(c'd)(a.d)(b.d)(a.b) - 5(c'd)(b'd)2 - 3 (c·d)(a·b)2 
l~ffl 

+ 2(c·d) + 2(a'c) (a·d) - 3(a'c) (b'd) (a·b) - 3(b·c) (a·d) (a·b) + 2(b·c) (b·d)}. (A9) 
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[[ [V121 (a) XV l21 (b)] III XVI21 (c)] III x [V121 (d) XVI21 (e)] 1II]lDI 

15./3 (aob)( doe){3(aoc)(bod)( coe) - 3 (aoc)(boe)( cod) - 3 (aod)(boc)( coe) 
64,j2-rr12 

+ 2(aod)(boe) + 3(aoe)(boc)(cod) - 2(aoe)(bod)}. 

[[ [VI21(a) XVI21(b)] II]XVI21(C)] 121X [VI21(d) XVI21(e)] 121] 101 

15.JI5 (aob){ - 2(aoc)(bod)(cod) + 3 (aoc)(bod)(coe)(doe) + 3 (aoc)(boe)(cod)(doe) 
64v14-rr12 

(AlO) 

- 2(aoc)(boe)(coe) + 2(aod)(boc)(cod) - 3 (aod)(boc)(coe)(doe) - 3 (aoe)(boc)(cod)(doe) + 2(aoe)(boc)(coe)}. 
(All) 

[[ [v121 (a) XVI21 (b)] 121 XvI21 (c)] II] X [V121 (d) XVI21 (e)] III] 101 

_1_5.JI5=---l_5 -(doe){3(aob)(aoc)(bod)(coe) _ 3 (aob)(aoc)(boe)(cod) + 3 (aob)(aod)(boc)(coe) 
64v14-rr12 

- 3 (aob)(aoe)(boc)(cod) - 2 (aoc)(aod)(coe) + 2(aoc)(aoe)(cod) - 2(boc)(bod)(coe) + 2 (boc)(boe)(cod)}. 
(A12) 

[ [ [V121 (a) XVI21 (b) ] 121 XVI21 (c) ] 121 X [V121 (d) XVI21 (e) ] 121] 101 

25 {36(aob)2(cod)2 _ lO8(aob)2(cod) (coe) (doe) + 36(aob)2(coe)2 + 72(aob)2(doe)2 
448~-rr/2 

- 48(aobf - lO8(aob) (aoc) (boc) (doe)2 + 72(aob) (aoc) (boc) - 54(aob) (aoc) (bod) (cod) 

+ 81 (aob )(aoc)(bod)( coe)(doe) + 81 (aob )(aoc)(boe)( cod)(doe) - 54(aob )(aoc)(boe)( coe) 

- 54(aob)(aod)(boc)(cod) + 81 (aob)(aod)(boc) (coe)(doe) + 36(aob)(aod)(bod) 

- 54(aob)(aod)(boe)(doe) + 81 (aob) (aoe)(boc)(cod)(doe) - 54(aob)(aoe)(boc)(coe) 

- 54(aob)(aoe)(bod)(doe) + 36(aob)(aoe)(boe) + 36(aoc)2(doe)2 - 24(aoc)2 

+ 36(aoc) (aod) (cod) - 54(aoc) (aod) (coe) (doe) - 54(aoc) (aoe) (cod) (doe) + 36(aoc) (aoe) (coe) 

- 12(aod)2 + 36(aod) (aoe) (doe) - 12(aoe)2 + 36(boc)2(doe)2 - 24(boc)2 + 36(boc) (bod) (cod) 

- 54(boc)(bod)(coe)(doe) - 54(boc)(boe)(cod)(doe) + 36(boc)(boe)(coe) - 12(bod)2 

+ 36(bod)(boe)(doe) - 12(boe)2 - 24(cod)2 + 72(cod)(coe)(doe) - 24(coe)2 - 48(doe)2 + 32}. (A13) 

[[ [VI21(a) XVI21(b)] IIIXVI21(C)] III X [VIII(d) xVII](e)] 111] 101 

3.JI5 (aob){3 (aoc)(bod)( coe) - 3 (aoc)(boe)( cod) - 3 (aod)(boc)( coe) 
64{2-rr/2 

+ 2(aod)(boe) + 3 (aoe)(boc)(cod) - 2(aoe)(bod)}. (A14) 

[[ [v121 (a) XVI21 (b)] [II XV[21 (c)] [21 X [ViII (d) XViI] (e)] [21] [01 

9$ (aob){(aoc)(bod)(coe) + (aoc)(boe)(cod) - (aod)(boc)(coe) - (aoe)(boc)(cod)}. (A15) 
64{2-rr /2 

[[ [V[21 (a) XV[21 (b)] [21 XvI21 (c)] 111 X [ViII (d) XVII] (e)] 111] 101 

15./3 {3 (aob )(aoc)(bod)(coe) - 3 (aob )(aoc)(boe)( cod) + 3 (aob)(aod)(boc)(coe) - 3(aob )(aoe)(boc)( cod) 
64~-rr12 

- 2(aoc)(aod)(coe) + 2(aoc)(aoe)(cod) - 2(boc)(bod)(coe) + 2(boc)(boe)(cod)}. (A16) 

[ [ [V[21 (a) XV[21 (b) ] 121 XV[21 (c) ] 121 X [V[ I] (d) XViII (e)] [21] 101 

5./3 {_ 36(aob)2(cod)(coe) + 24(aob)2(doe) - 36(aob)(aoc)(boc)(doe) 
448~-rr12 

+ 27 (aob) (aoc) (bod) (coe) + 27 (aob) (aoc) (boe) (cod) + 27 (aob) (aod) (boc) (coe) 

- 18(aob)(aod)(boe) + 27 (aob)(aoe)(boc)(cod) - 18(aob)(aoe)(bod) + 12(aoc)2(doe) 

- 18 (aoc)(aod) (coe) - 18 (aoc)(aoe)(cod) + 12(aod)(aoe) + 12 (boc)2(doe) - 18 (boc)(bod)(coe) 

- 18(boc)(boe)(cod) + 12(bod)(boe) + 24(cod)(coe) - 16(doe)}. (A17) 
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[[ [y[21 (a) xy[21 (b)] [II xy[21 (e)] [21 x [y[t)(d) xy[31 (e)] [21] [01 

= 3.jT5 (a'b){ _ (a'c)(b'd)(c'e) - (a·c)(b'e)(c·d) + 5 (a'c)(b'e)(c'e)(d'e) 
64ffi /2 

+ (a·d)(b·c)(c·e) + (a'e)(b'c)(c'd) - 5 (a·e)(b·c)(c·e)(d·e)}. 

[ [ [y[21 (a) xy[21 (b) ] [21 xy[21 (e) ]l21 x [y[t) (d) xy[31 (e) ]l21] [01 

15 
448ffi

/2 
{12(a'b)2(c'd) (c'e) - 30(a'b)2(c'e)2(d'e) + 12(a'b)2(d'e) 

(AI8) 

- 18(a·b) (a'c) (b·c) (d'e) - 9(a·b) (a'c) (b'd) (c'e) - 9(a·b) (a'c) (b'e) (c·d) + 45(a·b) (a'c) (b'e) (c'e) (d'e) 

- 9(a·b) (a·d) (b·c) (c'e) + 6(a·b) (a'd) (b'e) - 9(a·b) (a'e) (b·c) (c·d) + 45(a·b) (a'e) (b·c) (c'e) (d'e) 

+ 6(a·b)(a·e)(b·d) - 30(a·b)(a·e)(b·e)(d·e) + 6(a'c)2(d'e) + 6(a·c)(a·d)(c·e) + 6(a·c)(a·e)(c·d) 

- 30(a'c) (a'e) (c'e) (d'e) - 4(a·d) (a'e) + 1O(a'e)2( d'e) + 6(b'c)2(d'e) + 6(b'c) (b'd) (c'e) 

+ 6(b'c) (b'e) (c·d) - 30(b'c) (b'e) (c'e) (d'e) - 4(b'd) (b'e) + 1O(b'e)2( d'e) 

- 8(c·d)(c·e) + 20(c'e)2(d'e) - 8(d·e)}. 

[[ [y[ll(a) Xy[t)(b)] [llxy[21(e)] [IIX [y[ll(d) Xy[ll(e)] [II] [01 

3,)3 {3(a'c)(b.d)(c'e) - 3 (a·c)(b·e)(c·d) - 3 (a·d)(b·c)(c·e) 
64J2ffi/2 

+ 2(a·d)(b·e) + 3(a·e)(b·c)(c·d) - 2(a·e)(b·d)}. 

[[ [y[ll(a) xy[ll(b)] [21 xy[21(e)] [21X [y[ll(d) Xy[ll(e)] [21] [01 

3 { _ 12(a.b)(c.d)(c'e) + 8(a.b)(d'e) - 12(a'c)(b'c)(d'e) + 9(a'c)(b.d)(c'e) 
64JI4ffi/2 

+ 9(a·c)(b·e)(c·d) + 9 (a·d)(b·c)(c·e) - 6(a·d)(b·e) + 9(a·e)(b·c)(c·d) - 6(a·e)(b·d)}. 

[[ [y[ll(a) Xy[ll(b)] [llxy[21(e)] [21X [y[ll(d) Xy[31(e)] [21] [01 

= 3,)3 {_ (a'c)(b.d)(c'e) - (a'c)(b'e)(c'd) + 5 (a'c)(b'e)(c'e)(d'e) 
64ffi/2 

+ (a·d)(b·c)(c·e) + (a·e)(b·c)(c·d) - 5(a·e)(b·c)(c·e)(d·e)}. 

[ [[y[11 (a) xy[ II (b)] [21 xy[21 (e)] [21 X [y[11 (d) xy[31 (e)] [21] [01 

3,)3 {4(a'b) (c.d) (c'e) - lO(a·b) (c'e)2(d'e) + 4(a·b) (d'e) - 6(a'c) (b·c) (d'e) 
64/iffi /2 

- 3(a'c)(b'd)(c'e) - 3(a-c)(b·e)(c·d) + 15(a'c)(b'e)(c'e)(d'e) - 3(a·d)(b·c)(c·e) + 2(a·d)(b·e) 

- 3 (a·e)(b·c)(c·d) + 15 (a'e)(b'c)(c'e)(d'e) + 2(a·e)(b·d) - lO(a·e)(b·e)(d·e)}. 

[[ [y[11 (a) xy[31 (b) ]l21 xy[21 (e)] [II X [y[t) (d) xy[1) (e)] [II] [01 

= 3,)3 {5(a.b)(b'c)(b.d)(c'e) - 5 (a·b)(b·c)(b·e)(c·d) - (a'c)(b.d)(c'e) 
64ffi /2 

+ (a'c)(b'e)(c'd) - (a·d)(b·c)(c·e) + (a'e) (b·c)(c·d)}. 

[ [ [y[ll (a) xy[31 (b) ]l21 xy[21 (e) ] [21 X [Y[ II (d) xy[ I) (e) ]l21 ]l0l 

3,)3 {_ 1O(a.b)(b'c)2(d'e) + 15(a.b)(b'c)(b.d)(c'e) + 15(a'b)(b'c)(b'e)(c'd) 
64/iffi /2 

- lO(a·b)(b·d)(b·e) - 6(a·b)(c·d)(c·e) + 4(a'b)(d'e) + 4(a'c)(b'c)(d'e) - 3 (a·c)(b·d)(c·e) 

- 3 (a·c)(b·e)(c·d) - 3 (a·d)(b·c)(c·e) + 2(a·d)(b·e) - 3(a·e)(b·c)(c·d) + 2(a·e)(b·d)}. 

[[ [y[ll(a) Xy[31(b) ]l2 I x y[21(e)] [21X [y[ll(d) Xy[31(e)] [21] [01 
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3 {_ 15(a.b)(b'c)2(d'e) _ 15(a.b)(b'c)(b.d)(c'e) - 15(a'b)(b'c)(b'e)(c.d) 
32Jf4ffi/2 

+ 75 (a·b )(b'c)(b'e)(c'e)( d'e) + 10 (a'b )(b·d)(b·e) - 25 (a·b )(b·e)2( d'e) + 6(a·b) (c·d)( c'e) 

- 15(a·b)(c·e)2(d·e) + 6(a·b)(d·e) + 6(a'c)(b'c)(d'e) + 3 (a'c)(b'd)(c'e) + 3 (a·c)(b·e)(c·d) 
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- 15(a'c)(b'e)(c'e)(d'e) + 3 (a·d)(b·c)(c·e) - 2(a·d)(b·e) + 3 (a·e)(b·c)(c·d) 

- 15(a'e)(b'c)(c'e)(d'e) - 2(a·e)(b·d) + lO(a·e)(b·e)(d·e)}. (A26) 

'R. Balian and E. Brezin, Nuovo Cimento B 61, 403 (1969). 
2W. Kohn and N. Rostoker, Phys. Rev. 94, IIII (1954); seealsoM. Danos 
and L. C. Maximon, J. Math. Phys. 6, 766 (1965) for further references 
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for angular-momentum values up to I = 5, and used by DRL and his colla
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Lehman and M. Rajan, Phys. Rev. C 25,2743 ( 1982); B. F. Gibson and D. 
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our work on the 6Li quadrupole form factor with A. Eskandarian [A. Es
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Canonical formalism for path-dependent Lagrangians. Coupling 
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A canon~cal formalism obtained for path-dependent Lagrangians is applied to Fokker-type 
Lagrangtans. The results are specialized for coupling constant expansions and later on are 
applied to relativistic systems of particles interacting through symmetric scalar and vector 
mesodynamics and electrodynamics. 

I. INTRODUCTION 

Hamiltonian formalism is a desirable feature to demand 
for a classical system. Indeed, it enables us to define the ener
gy-momentum four-vector and the total angular momentum 
tensor as generating functions for Poincare (resp. Galilei) 
infinitesimal transformations. Furthermore, it permits us to 
construct a statistical mechanics and a quantum mechanics 
according to some standard well defined rules. 

On the other hand, relativistic dynamics for directly in
teracting particles, i.e., without an intermediate field, has 
been developed following a wide variety of approaches. I In 
most of them a canonical formalism has been obtained, ei
ther because one a priori starts from a Hamiltonian system,2 

or because an invariant symplectic form is obtained.3 

However, there is an approach to relativistic action-at
a-distance, that based on path-dependent Lagrangian sys
tems,4-6 which has long refused a Hamiltonian formulation. 7 

This is especially striking since the starting point is a Lagran
gian system and a variational principle, although of a very 
particular kind. 

Path-dependent Lagrangians were first used by 
Fokker,4 who proposed an action principle for symmetric 
electrodynamics-half-retarded plus half-advanced~f 

two charges without an intermediate field. This is the reason 
why Lagrangians of this kind are also called "Fokker-type 
Lagrangians. " 

The symmetric electrodynamics of Feynman and 
Wheeler's is a generalization of that of Fokker to the case of 
more than two charges. 

Several other relativistic theories of noninstantaneous 
action-at-a-distance between particles have been set in terms 
of Fokker-type Lagrangians.6 This is usually the case of 
those interactions that are somehow related to a classical 
field. 

Path-dependent Lagrangians exhibit a functional de
pendence on the trajectories as a whole. That makes these 
systems more complex than standard ones; but, since they 
permit us to consider interaction terms depending on nonin
stantaneous configurations of particles, these Lagrangians 
are especially useful for describing relativistic systems of di
rectly interacting particles. The basic claim of these theories 

a) Permanent address: Instituto de Fisica. Universidad Nacional Autonoma 
de Mexico Apdo. Postal 20-364, Mexico, 01000. D.F., Mexico. 

is that the field is nothing but a useful tool to describe forces 
between particles. The concept offield, introduced by Fara
day and Maxwell as an intermediate tool to describe the ac
tion of some given "source" and a "test charge," must be 
acknowledged as one of the most fruitful in theoretical phys
ics. However, the self-interaction divergences in classical 
field theory occur as a result of allowing the field to act on its 
own source. In order to avoid this "improperty," some au
~hors5 introduce what they call the "adjunct field." Namely, 
10 Wheeler-Feynman symmetric electrodynamics, each 
charge is acted on by the "adjunct field" of the others, that is, 
half the sum of the advanced and retarded solutions of the 
Maxwell equations for the other charges. This leads to a 
Fokker-type Lagrangian, which only depends on particle 
variables. 
. The most important drawback of Fokker-type systems 
IS that the Euler equations, derived from the Fokker action 
principle, are of functional-differential type (difference-dif
ferential equations in the simplest cases). Therefore, the evo
lution space (space of initial data) is non-Newtonian; that is, 
the positions and velocities in a given instant of "time" do 
not determine uniquely the future evolution of the system. 
Furthermore, the evolution space is not even well deter
mined. 7 As a consequence, it has not been possible to genera
lize an algorithm as a Legendre transformation to Fokker
type Lagrangians, nor has an equivalent Hamiltonian 
formalism been set up yet. We can overcome this problem9 

by changing the point of view that is usual in classical me
chanics. Since the Euler equations derived from a path-de
pendent Lagrangian are of functional-differential type, the 
initial data space for a Fokker Lagrangian has infinitely 
many dimensions. In our approach, a whole trajectory of the 
system is taken as the "initial datum." In doing this, the 
Euler equations do not rule the evolution anymore (all infor
mation about it is already contained in the initial datum), 
and they are merely considered as constraints on the initial 
data. 

This approach somehow corresponds to a static point of 
view. The situation is similar to what happens in dealing 
with a static standard Lagrangian L(q,t) (i.e., one depend
ing on coordinates only): the initial data (qoa )a= I •...• m can, 
in principle, be picked out from an m-dimensional contin
uum, but the physically significant ones are only those satis
fying 
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(aL) = ° 
aqa qO).· .• qOm • 

Similarly, in our approach to path-dependent Lagran
gian systems, one can, in principle, take any m-tuple of 
curves [ql (tl ), ... ,qrn (trn )] as initial data, but these will be 
physically significant only if we have been lucky enough to 
have chosen a set of curves fulfilling the Euler functional
differential equations, now considered as constraints. 

As has been mentioned elsewhere, those functional dif
ferential equations admit "too many solutions": contrary to 
what we are used to in Newtonian mechanics, the knowledge 
of all positions and velocities at a given time does not deter
mine the future evolution of the system. This is a feature of 
Newtonian physics that seems worthy to preserve, as many 
authors 10. 1 1 have considered. Hence several criteria have 
been put forward in order to get rid of the "physically irrele
vant" solutions. Among these criteria, it is worth mention
ing that (a) when coupling constants go to zero, motions 
must become free (namely, uniform and rectilinear)12-14; 
(b) in the limit l/c2 --+0, the solutions must yield the Newto
nian onesll.15.16; and (c) if one mass is much bigger than 
than the others, then the external field approximation must 
be recovered. 17.18 

Any of these three criteria is implemented by requiring 
the physically relevant solutions to be analytical in the corre
sponding parameter, namely, the coupling constants, the in
verse speed of light, or the mass ratio, respectively. Any of 
them selects a family of solutions of the functional-differen
tial equations parametrized by either 6N (noncovariant for
malism) or 8N (covariant formalism) parameters. It then 
happens (apparently as a consequence of the special struc
ture of the Fokker-type Lagrangian) that these solutions 
also satisfy a second-order differential system t~at can be 
obtained by techniques l9 provided by predictive relativistic 
mechanics. This differential system is called a second-order 
reduction l9a of the functional-differential system. 

So that, in the covariant formalism given in Ref. 9, we 
consider the map 

rp: TMf --+ E, 

where rp ~ is the predictive solution of the functional-differ
entia! system determined by one of the above-mentioned cri
teria and the initial datum (xb,xc )' 

Then, using a kind of Ostrogradski transformation, we 
set up a Hamiltonian formalism for path-dependent Lagran
gians (Sec. II). Once this has been done for Fokker-type 
Lagrangian systems, as a particular case of path-dependent 
Lagrangians, it can be specialized to any reduction of order 
of the Fokker system. 

The paper is organized as follows: in Sec. II we give the 
canonical formalism for Fokker-type systems. In Sec. III, we 
derive a presymplectic form on the infinite-dimensional evo
lution space E of a Fokker-type system of relativistic parti
cles with two-body interactions. Then (Sec. IV) this pre
symplectic form is specialized to the Newton-like evolution 
space TMf, which results from implementing the condition 
of analytical dependence on the coupling constant. In the 
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latter, we briefly describe perturbation theory and introduce 
the three-dimensional formalism. 

The results obtained are then applied to scalar and vec
tor interactions, up to the first order of approximation in the 
product gagb of the coupling constants. Special attention is 
paid to Wheeler-Feynman electrodynamics, for which ex
pansions on l/c2 are carried out and conserved quantities are 
also calculated. 

II. HAMILTONIAN FORMALISM FOR FOKKER 
LAGRANGIANS 

Let us consider a Fokker Lagrangian 
N 

L = - L maC - x~ (t)1/2 
a=1 

- a.~ 1 gagb L ds lU~b (t,t + S), 

a#b 

where 

(2.1 ) 

lU~b (ta ,tb ) = Gab «xa (ta) - Xb (tb nz )Fab (xa (ta ) ,xb (tb » 
(2.2) 

and 

Fab (xa,xb ) = ( - xaxb )'( - x~) (I - r)/2( _ x~) (I - r)12, 

(2.3 ) 

a2 = a,..aJ.l, for any four-vector a,.., and rEf{ depends on the 
specific interaction we are considering. 

Notice that L is a homogeneous function of first degree 
of velocities. Therefore, the corresponding action integral is 
reparametrization invariant. We also notice that 

(2.4) 

This Fokker Lagrangian can be put in the form 

L t = r dsl, ... ,dsm 2'(qa (t + Sa ),i/b (t + Sb ),scl, JRm 

a,h,c = 1, ... ,m, (2.5) 

by merely taking 

2' = 2'0+ 2'1 (2.5a) 

with 
N N 

2'0 = L maC - x~ (t + Sa »1/2 II ~(Sd)' 
a=1 d=1 

(2.5b) 
N N 

2'1 = 2 a.~ 1 gagblU~b (t + Sa,t + Sb) JI ~(Sd)' 
a#b 

(2.5c) 

In Ref. 9 we showed how a canonical formalism can be ob
tained for this kind of Lagrangian (2.5). 

The procedure can be briefly described as follows. We 
start from the action S = f L, dt and the variational princi
ple ~S = 0, where the variations ~qa (Sa) are taken so that 
they have compact support, gives rise to the equations of 
functional type 

L ds (ia (1' - S,S) - :1' ga (1' - S,S) ] = 0, (2.6) 
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where 

(2.7a) 

and 

(2.7b) 

However, because ofthe functional-differential charac
ter of the equations of motion, it is necessary to clarify their 
meaning. In principle, the initial data that should be given to 
specify a unique solution are the whole functions qa (A) 
themselves. As a consequence, these equations [ (2.6) ] must 
be regarded as constraints defining the evolution space E 
(also called initial data space), rather than as laws of mo
tion. 

We then consider the Hamiltonian 

H= a~IL dAPa(A)qa(A) -LO[qb(Sb)] (2.8) 

defined on a phase space r labeled by 

qb(Sb),Pa(Sa), a,b=l, ... ,m, Sa,SbER, 
with elementary Poisson brackets 

{qa (S)>Pb (S')} = t>abt>(S - S '), 

{qa (S),qb (S')} = {Po (S),Ph (S')} = o. 
We then introduce the primary constraints 

Po (A) = go (O,A.) + L ds [fa (A - S,S) 

- a}.go (A - S,S) ]0(,1. - S,S), 
with 

0(u,v) = Y(v) Y(u) - Y( - v) Y(u) 

= HE(V) - du», 

(2.9) 

(2.10) 

(2.11 ) 

(2.12) 

where Y(v) denotes the Heaviside function and E(V) is the 
"sign function." In Ref. 9, it was found that the secondary 
constraints that follow from (2.11) and the Hamiltonian 
(2.8) are the functional equations (2.6). Therefore, theevo
lution space E can be immersed into the phase space r by 
defining 

t/!: E--+ r, 
z = qo (Aa) --+t/!(z) = (qo (,1.0 ),Pb (Ab », (2.13 ) 

where each curve Ph (A b ) is given as a function of 
z = (qo (,1.0» by Eq. (2.11). This mapping is invariant under 
"time" t evolution. Then, the symplectic form defined on r 
by the Poisson brackets (2.10) can be pulled back onto E. In 
this way, an equivalence between the Lagrangian formalism 
(2.6) and (2.7) and the Hamiltonian one (1.5)-( 1.9) is es
tablished. 

III. PRESYMPLECTIC FORM ON E 

If we apply the above results to Fokker Lagrangians we 
obtain 
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and 

As a consequence, the Euler equations take the form 

~ (max"l' (,1.)( - x! (,1.»-1/2) 
dA 

with the Lagrange operators Jj 01" defined by 

Jj = a d a 
01" ax~ (A) dA ax~ (A) 

The primary constraints (2.11) can be written as 

POI" (A) = t>(A)'lTol" + 1]01" (A), 

where 

'lTal" = maC - x! (0»-1/2xal" (0) 

~ 1 d atu~b (1],0) 
- ~ gagb 1] a'I"(O) 

b- 1 R Xa 
b#a 

and 

1 N 

1]al" (A) = - 2" b~l gagb 

b#a 

(3.3 ) 

(3.4 ) 

(3.5) 

(3.6a) 

x fa d1]Jj al" {tu~b (A - 1],,1.) }0(A - 1],A.). 

(3.6b) 

Notice that the term 'lTal" looks like the expression ob
tained for mechanical momenta in an analogous field de
scription of the system. 

The phase space T*E was endowed with a Liouville 
form EEA 1 ( T * E), and the corresponding symplectic struc
ture9 

n = - dE. (3.7) 

The pullback map t/!* takes EEA 1 
( T * E) onto 

t/!*EEAi(E); thus yielding 

t/!*E= atll dA~(A,[xa(A)])axal"(A). (3.8) 

Here the symbol A denotes the exterior differential in the 
infinite-dimensional manifold E, and it is used in order to 
avoid confusion with the symbol dA under the integral sign. 
Substituting Eq. (2.5) into (2.8) we directly obtain 
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N 

",*'E. = L tr:,t:.xal' (0) 
0=1 

(3.9) 

Notice the simplicity of the first term compared with the 
second one, which involves an integral over the region of R2 
having ®(A. - 7]).) as its characteristic function. 

The expressions for the generating functions of the 
Poincare group can be directly obtained, too, as we already 
discussed in Ref. 9. Thus the total linear momentum is given 
by the generating functions of space-time translations: 

(3.1Oa) 

While the generating functions for Lorentz transformations 
yield the total angular momentum9 

Jl'v = atl i dA.{xa!' (A.)Pav(A.) - xav(A.)Pa!' (A.)} 

N 

= L {Xa!'(O)1Tav -Xav (O)1Ta!'} 
a=1 

+ atl i dA.{xa!' (A.)7]av(A.) - x av (A.)7]a!' (A.)}. 

(3.1Ob) 

These results are in agreement with earlier calculations 
obtained, either by a generalization of the N oether theorem 7 

or by the method of Dettman and Schild,20 provided that 

lim tu~b (A.,7]) = O. 
A-oo 

IV. THE PRESYMPLECTIC STRUCTURE ON TM:' 

Let us consider a set of solutions of Eqs. (3.3), 

(3.11) 

x~(A.) = <p~(A.,Xb'Xc)' (4.1) 

parametrized with the Newton-like initial data xi: (0) = xi:, 
~(O) =~. 

When we introduce them in Eq. (3.9) we obtain 

p = j*'E. 

N 

= L 1Ta!, (xb,xc )t:.x~ 
0=1 

+ atl i dA. 7]a!' (A.,Xb,Xc )t:.<p ~ (A.,Xb,xc ), (4.2) 

wherej* = <p *0",*.9 Moreover, 1Ta!, (xb,xc ) and 7]al' (xb,xc ) 
correspond to 1Tal' and 7]al' evaluated by introducing (4.1) 
into (3.5), and use has been made of the fact that 

j*(~ (A.» = t:.<p ~ (A.,Xb ,xc) 

and 

(4.3) 
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In this way, we obtain a formal expression for the Liouville 
form on TM:. An analogous treatment can be given to the 
total linear and angular momenta. Now, actual calculations 
require explicit expressions for the trajectories <p ~, 
a = 1, ... ,N. As we have already mentioned in the Introduc
tion, these can be dealt with through perturbative tech
niques, which can be found in the literature. 19 These tech
niques use the analytical dependence on the physical 
parameters that we have assumed for the solutions <p ~. 
Then, the corresponding MacLaurin series on these param
eters are worked out and a perturbative expansion is ob
tained. In the present paper, we mainly work with coupling 
constant expansions. Let us briefly describe the associated 
perturbation theory. 

Consider the expansion of xa!' in powers of the coupling 
constants ga: 

(4.4) 

When (4.4) is substituted into the equations of motion 
(3.3), a hierarchy of second-order differential systems is ob
tained, such that each step determines the right-hand side of 
the next one. The condition that in the limit ga --+0 we have 
free motion is then introduced by taking 

<p~~)(A.;Xb'Xc) =xal' +A.Xa!, (4.5) 

and the coefficients in the series (4.4) are uniquely deter
mined by the Newton-like set of initial data (xb,xc ) atA. = O. 

A similar treatment could be used for the problem if the 
criteria (b) or (c) discussed in Sec. I were chosen, namely, 
1/e2 (see Refs. 11, 15, and 16) and m/M (see Refs. 17 and 
18) expansions, respectively. 

Introducing these kinds of expansions in (4.2) we ob
tain a perturbative expansion for p. Furthermore, since the 
lowe~t-order term in the expansion for the Lagrange opera
tor .2" al' is given by 

2'(0) _ a a (a A. a ) (4.6) 
a!, - axal' - aA. axa!, - axa!, ' 

the order of computing integrals and derivatives in Eq. 
(2.13) can be reversed. 

We also have that 

t:.<p~~)(A.;Xb'Xc) =dxa!' +A.dxal" (4.7) 

And, after some rearrangements, it is found that, to the order 
n=2, 

N 

p= L (R~!)dx~+Q~!)d~)+O(g4), (4.8) 
a=1 

where the term O(gn) includes all terms occurring multi
plied by at least n "charges" gb' Moreover, 

R (2) = 1T(2) (x x) 
QI' all' 

(4.9a) 
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+ a~~ [(N~a - Mba )FbaCXb,Xa)] ] , 

Fba (Xb,Xa) is given by (2.3), and 

(4.9b) 

N~a = f dAd1JAsE>(A-1J.A)Gb~)(A-1J,A), 
JR' 

(4.lOa) 

M~a = f dAd1Ja.dAsE>(A-1J,A)Gb~)(A-1J,A)], 
Jft' 

(4.lOb) 

where, according to (4.5), 

G b~)(Ab,Aa) = Gba (xb - xa + XbAb - xaAa)· 

Similarly, to this order of approximation, the total linear 
momentum is given by 

N 

Pp. = L R ~!) + O(g4), 
a=1 

while the total angular momentum is 
N 

Jp.v = L [R ~!)xav + Q ~!)xav 
a=l 

(4.11 ) 

-R~~)xap. -Q~~)xap.] +O(g4). (4.12) 
Hitherto, we have been working in the covariant formal

ism. The price we have had to pay for this is the singular 
character of the lowest-order term in the Lagrangian. As a 
consequence, the lowest-order contribution to the presym
plectic form on TMi" is not regular. In other words, the 
zeroth-order terms in the momenta (3.6a), 1T~~)(Xb'Xc)' ful
fill the N constraints 

1T(O)P.1T(O) (x X ) = - m2 
a aIL b' ca· 

In order to avoid the problems associated with this singular
ity, we shall go into the noncovariant formalism by fixing the 
time coordinates x~ and the evolution parameter t according 
to 

X~ = t. (4.13 ) 

Given any quantity A in the covariant formalism, we shall 
denote by A its noncovariant counterpart, that is, the quanti
ty resulting from introducing the constraints (4.13) into it.] 

A direct calculation shows that 
N 

p=Hdt- L Padqa' (4.14 ) 
a=1 

where 
N 

H= L R~)+O(g4), (4.15 ) 
a=1 

and 

( 4.17) 

The one-form p obtained by restriction of (4.8) to the 
phase space defined by the constraints (4.13) (that is, the 
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phase space of the noncovariant formalism) plays the role of 
a Poincare-Cartan integral invariant. 21 According to this H 
will be the Hamiltonian, i.e., the generating function for time 
evolution, and qa and Pa will be a set of canonical coordi
nates and momenta. (As usual, an arrow over a symbol indi
cates the space part of the corresponging four1'ector.) 

The evaluation of the quantities R ~2) and Q ~2) involves 
differentiation with respect to x~ and ~. (Some useful for
mulas are given in the Appendix.) 

V. SCALAR AND VECTOR INTERACTIONS. WHEELER
FEYNMAN PREDICTIVE ELECTRODYNAMICS 

A. Scalar and vector interactions 

The action-at-a-distance counterpart of the field theory 
for scalar particles interacting through a massive scalar 
(resp. vector) field is given by the Lagrangian (2.1) with 
r = ° (resp. r = 1) and 

Gab «Xa (ta) -Xb(tb)f) = Dsym (j.l,(Xa(ta) -Xb(tb)f), 
(5.1 ) 

where 

Dsym (j.l,s) =! [D Adv (j.l,s) + Dre, (j.l,s)] 

= 2 [8(s) - Y( - s)(j.l12F$)J1 ( - j.l~ - s)] 
(5.2) 

is the time symmetric Green's function for the massive 
Klein-Gordon operator. 

In order to obtain a presymplectic structure on TMi", up 
to the second order in the coupling constants ga' it is neces
sary to give explicit expressions for the results (4.1 0). First 
of all, we notice that, up to this order, 

Fab(xa,Xb) = (-xaxb)'( -xax a)(I-,)/2 

(5.3 ) 

and therefore it does not depend on A. 
Substituting (5.1) into Eq. (4.lOb), we also have 

M~b = 2 J dA d1J a,( [A sE>(A -1J.A)Dsym (Utab (A,1J»], 

(5.4 ) 

fab(A,1J) = [(xa -xb) + (xa -Xb)A -Xb1J]2 

== [Xab + XabA - Xb1J]2. 

Then, taking into account that 

x_ 00 

we obtain 

M~b = 0, S = 0,1,2. 

Consequently, Eqs. (4.10) take the simpler form 

(5.5) 

(5.6) 

R (2) _ (2) 1 ~ F" a 0 ap. - 1Tal' - - ~ gagb ba (Xb,Xa) -- N ba' 
2 b#a ax~ 

(5.7a) 

Q (2) _ 1 ~ a (N0 F (. . » (57b) ap. - - - ~ gagb -.- ba ba Xb,Xa · . 
2 b#a a~ 

A direct calculation yields 
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x (l/rab~ - X~ )exp( - Wab)' (5.Sa) 

~b =X!b - (Xb Xab)2/xi· (5.Sb) 

On the other hand, since the presence of the characteris
ticfunction 0(A - 'TJ,A) makes the evaluation of N~a rather 
involved, it is more convenient to work it out in terms of its 
Fourier representation. 

Taking into account that 

I-' - 1 d 4
k exp(ikx) 

Dsym (/-l,x xI-') - 41T P.V. --4 2 2' 
JR' (21T) k +/-l 

we obtain 

N~b = lab - Iba, 

where _ . 1 d 4 k exp(ikxab ) 8( kXb) 
lab - 41Tl P.V. 3 2 2 

R4 (21T) k + /-l kXa 

or, after a little calculation, 

1 =-l-il d exp( - rab/-l'TJ/( -xi» 
• 'TJ , 

Aab I-'ab ~ 'TJ2 - U~b 

where 

U b = (1 _ (AabZab )2 1 )112 
a rab ( - X~b ) , 

(5.9) 

(5.lOa) 

(5.lOb) 

(5.11) 

(5.12) 

and the following Poincare invariants have been introduced: 

Zab = Aab 2 [ - X~ (XabXa) + XaXb (XabXb) ] 

and 

A similar result holds for Iba' 

(5.13 ) 

(5.14 ) 

Notice that, since lab is Poincare invariant, the calcula
tions leading from (5.10) to (5.11) can be worked out in the 
rest frame of particle b, followed by the subsequent transla
tion into covariant form. 

The Liouville form (4.9), as well as the total linear and 
angular momenta, are determined to this order by R ~~) and 
Q ~~). Their explicit expressions can be found by direct sub
stitution of (5.3), (5.S), and (5.10) into (5.7). The three
dimensional formalism can also be developed by merely in
troducing the constraints (4.13). 

B. Wheeler-Feynman electrodynamics 

There is no doubt that the most widely known Fokker
type system is Wheeler-Feynman electrodynamics (WFE). 
First introduced by Tetrode22 and Fokker4 for two charges, 
its generalization to N charges, 5 supplemented by the perfect 
absorber theory,S describes the whole classical electrody
namics, including the radiation reaction effects and the ob
served retarded interaction. 

WFE corresponds to an action-at-a-distance vector in
teraction with vanishing mass parameter (i.e., /-l = 0). 
Hence all the results hitherto obtained still hold. 
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Taking into account that 

f d'TJ =-1-ln(v'A1i+~A'TJ2+C), A>O, 
~A'TJ2+C a 

(5.15 ) 

we can express N~b in terms of elementary functions; thus 
obtaining 

Q(2) _ 1 ~ 
al-' - -2 £.. gagb 

b#a 

x-- ---In . a [kab (rab + Aabzab ( - xi) -1/2)] 
ax~ 2Aab roo + AabZba ( - X!) -1/2 

(5.16b) 

By substituting these expressions into (4.15 )-( 4.17) we 
easily obtain the Hamiltonian and a set of canonical coordi
nates and momenta. 

Furthermore, in order to compare with other results al
ready known, the post-Newtonian approximation can be 
carried out. Approximating the canonical coordinates and 
momenta up to order c- 2

, we obtain 

~ ... -2 ~ 1 a ( Wab) 0(-4 'fa =Xa -C £.. gagb ---- --... - + c ), 
b #a 4ma OVa IXab I 

(5.17 ) 

(5.IS) 

where Wab = XabVa' 
The simple form of the coordinates, up to this order of 

approximation, suggests the possibility of removing the c- 2 

term by a canonical transformation with generating func
tion, 

(5.19) 
a 

N ~ V 
U ( -) - -2 ~ 'fab a + O( -4) 

2 q,p - c £.. -- C, 
a,b~ I 41qab I 

(5.20) 

a#b 
[whereva = ~a/ma + O(C- 2) must be understood in the U2 

term], which leads to a new set of canonical coordinates and 
momenta, ~ a and jJ a' that can be obtained by the well known 
expressions21 

~ _ aU(q,jJ) 
'Ja - afia ' 

In this case 
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(S.21a) 

(S.21b) 

Hence, up to order c - 2, physical positions of particles can be taken as canonical coordinates. This result agrees with those 
given in Refs. 23 and 24. 

In order to derive the order c -4 terms for the canonical variables q a and P a' correction terms must be added to Eqs. (S.17) 
and (S.18). Naming these correction terms q4a andp4a' respectively, we have 

~ _ -4 1 ['" 1 a ( // //) v~ '" gagb a ( Wab) '" gagb (( a Wab)-+) -+ ] 'f - c - ~ gbg --- ..At b -..At b - - ~ ---- --- - ~ -- ----- v V 
4a ma b #a a 1bmb Ova a a 2 b #a ma Ova IXab I b #a ma Ova IXab I a a , 

(S.22a) 

(S.22b) 

where 

(S.23 ) 

In order to compare these results with those given in Ref. 2S, we carry out a canonical transformation with generating 
function 

(S.24) 
a 

with 

~ V 
U ( -) -2 '" 'fab a + O( -6) 

2 q,p =C ~gagb~l~ I C, 
a,b 'fab 

and 

va = fia _ c-2 [ jJ~ fia + L gagb fib + L gagb ~(qabfib)] + O(C- 6 ). 

ma 2m~ b,po mb Iqab I b #a 2mb aqa Iqab I 

The final expressions for the canonical variables and mo
menta ~a and fia up to order c-4 coincide with the above
mentioned results. 25 

VI. CONCLUSIONS AND OUTLOOK 

Let us briefly sketch the present state of affairs in those 
relativistic theories of directly interacting particles that are 
intended to relate the force acting on one particle to some 
classical field theory. This will help to understand the role 
claimed for the present paper and also for Ref. 9. 

These theories start from a Fokker-type Lagrangian 
(A), which is nonlocal in time, and then the Euler equations 
are derived. The latter is a system of functional differential 
equations (B), which is nonpredictive in the Newtonian 
sense, because the particle position and velocities at a given 
time do not determine their future evolution. This seems to 
be a strong qualitative difference with regard to what is com
mon in nonrelativistic physics. A way out is to accept that 
not all the solutions of (B) are "physically significant," but 
only those satisfying an additional requirement, namely, 
(C) the analytical dependence of particle world lines on 
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some "small parameter" (either the inverse speed of light, 
the coupling constants, or the mass ratio). 

The use of any of these criteria enables one to select a 
family of "physically significant" solutions of (B). Each of 
them can be parametrized by the particle positions and ve
locities at a given time, and hence satisfy a Newton-like set of 
equations of motion (D). 

The path from (B) to (D) via (C) is conceptually sim
ple when the inverse speed of light is taken as a "small pa
rameter" (it can be carried over by merely iterating the sub
stitution oflower orders of approximation into higher ones), 
and involves the use of more complex perturbative tech
niques, besides the theoretical framework of predictive rela
tivistic mechanics, in the remaining two cases. 

Finally, introducing some additional, although rather 
general, assumptions concerning the asymptotic conditions 
in the past and/or future infinity, a Hamiltonian formalism 
(E) can be set up. Apparently this canonical formalism has a 
relationship with the Fokker-type variational principle one 
has started from. 

The main contribution of the present paper, and Ref. 9, 
too, consists of providing a Hamiltonian (presymplectic) 
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formalism for Fokker-type Lagrangian systems. This en
ables us to introduce the analyticity condition directly in the 
Hamiltonian formalism, so that we can obtain a Hamilto
nian formalism on a Newton-like phase space for the system 
of interacting particles. In this way, we abridge the path 
from (A) to (E), without losing the connection with the 
canonical formalism that seemed to underlie the Fokker 
variational principle. 

We have finally specialized these general results to sca
lar and vector mesodynamics,6 and to Wheeler-Feynman 
symmetric electrodynamics, up to the first order in the cou
pling constants. Although the formalism has here been de
veloped for a specific kind of theory, namely, relativisitc sys
tems of directly interacting particles, its interest goes beyond 
this topic. Indeed, it could also be applied to nonlocal field 
theories (presumably with only a few extra technicalities not 
interfering with the core difficulty of a Lagrangian that is 
nonlocal in time). The canonical formalism so obtained 
would then allow one to proceed with a standard canonical 
quantization of nonlocal field theories and to add some new 
insight to other quantization procedures. 26.27 
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APPENDIX: FROM COVARIANT TO NONCOVARIANT 
NOTATION 

Here we give some formulas that are useful in translat
ing expressions from covariant to noncovariant formalism, 
i.e., when the time fixation x~ = t is introduced. 

These formulas establish in what cases the operations 
(i) introducing the time fixations and (ii) differentiation 
commute or do not commute. 

In general, we must deal with a Poincare-invariant func
tionf(x~d,xcdxe,.;(xd)' c,d,e = I, ... ,N. Introducing the fix
ation, we have 

ji-( 2 ... ) ji(l-+ 12 -+ -+ 1+-+ -+ ) Xcd,XcdX.,XcXd = Xed ,XcdVe' - VcVd , 

where the notation given in Sec. IV has been used. 
A short calculation proves that 
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aj ~ -+ aj aj Al 
al -+1 2 +£"'vea(-+-+ =-a.-+'() 

Xac e.c xacve) Xa 
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Perturbation theory for the anharmonic oscillator with large damping has been used to solve 
the equation of motion for the damped sextic oscillator. The results so obtained are compared 
with the values found through numerical integration of the equation of motion. 

I. INTRODUCTION 

The successes met with by the addition of anharmonic 
terms to the harmonic potential in understanding many typi
cal characteristics of different classical systems, thermal ex
pansion of a one-dimensional crystal lattice, vibrational 
spectra of molecules, and the nature of interaction in various 
physical systems has aroused great interest in the theory of 
classical and quantum anharmonic oscillators. 1-9 The study 
of quantum anharmonic oscillators has also been spurred by 
the problems in quantum field theory.5.10 Furthermore, 
since most of the physical systems are dissipative in nature, 
the study of the damped harmonic oscillator has also been in 
focus for quite some time. II However, the theory of the 
damped anharmonic oscillator, particularly the quantum 
theory, has not received the desired attention even though 
such a model should be closer to reality. Even if the problem 
is solved for a classical system and the position coordinates 
as a function of time are found, the results can be employed 
to carry out quantization using the path integral technique, 12 
which has successfully been used to obtain the propagator 
for a time-dependent harmonic oscillator13 and a damped 
harmonic oscillator,14 in addition to many other sys
tems. 12,15 

The present paper is the outcome of an effort to solve the 
equation of motion for the damped one-dimensional sextic 
anharmonic oscillator. The problem of the undamped sextic 
oscillator has been investigated by many workers5,16-20 be
cause this potential has been used in describing the vibra
tional spectra of some molecules, 2 I the tricritical phenomena 
in 3He-4He mixtures, certain types of metamagnets, many 
multicomponent mixtures, and other systems.22 The solu
tion has been obtained using the perturbation method devel
oped by Mendelson23 for anharmonic oscillators subjected 
to large damping and takes into account the transient re
sponse. The equation of motion has also been solved numeri
cally24 and the two results have been found to be in good 
accord with each other. 

II. SOLUTION TO THE EQUATION OF MOTION FOR THE 
DAMPED SEXTIC OSCILLATOR 

The equation of motion for the linearly damped sextic 
anharmonic oscillator reads as 

x + AX + liJ~X + ax3 + bx5 
= 0 . (1) 

For the system to be underdamped, it is assumed that 
A < 2w0, With a view to applying perturbation theory to this 
problem, we replace a by a small parameter E and b by c/3, so 

that the first-order contribution from the last term in (1) is 
of the same order as the second-order correction due to the 
term preceding it. Accordingly, Eq. (1) takes the form 

(2) 

For E = 0, Eq. (2) represents the damped harmonic oscilla
tor, whose solution is given by 

xo=acost/J, (3) 

where 

a = ao exp( - At /2) (4) 

and 

t/J = liJt + t/Jo, (5) 

with 

liJ = (liJ~ - A 2/4)1/2. (6) 

Following Mendelson,23 we use the following second
order perturbation series expansions: 

x = x[a(t),t/J(t)] = Xo + EX I + cX2 + ... , 
a = s(a) = - (A /2)a + ESI + cS2 + ... , (7) 

and 

;p = O(a) = liJ + EliJ l + CliJ2 + .... 
Substituting expressions (7) in Eq. (2) and retaining terms 
up to C, we obtain a system of parabolic partial differential 
equations corresponding to~, EI, and C. The equation per
taining to ~ is 

2 a2xo A 2a2 a2xo A a2xo A axo A 2a axo 
liJ at/J2 + -4 - aa2 - liJ a at/J aa + liJ at/J - -4- a;; 

+ (liJ2 + A4
2

)xo = 0, (8) 

where the solution is given by Eq. (3). 
The terms containing E lead to 

liJ2 a
2
XI + A 2a

2 
a

2
XI -liJAa a

2
XI liJA aX I 

a¢i 4 aa2 at/J aa + at/J 

A
2
a aXI (2 A2) -----+ liJ +- XI 

4 aa 4 

= (2liJliJ
l
a _ ASI + Aa dSI _ ~ a3 )cos t/J 

2 2 da 4 

( 
Aa2 dliJ ) a3 

+ 2wSI----1 sint/J--cos3t/J. 
2 da 4 

(9) 

The complementary function for the corresponding homo-
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geneous differential equation for x I is the same as that for Eq. 
(8) and the secular terms on the rhs disappear if 

211)11)Ia _ ,1,51 + Aa d51 _ 2- a3 = 0 
2 2 da 4 

and (10) 

211)51 _ Aa
2 

dl1)l = 0 . 
2 da 

Writing 51 and 11)1 as a power series in a, i.e., 

51 = i Cil)a\ 11)1 = i Dk')ak
-

I , (11) 
k=O k=O 

substituting in Eqs. (10), and equating the coefficients of 
various powers of a equal to zero, we obtain 

C ~ I) = 3,1, /1611J~, D ~ I) = 311)/811)~ , 

while all other coefficients vanish. Thus 

51=C~l)a3, I1)I=D~I)a2. 

The solution ofEq. (9) is found to be 

XI = a3[A ~3) cos 3</J + B~3) sin 3</J] , 

where 

A ~3) = (211)2 _ A 2 /4 )/1611J~ (411)2 + A 2/4) 

and 

B ~3) = 311),1, /3211)~ (4I1J2 + A 2/4) . 

The expressions corresponding to ~ yield 

2 a 2X2 A 2a2 a 2X2 1 a 2X2 1 aX2 A 2a aX2 (2 ,1,2) 11) -- + ---- - l1)/La --+ 11)/L - - ---- + 11) + - X2 
a</J2 4 aa2 a</J aa a</J 4 aa 4 

= [211)11)2a - ,1,52 + ~ d52 + (D ~I)' _ 3C~I)' _ 2-A ~3) - ~/3)as]cos </J + [211)52 _.i a2 dl1)2 
2 2 da 4 8 2 da 

+ (4C (1) D (I) _ 2- B (3»)aS]sin A. + as [{9(2I1)D (I) + AC (I)A (3) _ 2- A (3) 
33

4
3 'I' 3 33

2
3 

+ 9 (AD (I) _ 211)C (1»B (3) - ~ /3 }cos 3A. + {9(2I1)C (1) _ AD (1»A (3) 
3 3 3 16 'I' 3 3 3 

+ 9 (211)D (I) + AC (I)B (3) _ 2- B (3)}sin 3A. - (2-A (3) + L)cos 5A. - 2- B (3) sin 5A.] . 
3 3 3 2 3 'I' 4 3 16 'I' 4 3 'I' 

The secular terms in Eq. (16) are eliminated if 

and (17) 

211)52 - Aa
2 

dl1)2 + (4C ~ I) D ~I) _ 2- B ~3»)aS = 0 . 
2 da 4 

Expressing 52 and 11)2 as a power series in a, viz. 

52 = i Ci2)a\ 11)2 = i D i2)ak
-

1 (18) 
k=O k=O 

and making the coefficients of different powers of a zero, we 
find that 

52 = C f)aS, 11)2 = D ~2)a4 , 

where 

C~2) = {A [3C~l)' - D (I)' + 3A P) + i/3] 

_ 11) [ 4C ~ I) D ~ I) _ 3B ~ 3 ) ] } [2 (11)2 + A 2) ] - I 

and 

D~2) = {11)[3C~I)' - D~I)' + 3A ~3) + ~/3] 
+,1, [4C~I)D~I) _~B~3)]}[2(11)2+A2)]-I. 

(19) 

(20) 

X 2 = as [A ~3) cos 3</J + B ~3) sin 3</J 

+ A ?) cos 5</J + B ~5) sin 5</J] , 

where 

A P) = ( - 211)2 + A 2)KI + 311)AK2 , 
1611)~ (11)2 + A 2) 

B ~3) = - 311)AKI + ( - 211)2 + A 2)K2 
1611)~ (11)2 + A 2) 

A ~5) = (611)2 - A 2)(3A ~3) + /3 /4) - 1511)AB ~3) 

6411)~ (911)2 + A 2) 

and 

B~5) = 5I1)A(3AP) +/3/4) +3(6I1J2_A2)B~3), 
6411)~ (911)2 + A 2) 

with 

and 

(12) 

(13) 

(14) 

(15) 

(16) 

(21) 

(22) 

(23) 

(24) 

The solution of Eq. (16), left after the elimination of secular 
~erms, turns out to be 

Substituting for 51 and 52 from Eqs. (13)' and (19) into 
the expression for a in Eq. (7), we have 
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a= -(A/2)a+€C~\)a3+cC~2)a5, 
which upon integration yields25 

(25) 

ao exp( - At 12) 
a=------------~~~------~~~--~~----~~----------~~ 

[1- c(2IA)C ~\)a~{1 - exp( - At)} - c(C~2)/A)a~{1- exp( - Ut)}] 1/2 
(26) 

Using expressions for WI and W2' Eqs. (13) and (19), and that for~, Eq. (7), followed by integration, gives 

¢ = wt + €D ~\)Ila~ + cD ~2)I2a~ + ¢o, (27) 

where 

--- an - an, for S>O, 
cA-IS -IS -IS 

[ 

2 [t -I Q+2€Rexp( -At) t -I Q+2€R] 

11 = 
_ 1 lnl S + Q2 + 2€R[Q{1 +exp( -At)} -FS"{I-exp( -At)}] + 4cR 2exp( -At) I for S<O 

€A~ - S S + Q2 + 2€R[Q{1 +exp( - At)} +~ - S{I -exp( - At)}] + 4cR2 exp( - At) , 
(28) 

and 

12 = __ 1 __ [ 2P+ €Qexp( -At) _ 2P+ €Q ] _ Q I •. 
cSA P+€Qexp( -At) +cRexp( -Ut) P+€Q+cR €S 

(29) 

Here 

S= (4a~/A2)[AC~2) - C~I)' 

- 2€C~l)C~2)a~ - cC~2)'a~] . (30) 

and 

Combining the different expressions obtained above, the 
solution to the equation of motion of the damped sextic oscil
lator, up to second order in €, becomes 

1.2 

o 

A = 1.414, i3 =-'.:1.~0 _-----------------

A= 1.0,/3 '1.0 

~~----

;,.. 1.414,11 = 0_.5_-----------------

-O.4!:---,J'::-------='::__~::______;_',::___7:,____+.,____+.,___+.,___~--_±: o ~ u ~ ~ ~ U M M U ~ t __ 

FIG. I. Plot exhibiting dependence of xon t for the damped sextic oscillator, 
as obtained by the perturbation method (solid line) and the Runge-Kutta 
method (dashed line) for different values of A 
andf3. 
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x = a cos ¢ + €a3[A ~3) cos 3¢ + B P) sin 3¢] 

+ ca5 [A ~3) cos 3¢ + B ~3) sin 3¢ + A ?) cos 5¢ 

+B~5)sin5¢], (31) 

where the coefficients A P), B P), A ~3), B ~3), A ~5), and B ~5) 
are given by Eqs. (15), (22), and (23); a is given by Eq. 
(26); and ¢ is given by Eq. (27). 

III. RESULTS 
The dependence of x on t has been determined by per

forming computations for different values of A and p, taking 
Wo = 1 and € = 1. The typical results so obtained are shown 
in Fig. I. In order to check these findings, the solution to Eq. 
(2) has also been found by numerical integration using the 
fourth-order Runge-Kutta method.24 The initial conditions 
used for the numerical calculations have been defined by 
¢o = 0 and x = 0 at t = 0; these are, in tum, employed to 
find ao and x at t = O. The time interval used for the numeri
cal integration is lit = 0.01 sec. The results based on these 
computations are also included in Fig. 1 and are found to be 
in good agreement with the plots obtained from the solution 
attained from the perturbation theory. Therefore, Eq. (31) 
can be taken as the solution to the equation of motion of the 
linearly damped sextic oscillator. 
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This paper presents a mathematical description of the linearized Vlasov-Poisson operator L 
acting on a family of Banach spaces Xp ' related to L p (R), and the application of the metho~ 
of spectral deformation to this model. It is shown that a type-A analytic family of operators 
Lk (0), BEe, Lk (0) = Lk can be associated with L k. By means of this family, the Landau 
damped modes of the plasma are identified as the spectral resonances of L k • Existence and 
uniqueness of solutions to the initial-value problem for the evolution equation av g = Lk (O)g is 
proven. An expansion of any solution to the initial-value problem (with sufficiently smooth 
initial data) is obtained in terms of the eigenfunctions of Lk (0) and a spectral integral over the 
essential spectrum. This is applied to derive an expansion for solutions to the Vlasov equation 
in which the Landau damped portions of the distribution function are manifestly exhibited. A 
self-contained discussion of the spectral deformation method and an extension of it to certain 
closed operators on Banach spaces is also given. 

I. INTRODUCTION 

This paper gives a technical description of the linearized 
Vlasov-Poisson model and of the application of spectral de
formation techniques to this model. It provides the math
ematical descriptions and proofs of the results discussed in 
our previous paper.' We refer the reader to Ref. I for a de
tailed discussion of the physical motivation for this work: 
We use the same notation and terminology. 

In Ref. 1 we applied the method of spectral deforma
tion2

,3 to Vlasov theory to analyze certain phenomena which 
occur in the linearized Vlasov equation and extended the 
method to study the nonlinear equation, This technique was 
originally developed to study self-adjoint Schrodinger oper
ators H on a Hilbert space. In that context, it provides a 
powerful method for studying the meromorphic continu
ation of matrix elements of the resolvent of H onto the sec
ond Riemann sheet, and hence the singular continuous spec
trum, and the perturbation of eigenvalues embedded in the 
continuous spectrum. 

Many problems of this type also arise in the study of 
models in plasma physics and fluid dynamics. In many ways, 
the one-dimensional Vlasov-Poisson model is the simplest 
example. Because we choose to analyze the linearized Vlasov 
equation for spatially homogeneous equilibria, it is possible 
to explicitly calculate the resolvent for the linear operator. 
Consequently, the application of the spectral deformation 
technique is considerably simplified. However, one cannot 
realistically expect to calculate the resolvent except in the 
simplest models. For example, if the Vlasov-Poisson system 
is linearized about an inhomogeneous equilibrium, this will 
not be possible in general. Thus for more complicated (and 
more realistic) models an extension of the approach devel
oped in quantum mechanics of studying matrix elements of 

.) Present address: Mathematics Department, University of Kentucky, 
Lexington, Kentucky 40506-0027. 

b) Address after January I, 1990: Department of Physics and Astronomy, 
University of Pittsburgh, Pittsburgh, Pennsylvania 15260. 

the resolvent between vectors from a dense set is likely to be 
more useful. Because of this and the scarcity of a concise 
discussion of these matters in the literature, we include in 
this paper a general discussion of the spectral deformation 
method as applied to quantum mechanical models and an 
extension of this to Banach spaces in certain situations. 

Although our extension in Ref. 1 of spectral deforma
tion to include nonlinear effects involves some subtle and not 
yet fully understood mathematical issues (as described in 
Ref. 1), the treatment of the linearized Vlasov-Poisson 
equation is amenable to a rigorous formulation, which we 
present in this paper. Our analysis differs from existing 
mathematical treatments of the linear equation4 in that we 
discuss, among other things, the initial-value problem for the 
analytically continued equation and apply a simplified meth
od introduced in Ref. 5 for obtaining the eigenfunction ex
pansion associated with the analytically continued linear 
Vlasovoperator. 

The Vlasov-Poisson equation describes the dynamics of 
a collisionless plasma in the electrostatic approximation. We 
treat this equation in its simplest setting: a neutral, unmag
netized plasma in one dimension with periodic boundary 
conditions. The ions form a fixed background of positive 
charge. We let Fo (v) denote the spatially homogeneous equi
librium distribution of the electrons and write the electron 
distribution function as F(x,v,t) = Fo(v) + f(x,v,t). Since 
Fo is spatially homogeneous, we Fourier analyze/(x,v,t) and 
write/(x,v,t) = !,keikx /k (v,t). The linearized Vlasov-Pois
son equation for /k (v,t) is 

where 

and 

(1.1 ) 

( 1.2) 

k ,#0, 
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k -I 2 (aFo) 1/(k,v) == - ({Up ) Tv' (1.3 ) 

In (1.3), (Up = [41Tnoe2/m] 1/2 is the plasma frequency. 
The linear stability of the equilibrium Fo depends on the 

spectrum of the linear operator L k' Of special importance is 
an understanding of the behavior of the eigenvalues of Lk as 
the physical characteristics of the equilibrium are varied. 
For example, for certain critical distributions, the spectrum 
of L k, denoted u(Lk ), has eigenvalues embedded in the es
sential spectrum U ess (L k ) = lR. As Fo is altered slightly, 
these eigenvalues may move into the right half-plane, in 
which case they describe (linearly) unstable modes of the 
plasma. A thorough understanding of the onset of such an 
instability requires a detailed understanding of the embed
ded eigenvalues at criticality. One result of the spectral de
formation method is that the continuum can be separated 
from the critical, embedded eigenvalues so that they become 
isolated and hence amenable to study by standard tech
niques. Another result of the spectral deformation method is 
that the critical embedded eigenvalues are shown to be ge
nerically simple. 

On the other hand, it may happen that as Fo is varied the 
embedded eigenvalues of Lk simply disappear from u(Lk ) 
altogether. For example, if Fo is a Maxwellian distribution, 
then u(Lk ) = lR and Lk has no eigenvalues (for k #0). 
However, in this case it is well known that there are physical
ly observable, collective modes which in linear theory decay 
in time because of Landau damping.6 The existence of such 
modes is difficult to discern from a direct study of u(Lk ). By 
using the spectral deformation method, we show that these 
modes are spectral resonances of L k • We also obtain a new 
expansion for solutions to the initial-value problem associat
ed with (1.1), in which the Landau damped portions of the 
distribution function are manifestly exhibited. 

In Ref. 1, we analyze these problems from a physical 
point of view and refer the reader there for further details. 
We also discuss in Ref. 1 the extension of the spectral defor
mation method to the full nonlinear problem and derive, 
among other things, exact wave amplitude equations. 

The contents of this paper are as follows. In Sec. II, we 
provide a general discussion of the spectral deformation 
method. This method possesses several intrinsic properties 
which we state and prove. The power and flexibility of the 
method is primarily due to these properties. We also discuss 
extensions of the technique to the more general Banach 
space setting, as required for the Vlasov model. 

In Sec. III we apply the method to the linearized Vlasov 
operator L k' We show that L k is densely defined and closed 
on its natural domain in L peR), l<:p< 00. However, the 
dynamics is not easily formulated on L P (R) so we introduce 
related Banach spaces X p ' 1.;;; p < 00. On these spaces, we 
introduce the one-parameter group of velocity translations 
U(O), OER, and define a family of operators Lk (e) 
== U( e)L U( e) -I. It is shown that these form a type-A ana
lytic family of operators on some strip 
So=={OEq 11m e I < eo} in the complex e plane. 

The spectral properties of the family L k (e), OESo are 
studied in Sec. IV. We construct the resolvent operator 
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Rk (z,O) == (z - Lk (0) )-1, identify the spectrum of Lk (0), 
and analyze its dependence on O. It is shown that the spectral 
resonances of Lk arise from the Landau poles. Elementary 
semigroup theory is used to prove that each LdO), OESo 
generates a one-parameter group Wt which provides a 
unique solution to the initial-value problem for the evolution 
equation at g = Lk (e)g. 

In Sec. V, an inverse Laplace transform integral for 
Rk (z,O) is constructed and proved to converge to the evolu
tion group W t for t;>O in the strong sense. From this we 
derive a convergent expansion for g(v,t) == Wt g(v,O) for the 
suitably regular initial conditions g(v,O)eXp in terms ofthe 
eigenfunctions of Lk (e) and a spectral integral over the es
sential spectrum of Lk (0). When 1m e = 0, this reduces to 
the familiar Vlasov expansion.4

•
7

,8 An interesting feature of 
this expansion for 1m 0 < 0 is that the influence of the Lan
dau poles on the long-time behavior of g(v,t) emerges natu
rally from the spectral theory. By a result in Ref. 1, 
U(O)-lg(V,t) provides a solution to the original evolution 
equation ( 1.1 ). When the eigenfunction expansion of g( v,t) 
is combined with this representation of the Vlasov solution, 
we obtain an expression for fk (v,t) which exhibits simulta
neously the time-asymptotic signficance of the Landau poles 
and their role as spectral resonances for L k • 

The three dielectric functions that arise in the analysis of 
the linearized problem are studied in Appendix A. The be
havior of the roots of these functions is analyzed under suit
able analyticity conditions on the equilibrium distribution 
function Fo. In particular, sufficient conditions are given for 
the existence of at most a finite number of zeros. This analy
sis is used to prove that the multiplicity of the embedded 
eigenvalues of the Vlasov operator at criticality is the same as 
the resulting unstable mode, i.e., generically simple. 

The spectral deformation group U(e) described in Sec. 
III is suitable only when Fo is the restriction to R of a func
tion analytic in a strip about R. In Appendix B, we outline a 
more general method of spectral deformation applicable to a 
wide class of equilibrium distribution functions, including 
those with compact support. 

II. SPECTRAL DEFORMATION METHODS AND 
RESONANCES 

The spectral deformation method is a tool for the study 
of phenomena associated with the continuous spectrum of 
linear operators. Heretofore, applications of the method 
have been restricted to self-adjoint operators defined on Hil
bert spaces. 2.3,9-11 This reflects the historical fact that the 
methods were invented by mathematical physicists studying 
quantum mechanical models. In this section, we first review 
the major characteristics ofthis method as applied to a self
adjoint operator H. We then indicate how the method can be 
extended to certain classes of closed operators on Banach 
spaces. The results for self-adjoint operators are known to 
specialists, but are not readily accessible; thus we have in
cluded them for completeness. 

Information about the spectrum and resonances of H 
can be obtained from studying the resolvent RH (z) 
== (z - H)-I as a function ofzEp(H) , the resolvent set of H, 
and the meromorphic continuation of RH(z) onto the sec-
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:md Riemann sheet. As mentioned in Sec. I, an explicit con
;truction of RH(z) is in general impossible. One of the pri
mary virtues of the spectral deformation method is that it 
dlows the explicit construction of the meromorphic con
tinuation of matrix elements of RH (z) between a suitable 
:iense set of states onto the second Riemann sheet. This suf
lices to allow one to prove, for example, the absence of a 
;ingular continuous spectrum for H. 

More important for our purposes is the fact that the 
poles ofthe meromorphic continuation of (matrix elements 
:>f) R H (z) are in one-to-one correspondence with the com
plex eigenvalues of an analytic family of non-self-adjoint op
~rators H(B), BEC, which is explicitly constructed from H. 
fhe poles of the continuation of RH(z) onto C
== {ZEC! 1m Z < O} are called spectral resonances of Hand 
physically represent the metastable states of H. This connec
:ion between the poles of RH(z) and the complex eigenval
iles ofa family of operators H(B) was generalized in Ref. 1 to 
dentify the Landau damped plasma waves with the reson
mces of the Vlasov operator L k • 

The basic idea of the spectral deformation method is to 
lssociate with H an analytic family of operators H( B) in the 
'ollowing way. Let {U( B) IBER} be a strongly continuous 
mitary group. We define the family of operators H( B) by 

H( B) == U( B)HU( B) -I, BER. (2.1) 

fhe group U( B) is chosen to satisfy two criteria: 
(i) The operator-valued function R(z,B) ==(z - H(B» 

is jointly analytic in z and B on some open set in C2 (typically, 
9 belongs to some strip So == {B I 11m B I < Bo} ). 

(ii) The essential spectrum of H(B), denoted 
7 ess (H (B», BESo, can be calculated (at least locally) and is 
:ieformed from U ess (H) (which is typically a half-line). 

Here, U ess (A) ==u(A) \'Ud (A) for a closed operator A 
md U d (A) is the set of all isolated eigenvalues with finite 
nultiplicity. It is criterion (ii) that gives the technique its 
lame. Usually, the family H( B) can be shown to be an "ana
ytic family of type A" on the strip So. This then implies the 
malyticity stated in criterion (i). 12 (Type-A analyticity is 
iefined in Sec. III.) In the case that H = - V2 + V, crite
jon (ii) is often replaced by a nontrapping condition 13. 14 on 
:he potential V and a vector field I and the group U( B) is 
~enerated by D== (i/2) (VI + j-V). 

The first example to be extensively studied was the case 
IVhere U(B) implements the dilation group on L 2(Rn): 

(U(B)f)(x) = eno12l(eex ), BER. (2.2) 

iuppose that H = p2 + V, where p2 == - V2 is the kinetic en
~rgy and Vis a multiplication operator describing the poten
:ial. Then 

(2.3) 

IVhere (Vo j) (x) = V(eox) I(x). Now if V is relatively p2 
~ompact and has an analytic continuation onto some sector 
[ZEC! larg zi <p}, then Vo is an analytic operator-valued 
imction on So=={B 111m B I <P}. It then follows that H(B) 
s an analytic family oftype A on So. By the Weyl theorem, 
Tess (H( B» = R+ for BER, but for BESo, U ess (H( B» 
= ~Ba+, i.e., the effect of continuing H in B is to rotate the 
~ssential spectrum off the real axis (see Fig. 1). The reso-

821 J. Math. Phys., Vol. 30, No. 12, December 1989 

(al ••••• I 

'---....--~'o 

CT
d 

( H (81 ) 

(bl 

o 

8.IR 

8. s; 

Embedded f Eigenvalue 

• 

Isolated, real 
Eigenvalue of H(81 

FIG. 1. Typical spectrum of a dilation-analytic Schrooinger operator 
H(8)=e8 p2+V8 • (a) 8eR; thus H(8) is self-adjoint and 
o(H(8» = u(H), (b) 8eSo with 1m 8<0; thus u .. ,(H(8» is rotated into 
the lower-half complex plane. 

nances of H are the complex eigenvalues of H( B) located 
between U ess (H) = R+ and the half-line e2Ba+, 1m B<O. 

Let us suppose that a group U( B) has been found such 
that criteria (i) and (ii) are satisfied. Furthermore, near 
some point A, let us suppose that the spectrum of H( B), BER 
appears as in Fig. 2(a). When BESo, the spectrum of H(B) 
will typically deform, as illustrated schematically in Fig. 
2(b). Note that there may be eigenvalues of H(B) lying be
tween the real axis and U ess (H( B» which are "uncovered" 
by taking B complex. 

An important application of this construction is to 
study the behavior of RH(z) in a neighborhood of A using 
H( B). This can be done as follows. Let A ( U) denote a dense 
set of analytic vectors for the group U(B), i.e., if gEA( U), 
then BER- U(B)g has an analytic continuation in B off the 
real axis and into C. For J, gEA (U) the matrix element 

Fgf(z) == (g,RH(z)/) (2.4) 

for 1m z;60 satisfies the identity 

Fgf(z) = (U(B)g,U(B)RH(z)U(B)-IU(B)/) 

= (go,RH(z,B)le) = (ge.,RH(z,B)le) (2.5) 

(a) 

(b) 

• • 
~)mbedded Eigenvalue. 

of H 

/U7vered Eigenvalues 

"~,,.,,~ 
of H cr ... ( H (8) I, 8. s-; 

FIG. 2. The method of local spectral deformation provides one with a 
means of studying eigenvalues of H embedded in the continuous spectrum, 
as shown in (a), by distorting the continuous spectrum away from these 
eigenvalues, as shown in (b). The real eigenvalues become isolated eigen
values of H( 8) and new complex eigenvalues may appear. 
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for 0ElR. Here, ge=- U(O)g and RH (z,O) = (z - H(O»-I. 
The identity (2.5) follows from the unitarity of U(O). 
Since H is self-adjoint, a(H) CR. For fixed 
zeC+ =-{zeqlm z> O}, we can analytically continue the 
function 

F gf(z,O) =- (ge. ,RH (z,O) fe) (2.6) 

in 0 onto the strip S 0- =-{BeSol - 00 < 1m 0 < O} so that 
a(H( 0» swings into the lower half-plane, as shown in Fig. 
2 (b). This continuation is possible since each component in 
(2.6) is analytic. 

Since a ess (H( 0», BeS 0- has been deformed off the real 
axis in a neighborhood of A., we can, for fixed BeS 0- in (2.6), 
meromorphically continue F gf(z,O) in z from 1m z> 0 onto 
this small neighborhood of A.; see Fig. 3. This continuation is 
meromorphic (rather than analytic) since there may exist 
poles of F gf(z,O) in the local region about A. We will discuss 
this below. To apply this continuation analysis to the origi
nal matrix element, we recall relation (2.5) and apply the 
identity principle for meromorphic functions: For BeS 0-

andzeC+, 

(2.7) 

and, by the above discussion, F gf(z,O) is meromorphic in a 
full complex neighborhood of A. Hence, F gf(z,O) provides a 
meromorphic continuation, denoted by F~(z), of Fgf(z) 
onto the second Riemann sheet near A, including a real 
neighborhood of A. [This continuation is independent of 0 
provided that a ess (H (0» stays away from a neighborhood of 
A.] Moreover, according to relation (2.7), the poles of 
F~(z) in a neighborhood of A are in one-to-one correspon
dence with the eigenvalues of H(O). These poles/eigenval
ues are the spectral resonances of H. 

The construction outlined above yields several results. 
(i) We obtain explicit control over (g,R H ( J.L + iE) f) as 
E --> 0, with g,feA ( U), and J.L near A; in particular, the only 
singularity occurs when J.L is an eigenvalue. (ii) As we will 
show below, if H has real eigenvalues near A, they remain 

(0 ) 

(b) 

For (z) Anolyli c 
. + 
Incr 

"'II. (H)! 

+ 
,9«5.: for ua: 

FOI (z ). For ( z, 9 ) 

Region of 
M eromorp hieity 

of F~r (z) 

• z«o:+ 

• • 
), 

.z«a: + 

FIG. 3. Meromorphic continuation of the matrix elements 
(g,R H (z)/) =Fgf(z) from 2EC+, shown in (a), to 2EC- with Re Z near A, 

can be obtained by deforming u .. ,(H(8» near A away from the real axis, as 
shown in (b), and using the identity Fgf(z) = Fgf(z,8) , which holds for 
2EC + and 8eSo, 1m 8 < 0, and then continuing in z. 
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eigenvalues of H(O), BeS 0- (with the same multiplicity), 
but now these eigenValues are isolated eigenvalues of H( 0) 
since the aess (H( 0» has been moved away. (iii) The poles of 
the meromorphic continuation of matrix elements of R H (z) 
are identified with the eigenvalues of H (0). Results (ii) and 
(iii) are of primary interest here. Result (ii) provides one 
with a technique for studying embedded eigenvalues of H 
(for example, their behavior under perturbations) by view
ing them as isolated eigenvalues of H(O). Result (iii) reex
presses the problem of locating the poles of F~(z) as an 
eigenvalue problem, although at the cost of introducing non
self-adjoint operators. 

There is a degree of arbitrariness in the above construc
tion, but we show that it satisfies two intrinsic properties: 

(i) If z(O) is a complex eigenvalue of H(O), then it is 
independent of 0 provided that 0 varies in such a way that 
z( 0) remains isolated from a ess (H( 0». 

(ii) If the spectral deformation construction is made for 
two different groups U I (0) and U2 (0) that both satisfy cri
teria (i) and (ii) and that share a common dense domain of 
analytic vectors, then on a common neighborhood of A both 
deformations will reveal the same complex eigenvalues on 
the second Riemann sheet. 

To understand property (i), note that for cfoeR, 
U(cfo)H(O) U(cfo)-I = H(O + cfo); thus aAH(O» 
= a AH (0 + cfo », where ad is the discrete spectrum. Hence, 
if z( OlEa d (H), it is independent of Re O. However, since 
H( 0) is an analytic family, z( 0) is analytic and hence a con
stant as long as 0 varies in such a way that z( 0) remains 
isolated from a ess (H( 0». 

Property (ii) can be seen as follows. Let V (0), i = 1,2 
be two groups satisfying criteria (i) and (ii) for BeSo (a 
common strip) and such thatA1=-A( UI ) nA( U2 ) is dense. 
Then for J, geA I we have equality of the matrix elements for 
zeC+ and OER: 

Fgf(z) = Fi?(z,O) = Fi}l(Z,O), OER, (2.8) 

where 

F<J(z,O) =- (Ui (O)g,(z - Hi (O»-IUi (0) f) , 

Hi (0) =- Ui (O)HUi (0)-1 

for i = 1,2. We now continue the latter two functions of 
(2.8) in 0 for zeC+ fixed and then in z, as in the previous 
discussion. Hence, we obtain two meromorphic continua
tions of Fgf(z) into C-; therefore, they must be the same 
meromorphic function. The poles of F<J (z,O), i = 1,2 are 
therefore eigenvalues of both HI (0) and H 2 (O). This proves 
that the eigenvalues of H( 0) are independent of the choice of 
group. 

Properties (i) and (ii) give the spectral deformation 
method its power and flexibility. Provided that one can 
prove the analyticity of H(O), then one knows that the re
sults are independent of the group used and are "locally" 
independent of oeSo. Hence, the group chosen can be tai
lored to the problem at hand. It should be noted that the 
poles of F~(z) are also independent of the pair ofvectorsg, 
feA (U) since they are eigenvalues of H( 0): They may, how
ever, depend on the dense set A ( U). 15 

We next consider the manner in which spectral defor-
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mation affects a separation of embedded eigenvalues from 
the essential spectrum. Let A be a real, embedded eigenvalue 
of H (with finite multiplicity) and let P" denote the projec
tion onto the spectral subspace of H for A. Then by the spec
tral theorem, P" = s - lime _ o+ iE(A + iE - H) -1. We 
show that AEoAH(O» for fJeS 0-' By (2.5) and (2.6), we 
have, for OeR and g,/EA ( U), 

lim iEF gf(A + iE) = < g,P" f) = lim iEF gf(A + iE,O) . 
£_0+ e-O+ 

(2.9) 

The last term in (2.9) can be analytically continued in 0 
before the limit is taken. If H( 0) has no eigenvalue at A, 
F (z,O) is analytic in a neighborhood of A and consequently, 
t:e limit on the rhs of (2.9) vanishes for allfandg. This is a 
contradiction since the density of A ( U) implies 
< g,P" f) ;60 for someJ,geA( U). ThusH(O) must have an 
eigenvalue at A. A similar argument establishes the converse: 
If AEoAH(O»n (0,00), then A is also an eigenvalue of H. 
This completes our synopsis of the self-adjoint theory. 

The linear operators that arise in plasma and fluid mod
els are frequently non-self-adjoint. It is fortunate that this 
does not preclude the application of spectral deformation. 
We now outline a generalization of the method described 
above to the study of a closed operator A on a Banach space 
X. Certain additional assumptions will be required to com
pensate for the loss of self-adjointness. For a closed li.near 
operator A, u(A) is in general a closed subset of C with a 
nonempty interior. If AEu(A) is an embedded eigenvalue 
lying on the boundary of the spectrum, the spectral deforma
tion method allows local distortion of U ess (A), so that A be
comes isolated and hence amenable to standard methods 
(see Fig. 4). In order to discuss the meromorphic continu
ation of RA (z) in a neighborhood of a point A, we must 
further suppose that A locally has a spectrum with an empty 
interior, i.e., it is a curve r (see Fig. 5). 

In problems in fluid mechanics and plasma physics, 
U ess (A) is typically a curve and represents the "continuum 

(Td(A)-S ~ 

).) ~·I ~ .... )A) 

Embedded Eigenvalue ~ 
of A 

(b) 
S~ 

~ (A)C~( ;:78))(8)~ (8) s 
","-s ~ 0;, .. A( ).8. 0 

~ ~ 
Isolated Eigenva lue of A (8) 

FIG. 4. In the general case ofa closed operator A on a Banach space X, u(A) 
may have a nonempty interior and eigenvalues embedded on the boundary 
of its spectrum, as in (a). Local spectral deformation methods can be used 
to move u(A), so that the eigenvalue becomes isolated, as in (b). 
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RA (z) analytic here 

\rCCr(A)~ 
(T (A) 

RA(z) analytic here 

(T (A) 

Em bedded 
eigenvalue of 
A in r 

FIG. 5. In many cases. u(A) may consist locally of a curve r with, perhaps, 
an embedded eigenvalue. Typically, the resolvent is defined on either side of 
r and discontinuous across it. 

modes" of the system. The notions of eigenvalues embedded 
in u(A) and of resonances carry the same dynamical mean
ing as in the Hilbert space case, in the context of the evolu
tion equation atu = Au. Instead of exhibiting the oscillatory 
behavior characteristic of continuum modes, the resonance 
states are typically damped modes of the system; their pres
ence is not easily discernable from u(A). 

To formulate the notion of resonance, let A be a closed 
operator as above and assume that U ess (A) in a neighbor
hoodofa pointAEC consists ofacurve r, as in Fig. 5. LetX* 
denote the dual Banach space to X which consists of all con
tinuous linear functionals on X. We consider "matrix ele
ments" of R A (z) formed from the pairs (I,f) eX * X X and set 
FIf(z) :=1(RA (z) I). For each pair (I,f)eX* XX, FIf(z) is 
analytic onp(A). We define spectral resonances of A near r 
as poles in the meromorphic continuation of matrix elements 
of RA (z) across r relative to a dense set N* XNCX*XX. 

To study RA (z) in a neighborhood of r we can intro
duce the method of spectral deformation as follows. Let 
OeR-+ U(O) be a strongly continuous one-parameter group 
of bounded operators on X. As before, we require that U( 0) 
be such that A (0) := U( O)A U( 0) -1 extends to an analytic 
family of operators on some strip So, at least in the sense that 
RA (z,O) is jointly analytic. Note that for OER, 
u(A) = u(A (0». We also require the U( 0) be such that we 
can compute u(A (0» near r and that for the 1m 0 ;6 0, it is 
deformed away from r to some curve r'; see Fig. 6. Of 
course, eigenvalues of A (0) may be uncovered lying between 
rand ro. 

Given a group U( 0), we assume the existence of a dense 

RA (z) Uncovered 

i 
Eigenvalue 

rc (T ... (A) ~ /_ ..... , j 
l ~--...., 

/ S 
/ S 

FIG. 6. Local spectral deformation methods can many times be used to 
deform r C u(A) to a new curve r' C o(A (8» in a way such that the eigen
values of A embedded in r become isolated and spectral resonances may be 
uncovered. 

P. D. Hislop and J. D. Crawford 2823 



                                                                                                                                    

set N of analytic vectors for the group in X. (Unlike the self
adjoint case, the existence of such a set is not guaranteed by a 
general theorem.) In an obvious way, U( 0) induces an ac
tion U(O) onX*. For any lEX * and/EX, we have 

I{U(O)j)==lo(j), OER, 

where 

10 =. U(O)/. 

It follows that OER-+ U(O) is a strongly continuous one-pa
rameter group of bounded operators onX *. Let N * CX * be a 
dense set of analytic vectors for U(O), whose existence we 
assume. 

The major notions discussed above extend to A, A (0), 
and N*XNCX* xX relative to rCuess (A). In particular, 
for (I, j) EN * X N, the jointly analytic function 

F1/(z,O) =./{RA (z,O) j) 

provides a meromorphic continuation of Flf(z) through 
U ess (A) near r. The poles of this continuation in the region 
between rand r' are in one-to-one correspondence with the 
eigenvalues of A (0), OESo. These are the resonances of A 
near r. Moreover, it is immediate to check that the two in
trinsic properties of the construction described above con
tinue to hold in the setting described here. 

The question of the stability of the eigenvalues of A em
bedded in r under the continuation is more subtle. This is 
due to the fact that in general, an explicit expression for the 
projection PA onto the eigenspace of A for an embedded 
eigenvalue A in terms of RA (z) is not available, as it was in 
the self-adjoint case. However, we can envision the following 
situation (which includes the Vlasov equation). Suppose 
that A is an embedded eigenvalue of A and AifJ = AifJ. Fur
thermore, suppose that U( 0) is a deformation group for A 
[in particular, A (0) is type A] and ifJ is an analytic vector for 
U(O) on some strip So, i.e., OESo-+ U(O)ifJ is an analytic 
function. Then U(O)ifJ='ifJo is an eigenvector for A(O), for 
OESo, with eigenvalue A: A (O)ifJo = AifJo' To check this, note 
that for OER, 

A (O)ifJo = AifJo, OER 

and the rhs is analytic on So; thus the lhs is also and it suffices 
to show that ifJoED(A). AsA is closed, A t is densely defined 
on X * (provided that X is reflexive). Then for all pairs (I, ifJ) 
with IED(A t), 

and the rhs is analytic in 0 on So. Since A is closed, this 
implies that ifJo ED (A ) for OESo. In summary, a sufficient 
condition for an embedded eigenvalue of A to persist as an 
eigenvalue of A (0) is that the corresponding eigenfunction 
be an analytic vector. 

III. LINEAR VLASOV OPERATOR AND COMPLEX 
TRANSLATIONS 

In this and the following sections, we are concerned 
with the linear Vlasov operator Lk defined by 
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(L k j) (v) 

= {- ik [v/(v) + 77(k,v) S': 00 /(v')dv'], k #0, 
~ k=~ 

(3.1 ) 

where k indicates the wavenumber. The operator Lk de
pends on the initial equilibrium velocity distribution Fo 
through 77 (k,v), as defined in (1.3). 

We assume that L k acts on a function space X which we 
now consider. In order to analyze Lk in a reasonable way, it 
must be densely defined and closable on a domain in X. We 
shall restrict our preliminary discussion to the classical Ban
ach spaces L p (R), 1..; p < 00, although we will find that the 
model is more readily described on different, but related 
Banach spaces. (We note that since Lk is not defined on 
constant functions, it is not densely defined on L 00 .) 

The theory assumes various properties for Fo; we state 
these properties in two assumptions. Assumption 1 pertains 
to the decay of Fo as Ivl-+ 00. Assumption 2 concerns the 
analyticity of Fo and is stated and used later in this section. 

Assumption 1: The function FoES(R) , the set of all infi
nitely differentiable functions which decay faster than any 
polynomial as I vl-+ 00, and Fo is real. 

Actually, weaker decay conditions on Fo are adequate; 
we mention these below. 

Foreachp, l..;p< oo,Lk is defined on a natural domain 
Dp (Ld =.{/EL PIL k /EL p}. To describe this domain, let 
Mu denote the operator of multiplication by v, i.e., Mu / 
= vi Let Dp (Mu) be the natural domain of Mu in LP. It is 

clear from (3.1) that ifjEDp (L k ) (k #0), then S~ 00 /< 00 

and hence, from Assumption 1 on 1],/EDp (Mu )' Conversely, 
if/EDp (Mu )' we show that/EDp (L k ) and S~ 00 / < 00. For 
p = 1, this is obvious. For p> 1, it follows by the HOlder 
inequality that for any aER\ {O}, 

I roo 00 /(v)dv I..; [f: 00 Iv + ial- q dV] l/q II (Mu + ia) /Ilp , 

(3.2) 

where q> 1 satisfies p-l + q-l = 1. Since both factors on 
the rhs in (3.2) are finite, it follows that S ~ 00 / < 00 and 
/EDp (L k ). Consequently, 

Dp(Ld=Dp(Mu); (3.3) 

this domain is dense in L p since it includes S(R). We re
mark (with respect to Assumption 1) that it suffices to as
sume simply that 77ELP for (3.3) to hold. 

Our first result concerns the closability of L k on its natu
ral domain Dp (Lk ) CL P(R). It is convenient to write Lk 
= A + B, where A and B are defined by 

(Ag) (v) =. - ik(Mu g) (v) (3.4 ) 

and 

(Bg) (v) =. - ik77(k,v) f: 00 g(v')dv' (3.5) 

for gEDp (Mu)' We first consider Mu' 
Lemma 3.1: The operator Mu is closed on its natural 

domain Dp(Mu), l..;p< 00. 

Proo/' Let {ha } be a Cauchy sequence in Dp (Mu) with 
h = lima ha and such that {Muha} is Cauchy with k 
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:=lima Mvha' Let XR be the characteristic function for 
[ - R,R]. ThenXRMv is bounded and IlxRMvll = R. By the 
dominated convergence theorem, limR~ 00 X R g = g for any 
geL p and limR~ 00 Mv XR g = Mv g for any gEDp (Mv)' 
Now we have 

lim MvXRh = lim lim MvXRha = k 
R-rf:) R-~ a ..... co 

(alllimitsareL PIimits). Consequently, there exists a subse
quence {MVXRnh} which converges to k pointwise a.e. as 
n-oo. However, MvXRh =XRMvh converges to Mvh 
pointwise a.e. so that Mvh = k a.e. Since keL p this implies 
that hEDp (Mv)' Hence, Mv is closed on Dp (Mv)' 0 

We note that in linear Vlasov theory there is a funda
mental difference between p = 1 and p > 1. For p = I, As
sumption 1 implies tht B is a bounded operator, whereas for 
p> I, B is unbounded. However, we have the following 
lemma. 

Lemma 3.2: The operator B defined in (3.5) is bounded 
relative to A, with relative bound zero. 

Proof: Forp = I,Bis bounded. Forp> I, it follows from 
(3.2) thatDp (B) :JDp (A). LetgEDp (A); then for any a> 0, 

IIBgilp = Ik 1111Jllp If 00 ~ (v + ia)g(v) I 
- 00 v + fa 

< Ik 1111Jllp II (Mv + ia)gllp [J~ 00 

dv ] l/q 

(zr + a2 )q/2 ' 

(3.6) 

where q-I + p-I = 1. Let Q(a)q be the integral on the rhs 
in (3.6). Then 

(3.7) 

for some P>O independent of a. As for q> I, (3.7) shows 
that lima_ 00 Q( a) = 0 and it follows from (3.6) that the A 
bound of B is zero. 0 

Corollary 3.3: The operator Lk is closed on its natural 
domain. 

Proof: By Lemma 3.2, B is relatively A bounded with a 
relative bound ofless than 1 and, by Lemma 3.1, A is closed 
on Dp (Mv); thus by a stability theorem l6 for closed opera
tors, Lk = A + B is closed on Dp (Mv) = Dp (L k ) by 
(3.3). 0 

When k = 0, Lk=o = 0 and for convenience we take 
L P(R) to be the function space in this case as well (this is 
the set of spatially homogeneous perturbations). We note 
that from a physical perspective the assumption that 
feDp (L k ) imposes very mild restrictions on! For instance, 
if / is piecewise continuous and decays to zero faster than 
lvi-I as lvi- 00, then/EDp (L k ). Moreover, if we consider 
D p (L k ) as a set of initial conditions for the evolution equa
tion (1.1) (as we will in Sec. IV), we see that the initial 
electrostatic energy, which is proportional to f~ 00 /(v)dv, is 
finite by (3.3), but the initial kinetic energy, which is pro
portional to f~ 00 v2/(v)dv, need not be finite. Hence, 
Dp (L k ) admits infinitely many states of infinite energy. 
There are additional problems which arise when we study 
the dynamics generated by Lk on L P; these are discussed in 
Sec. IV. For these reasons, we find it more convenient to 
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work with another family of Banach spaces, which we now 
define. 

We define a new norm on Dp (Mv) called the graph 
norm for Mv and denoted by 1I·IIMv. p: 

II gIIMv.P:= II gllp + IIMv gllp (3.8) 

for gEDp(Mv)' By Lemma 3.1, Dp(Mv) with the norm 
1I·IIMv.p is a Banach space. We call this Banach space Xp, as 
sets Xp CL P(R). We note that by (3.3), we could equally 
well consider the graph norm on Dp (Mv) relative to L k : 

(3.9) 

for gED p (Mv ). However, it is a consequence of Lemma 3.2 
that the two norms (3.8) and (3.9) are equivalent. For sim
plicity, we will consider Xp with the norm (3.8) and denote 
it by 1I'llr,p' 

Henceforth, we will consider Lk acting on its natural 
domain inXp, which we denote by D(Lk ); similarly, Mv acts 
onXp withdomainD(Mv)' We will also denote the operator 
norm onXp by 1I'llr,p' The main technical advantage to us
ing the spaces Xp is given in Lemma 3.4: This will also be 
used in Sec, IV. 

Lemma 3.4: The operator B defined in (3.5) on Xp is a 
bounded operator and liB Ilr,p < Ik 1111Jllr,p' 

Proof: Let a> 0 and set Q(a)q equal to the integral on 
the last line in (3,6). For any gEXp ' 

where a:= max (a, 1 ); the result follows from this and (3.7) 
upon taking a = P - q. 0 

Lemma 3.5: The operators Mv and hence Lk are closed 
onD(Mv) =D(Lk )· 

Proof: The equality D(Mv) = D(Lk ) in Xp follows just 
as in the discussion around (3.2). In light of Lemma 3.4 and 
the stability of closed operators under (relatively) bounded 
perturbations, 16 Lk is closed on D(Mv) if and only if Mv is 
closed. Let {ha } be a Cauchy sequence in D(Mv ) with 
Xp - lima~ 00 ha = hand Xp - lima_ 00 Mv ha = g. By 
(3.8) and the closedness of M v , this implies that 
LP -lima Mvha = Mvh. Let ka :=Mvha' Then 
L p - lima ka = Mvh and L p - lima Mvka = g. Since Mv 
is closed in L P, these imply that £P - lima Mv ka 
= M;h = g, so that Mv is closed on D(Mv) CXp. 0 

We remark that if/ED(Lk ), then / has finite energy. 
We now apply the method of spectral deformation de

scribed in Sec. II to the linear Vlasov operator Lk given in 
(3.1) onXp. Because of the form of L k, we find it convenient 
to work with the velOcity translation group on Xp defined as 
follows. For each k and BER, we define a transformation 
U( 0) on Xp by 

(U(O)/)(v) =/(v + Ok) , (3.10) 

where Ok = sgn(k)O. We note that U(O) is the restriction to 
the k th Fourier subspace ofthe group introduced in Ref. Lit 
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is standard to demonstrate that for each k, {U( 0) 100lR} is a 
strongly continuous, one-parameter group of bounded oper~ 
ators on Xp with U(O) -I = U( - 0) and for any fEXp' 

IIU(O)fllr.p<(1 + 10 1)lIfllr.p . (3.11) 

It is important to note that for OelR, 

U(O)D(Lk ) = D(Lk ) , (3.12) 

as follows from (3.3), the invertibility of U( 0), and the in
equality 

IIMvU(O)fllr.p<IIMvfllr.p + (210 1+ 10 1
2
)llfllr.p 

for any fED(Lk ). Consequently, we construct a family of 
operators on D(Lk ) for OelR by: 

Lk(O)=.U(O)LkU(O)-I. (3.13) 

For any fED(Lk ), we have 

(LdO)f)(v) = 

- ik [(V + Ok)f(v) + 1](k,v + Ok) 

XJ:",f(V')dv'] , k#O, 

0, k=O. 
(3.14 ) 

Lemma 3.6: For each OeR, Lk (0) is closed on D(Lk ) 
and a(Lk (0» = (7(Lk ). 

Proof It is easy to check that Lk (0) is closed on D(Lk ) 
using Lemma 3.5, (3.12), and the invertibility of U(O). As 
for the spectrum, let Rk (z,O) =.(z - Lk (0»-1. Then from 
the facts that Rk (z,O) = U(O)Rdz,O) U(O) -I and U(O) is 
invertible, it follows easily that 

IIRk (z,O) II = IIRk (z,O) II ' 

so thatp(Lk ) = p(Lk (O»and hence the spectra are equal. D 
We now consider the analytic continuation of LdO) 

onto a strip in the complex 0 plane. It is clear from (3.14) 
that this is possible only if 1](k,v), and hence Fo, has some 
analyticity properties which we now indicate. 

Assumption 2: Fo is the restriction to R of a function 
(also denoted by Fo) analytic on the strip 
So=.{zIIImzl <Oo} for some 00 >0 and analytic on the 
boundary of So. Furthermore, for any (7, reR such that 
ITI<Oo, 1](k,z)=.-(wpk- I)2 (JFoIJz) satisfies (i) 
1] (k,(7 + iT) and 1]' (k,(7 + iT)EXp as functions of (7 [here, 
1]' (k,z) =.d1](k,z)ldz], (ii) lim1ul _", 1](k,(7 + iT) = ° for 
any ITI <00 , and (iii) sUPI.,-1 </1" SO<: '" I 1] (k,(7 + iT) 12 d(7 < 00. 

Assumption 2 will be satisfied for many model equilibria 
Fo, e.g., Gaussians, Lorentzians, sums of Gaussians, etc. 
However, equilibria Fo that have compact support or vanish 
on open subsets of R ( as discussed, for example, by 
Weitzner l7

) obviously fail to satisfy such an analyticity as
sumption. In these cases spectral deformation can still be 
applied using a different choice for U( 0) which requires a 
weaker analyticity assumption. We discuss these cases brief
ly in Appendix B. Conditions (ii) and (iii) of Assumption 2 
will be used in Appendix A when we discuss the zeros of the 
dielectric functions. Note that Assumption 2 implies that 
1](k,z) * = 1](k,z*). 

There are several notions of analyticity for operator-
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valued functions. We refer the reader to Kato l6 or Reed and 
Simon 12 for the technical details. As discussed in Sec. II, we 
want sufficient conditions on Lk (0) such that Rk (z,O) is 
jointly analytic on some open subset of (;2. We prove that 
L k (0) for OeSo of Assumption 2 is an analytic family of type 
A. This type of analytic family is the easiest with which to 
work. 

Definition 3. 7: A family of closed operators A (0), 
0eN C (;, N open and connected is an analytic family of type 
A on N if and only if (i) A (0), 0eN have a common domain 
of closure D independent of 0 and (ii) for any 1/JED, A (0) t/J is 
an analytic vector-valued function on N. 

Theorem 3.8: Let Fo satisfy Assumptions 1 and 2. The 
family of operators Lk (0), OelR defined in (3.14) on 
D(Lk ) CXp extends to an analytic family of type A on the 
strip So with domain D(Lk ). 

Proof We check that conditions (i) and (ii) in Defini
tion 3.7 are satisfied. By Assumption 2, 1](k,v) is analytic on 
So and 1](k,v + i02 )EXp as a function ofv for 102 1 < 00 , With 
this assumption and (3.14), it follows that the natural do
mains of Lk (0) and Lk coincide: D(Lk (0» = D(Lk ). An 
argument similar to the proof of Lemma 3.5 shows that 
LdO) is closable on D(Lk ) and hence is closed on 
D(Lk (0» = D(Lk ) independent of OeSo. As for condition 
(ii), it suffices by (3.8) and (3.14) to check that 
OeSo-+1](k,v + Ok) andOeS~v1](k,v + Ok) are weakly LP 
analytic (because weak and strong analyticity are equiva
lent I6

). Let ij(k,v) denote 1](k,v) or v1](k,v); ijeS(R). Let 
t/JeSo; by Assumption 2 and Taylor's theorem for 10 I small 
such that t/J + OeSo, 

ij(k,Zk + Ok) = ij(kh) + 0kij'(kh) + R1/ (Oh) , 

where Zk =.t/Jk + v, the remainder is given by 

R (Oz ) = O~ i ij(k,s) df:' 
1/ 'k . f:' 2 ~ , 2m Ya (~ - Zk) (S - Zk - Ok) 

and Yu is the contour Yu={zk+(7ei~IIOI<(7<Oo 
-11m t/JI, <pe [O,21T]}. Now (LP)* = L q, where q = 00 if 

p = I and satisfies q-I + p-I = I for p> 1. Denoting the 
dual pairingf eL P, feL q by SO<:", I (v) * f (v) dv, we have, for 
any leLq

, 

O-'/(ij(k, +t/Jk +Ok) -ij(k, +t/Jk» 

=sgn(k) J:", I(v)*ij'(k,v+t/Jk)dv 

+ ~ f'" dv I(v)* i ij(k,s)ds 
21Ti - '" Ya (s - Zk )2(S - Zk - Ok) 

(3.15 ) 
and by condition (i) of Assumption 2 and Holder's inequali
ty, it follows that each integral in (3.15) is bounded. Since 
the limit as 0-+0 of the integral on the rhs in (3.15) exists 
and is zero, it follows that the map OeS~ij(k,v + Ok) is 
weakly and hence strongly L p analytic. This implies that 
L k (0) is strongly Xp analytic on So. D 

IV. THE SPECTRUM OF Lk(6) AND ITS DYNAMICS 

We study the analytic family of operators L k (0), OeSo 
acting onXp' with domainD(Lk ) = D(Mv)' In this section, 
we construct the resolvent Rk (z,O) =.(z - Lk (0»-1, deter-
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mine the spectrum of LdO), and prove an existence and 
uniqueness theorem for the family of evolution equations 
generated by Lk (0): a,g = Lk (O)g. When 0 = 0, the results 
presented here apply to Lk and we write Rk (z) =.Rk (z,O) 
for the resolvent of the Vlasov operator. We discuss k ;f0 in 
this section, the case k = 0 refers to the A = 0 eigenspace of 
the Vlasov operator L and consists of spatially homogeneous 
perturbations; we refer the reader to Ref. 1 for a discussion of 
the significance of this eigenspace. 

By a simple calculation from (3.14), one finds that for 
any f eXp ~nd fJESo, the inverse of (z - Lk (0» is given for
mally by Rk (z,O), where 

(R k (z,O) f)(v) 

=(Z+ik(V+Ok»-I[f(V) _ 1](k,v+Ok ) 
Ok (iz/k) 

xfOO f(v') dV'] 
- 00 v' + Ok - iz/k 

(4.1 ) 

for all z for which the rhs is in Xp. In ( 4.1 ), the function 0 k is 
defined by 

Odz)=.I+ ( (v-z)-I1](k,v)dv, 
Jr. 

(4.2) 

where r k is the contour {s + i 1m Ok ISER}. This function 
Ok is called the hybrid dielectric function. It is discussed in 
detail in Appendix A, along with related functions in Vlasov 
theory . We shall use the following notation for the integral in 
(4.1): 

H(f,O)(z)=. J:oo (v' + O-z)-'j(v')dv' (4.3) 

andH(f)=.H(f,O). 
We first show that the operator Rk (z,O) given in (4.1) is 

the resolvent of Lk (0). We need the following preliminary 
result on the functions Ok and H defined in (4.2) and (4.3). 

Lemma 4.1: (i) The function Ok (z) is analytic on 
c\r k for any Ok with 11m 0 1< 00 , (ii) For any fEL p and 
any ()eC, H( f,O) (z) is analytic on C\ {zllm z = 1m O}. 

Proof: (i) By condition (i) of Assumption 2, the integral 
in (4.2) converges absolutely for ZEC \ r k and is continuous 
on this set. Analyticity follows by an application of Morera's 
theorem: Let r be any closed curve (of finite length) in 
c\rk • Then 

( Ok (z)dz = ( dz ( (v - z) -11](k,v)dv 
Jy Jy Jr. 

and since the integrals in either order are absolutely conver
gent the order can be interchanged and the resulting integral 
vanishes by Cauchy'S theorem. 

(ii) To prove the second part of the Lemma, we require 
some simple estimates for H. Note that Iv + 0 - zl 
> Ilm(O - z) I; thus for p = 1, 

IH(f,O)(z) 1<llm(O - z) 1-111/111 . (4.4) 

For p > 1, we have q = p(p - 1) -I> 1; thus by HOlder's in
equality: 
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( (00 )1/q
] +UR Iv+Re(O-z)l-qdv , (4.5) 

where R > IRe(O - z) I and the integral is convergent. Now 
we show that 

~i~ IE-I[H(f,O)(Z+E) -H(f,O)(z)] 

(4.6) 

for any z and lEI ~ 1 such that 1m z;flm 0, Im
(z + E) ;flm O. This establishes the analyticity of H(f,O). 
Let Ilif(O,z + E) denote the quotient in (4.6). Then 

I~H(o,z+E)- J:oo (v+O-Z)-2f(V) dV I 

<IEIIJ: 00 f(v)(v + 0 - Z)-2(V + 0 - z - E)-II 

(4.7) 

For p> lone applies the Holder inequality on the rhs of 
( 4. 7) (after using a partition of unity relative to the interval 
[ - R,R], R > IRe(O - z) I, as in (4.5» and shows that the 
resulting integral is finite as E-+O. Hence (4.6) holds. For 
p = 1, one simply estimates the denominators. 0 

Let 0'0 denote the subset of C defined by 

O'O(Lk(O» 

=.{A=. - ikzIOk(z) = O}U{A IReA = Ik 11m O} 
(4.8) 

for any fJESo and define Po by 

Po(Lk (O»=.C\O'O(Lk (0». (4.9) 

Lemma 4.2: For any zEpo(Lk (0» and fJESo, Rk (z,O) 
defined in (4.1) is a bounded operator on Xp and for I eXp 

satisfies the bound 

IIRdz,O)fllr,p<IRez -Ik 11m 0 I-I 

X{1 + E(O,z)}lI/lIr,p , ( 4. lOa) 

where 

(4. lOb) 

and 

(4.lOc) 

and similarly for 111]IIIIr.p (whenp = 1, Q(z) is replaced by 
11m Ok - Rezlk I-II). 

Prool: This follows by simple calculation using estimate 
(4.4) and (4.5) and Assumption 2. Note that the estimate in 
(4.5) shows that Q(z) is finite. 0 

It follows from Appendix A that 0' o(L d 0» is a closed 
set, so that Po(Lk (0» is an open set. 

Proposition 4.3: The bounded operator Rk (z,O) defined 
in (4.1) is the resolvent operator Rk (z,O) for Lk (0), fJESo on 
Xp and hence P(Lk (0» = PO(Lk (0» and O'O(Lk (0» 
= u(Lk (0». In particular, 
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O'ess(LdO» = {A,EqRe z = Ik 11m O} 

and the set of eigenvalues of Lk (0), O'p(Lk (0», is 

O'p(Lk (0» = {AEqOk UA /k) = O} . 

Proof" We first _note that for_ any /EXp the function 
F(v,z)==(V-Z)-I/(V), where/ denotes/or Mvj, is 
strongly L p analytic for 1m z:;60 since one easily finds for 
zEC,\R and all E, lEI small, such that Im(z + E) :;60, 

{fOoo IE-1(F(v,Z+E) -F(v,z» 

- (V-Z)-2!(V)iP dvrp 

<IElllmzl-21Im(z + E)I-III!llp . 

Hence, (v - z) - I / (v), / EXp is strongly Xp analytic on 
C'\R.1t now follows by Assumption 2 on 1/, Lemma 4.1, and 
this observation that for any OESo, the map zEpcJ"""""+R k (z,O) j, 
/EXp is strongly analytic. Next, we note that by Holder's 
inequality (as in the proof of Lemma 4.2) and Assumption 
2, If~ 00 (Rdz,O) /)(v)dvl < 00 f~r any /EXp and since 
v(z+ik(v+ek»-I is bounded, Rdz,O)/ED(Lk ). By a 
direct calculation one shows that for all /EXp, OESo, and 
zEpo, 

(z - Lk (O»R k (z,e) /=/. 
Similarly, for any /ED(L k ), 

Rk (z,e)(z - Lk (61»/=/. 

(4.11 ) 

(4.12) 

By the analyticity of Rk (z,e), the identity principle for ana
lyticfunctions, and relations (4.11) and (4.12), Rdz,e) is 
equal to the resolvent of Lk (0) restricted to Po; thus 
Po Cp(L k (e» and (z - L k (e» - 1 is an analytic continu
ation of Rdz,e). However, it is obvious from (4.1) that 
~k (z,e) cannot be continued beyond Po; thus Po = P and 
Rk (z,e) is the resolvent of Lk (e). The eigenvalues of Lk (e) 
(poles of the resolvent) come from the zeros of Ok and 
0' ess (L k (e» is the complement of the set of isolated zeros of 
Ok in u(Lde». (It is shown in Appendix A that Ok has 
finitely many isolated zeros of finite multiplicity off the con
tour r k .) 0 

• 

The O'(Lk ) and u(Lk (e» for OES 0- are shown in Fig. 7. 

Embedded Eigenvalue 

• 

o 

(a) 

e 
Resonance of Lk 

FIG, 7. The spectrum of the linearized Vlasovoperator L k , k ,.,0 consists of 
(a) the essential spectrum equal to the imaginary axis IR and discrete eigen
values which occur in symmetric pairs or embedded in IR. After a complex 
velocity translation, o(Lk (19», shown in (b), consists of the translated line 

- 1 k 1m 191 + IR and discrete eigenvalues, 
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Remarks 4.4: (i) The results obtained thus far in this 
section and in particular, Proposition 4.3, apply to the ana
lytic family Lk (e), OESo on the domain Dp (Mv) CLP(R), 
with the appropriate modification of the norms. 

(ii) In light of the Lemma 3.4 and (3.14), Lde) is 
obtained from the multiplication operator M _ ik(v+ ()k l by a 
compact (rank 1) perturbation U( e)BU( e) -I. By a gener
alized Weyl theorem/8 it then follows that O'ess(Lde» 
= O'ess (M _ ik(v+ ()k l ) = lR + Ik 11m e. Hence, the effect of 
the complex velocity translation is to shift the essential spec
trum of Lk into the left half-plane for 1m 61 < 0 and into the 
right half-plane for 1m 61 > O. 

(iii) An interesting distinction between the spectral re
sonances of Lk and the resonances one finds for self-adjoint 
operators is the symmetry of the Lk resonances with respect 
to 1m (e). For self-adjoint operators, resonances are only 
found for one sign ofIm(e); however, for the Vlasov opera
tor a resonance for 1m 61 < 0 implies the existence of a reso
nance for 1m 61>0. Consider first the case Im(e) <0; then 
the zeros of Ok (z) that lie in the strip {ziO 
> sgn(k)lm(z) > Im(e)} correspond to eigenvalues of 
Lk (e) which have been "uncovered" by the deformation: As 
discussed in Sec. II, they are spectral resonances for L k • For 
Im(e) >0, it is the roots of Ok (z) in the conjugate strip 
{ziO < sgn(k)lm(z) < Im(e) }that locate the resonances. If 
we explicitly indicate the dependence of the hybrid function 
(4.2) on 61 by writing Ok (z;e), then the symmetry of this 
function with respect to 0 ..... - 61 may be expressed as 

!ldz;e)* = !ldz*; - e) , 

which follows as 1/(k,z) * = 1/(k,z*). Thus a resonance for 
1m 0 < 0 implies a conjugate resonance for 1m 61 > O. In Ref. 
1 particular attention was paid to the 1m 0 < 0 resonances 
since these correspond to the Landau damped electrostatic 
modes and are significant for the initial-value problem. 

The final topic in this section is the existence and 
uniqueness of solutions to the initial-value problem associat
ed withLk (e): 

J,g=Lk(e)g, g{t=O)ED(Mv)' (4.13) 

Following Sec. III, it is convenient to write 
Lk (e) = A + B(e), where, for gED(Mv), 

(Ag)(v) == - ik(Mvg)(v) (4.14a) 

and 

(B(e)g)(v) 

== - ik [Okg(V) + 1/(k,v + ed f: 00 g(V')dV'] . 

(4.14b) 

We show below that A generates a one-parameter contrac
tive semigroup on LP(R) or Xp. When p = 1, B(O) is a 
bounded operator on L 1 (R) and it follows from analytic 
perturbation theory for contractive semigroupsl6,19 that 
L k (8) generates a quasibounded semigroup. When p> 1, 
however, B(e) is not bounded on LP(R); by Lemma 3.2 
B( e) is only relatively A bounded. Moreover, B( e) is not 
closable on L P(R) and, consequently, perturbation theory 
cannot be used. Another possibility is to use the Hille-Y 0-

sida-Phillips theorem,19 which characterizes generators of 
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quasibounded semigroups. Although Lk (0) satisfies the 
spectra criterion, it is not clear how to compute the necessary 
uniform bounds on the nth power of the resolvent. 

To circumvent this difficulty we solve (4.13) on the 
Banach space Xp. It follows from Assumption 2 and Lemma 
3.4 thatB(O), BESois boundedonXp. To apply theperturba
tion theory to Lk (0), we first note the following lemma. 

Lemma 4.5: The closed operator A on D(Mv ) CXp gen
erates a strongly continuous, one-parameter group of isome
tries U)Ol, IER, with IIU}O'llr.p = 1 and U<:!.lt = (U)Ol)-I. 

Proof This proof follows from the Hille-Phillips 
theorem. 16 For 1>0, it suffices to check that (i) 
(- oo,O)Cp(A) and (ii) II(A +A)-lllr.p,,;;A -I, A>O. 
However, it is obvious that (T(A) = IR; thus (i) is satisfied 
and as II(A - ikMv)-lllr.p,,;;A -I so is (ii). By symmetry, 
the argument extends to 1..;;0. These operators clearly form a 
group as (U~Olg) (v) = eikvtg(v), IER, gEXp. 0 

To discuss L k ( 0) , we use the following abstract 
theorem to treat the perturbation B(O) of A. 

Theorem 4.616
: Let Tbe the generator of a contractive 

semigroup on a Banach space X and let S be a bounded oper
ator on X. Then T + S generates a quasi bounded semigroup 
W"~ t>Oand 

II Wtll..;;etIiSII, 1>0. (4.15) 

In view of the above discussion we can apply this 
theorem to A + B( 0) and obtain the following proposition. 

Proposilion 4. 7: The closed operator L k (0), OESo gener
ates a strongly continuous one-parameter group of bounded 
operators {Wt IIER} on Xp satisfying 

II Wtllr.p..;;exp{11 I [1117ollr.p + 101]lkl}' (4.16) 

where 11170 IIr.p = 11170 lip + IIM v 170 lip and 11170 lip is defined in 
(4.1Oc). 

Proof For 1>0, it follows immediately from Lemmas 3.4 
and 4.5 and Theorem 4.6 that A + B(O) generates a strongly 
continuous quasibounded semigroup W) + l (formally, 

W ( + l - tLk(Ol) d 
t -e an 

II W) + 'Ilr.p..;;/IIB(O"'r.p
, 1>0. (4.17) 

By (4.14) and Lemma 3.4, 

IIB(O)llr,p..;;lkl[IOI + l117ollr.p]. (4.18) 

For 1..;;0, we note that this is equivalent to proving that 
- Lk (0) generates a semigroup for 1>0, which is obvious 

from Lemma 4.5 and Theorem 4.6; we call this semigroup 
W ~ - l, 1..;;0. This satisfies a bound similar to (4.17) and 
( 4.18), with I I I instead of I. We next constructthe group WI> 
IER. For any tER, define 

{

I, 

W = W(+l 1>0, (- t , 

W~ - l, 1<0. 

1= 0, 

( 4.19) 

Then to show {W, IIER} is a group, it suffices to prove that 
W)+lW~-tl = W~-tlW)+l = 1 for all 1>0. Let 
L, =. ± r- I

( W<l,l - 1), r>O. Then for any gED(Lk ), 

s -lim L,g = Lk (O)g. 
,-0 
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bounded for I> 0, it follows that W~±t l: D(Lk ) ..... D(Lk ). 
Consequently, for any gED(Lk ), 

at W~±tlg=s-lim W~±tlL,g= ±LdO)W~~'g 
,-0 

= ± W~±tlLk(O)g. (4.20) 

Now we compute by (4.20) that 

at W~ + lW~-tlg = 0, 

so that W~ + l W<_-, 19 = g. Since D(Lk ) is dense and W~ ± l 
are bounded, W ~ + l W ~ -, l = 1 and similarly for 
W(_-, l W~ + l. Hence, (4.19) defines a group which satisfies 
( 4.16) and is strongly continuous. 0 

This result allows us to construct solutions to the initial
value problem (4.13). 

Theorem 4.8: For each BESO and gED(Lk ) CXp there 
exists a unique, strongly continuous map IER ..... g(t)ED(Lk ) 
such that for all IER, 

(4.21) 

(in the strong sense) and g(t = 0) = g. Moreover, 
g(t) = W,g, where IER ..... W, is the strongly continuous 
group generated by L k (0) and 

. IIg(t) Ilr,p ..;;exp{11 I [11170 IIr,p + 10 I] Ik 1}llgllr,p . (4.22) 

Proof For any gED(Lk ), set g(t) =. W,g, where Wt is 
constructed in Proposition 4.7. Then IER ..... g(t) is strongly 
continuous, g(t = 0) = g, and (4.22) follows from (4.16). 
That (4.21) is satisfied is proven in (4.20). To prove unique
ness of the solution suppose that h(s) is another solution of 
(4.21), with h(s)ED(Lk ) for allsER and h(O) = g. Then for 
any I, 

as W,_sh(s) = - W,_sLdO)h(s) 

+ W,_sLdO)h(s) = 0 

by (4.20) and (4.13) for h(s). Hence, Wt_sh(s) =g(t). 
Applying Ws _, to both sides of the above equation we ob
tain h(s) = Wsg. 0 

v. EIGENFUNCTION EXPANSION FOR L k (6) 

We derive an expansion for any gED(L i) CXp in terms 
of the eigenfunctions of Lk (0) and a convergent spectral 
integral involving generalized eigenfunctions of Lk (0). The 
derivation is based upon the inverse Laplace transform of 
Rk (z,O), ZEp(Lk (0», BESo: 

(5.1 ) 

which is proved to be strongly convergent for all gED(L i ) 
and t>O. The map IER+ ..... G(t) extends to a strongly con
tinuous map on [0,(0) and is shown to be a solution of the 
evolution equation (4.21) with the initial condition g. 
Hence, by the uniqueness part of Theorem 4.8, G(I) = W,g, 
where W, is the evolution group constructed in Proposition 
4.7. 

We first consider the integral in (5.1). We will work 
with BES 0- =.{O I - 00 < 1m 0 < O}, so that (Tess (Lk (0» lies 
in the left half-plane. By Proposition 4.3 and Corollary A4 of 
Appendix A, o(Lk (0» lies to the left of the contour 
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r = {y + iriTER} for any y> Ik 11171111; see Fig. 8. Let 
r",=:{y+irllrl<w}. 

Lemma 5.1: For any geD(L iJ, t> 0, 0eS 0- and for y 
such that Ik 11171111 < y < 00, the limit on the rhs of (5.1) ex
ists. Furthermore, the map tER+ - G(t) extends to a strong
ly continuous map on [0,00) and G(O) = g. 

Proo/" From the identity 

1 = (z - Lk (0) )Rk (z,O) = ZRk (z,O) - Lk (O)Rk (z,O) 

we obtain 

Rk(z,O) =Z-I + z-ILdO)Rk(z,O) . 

Iterating this identity once more yields 

Rk(z,O) =Z-I + z-2L k (0) +z-2L k(0)2R k(z,0). (5.2) 

Let y> Ik 11171111' w>O, t>O and consider the integral in 
( 5.1 ) . Using (5.2), we see that there are three integrals over 
r", to evaluate. By contour deformation, the first integral is 

lim (21Ti)-I(f ~'z-Idz)g=g. (5.3) 
w-oo Jrw 

Similarly, for the second integral we obtain 

!~~ (21Ti- I )(L
w 

~'z-2dZ)Lk(0)g=tLk(0)g. (5.4) 

Let l(w) denote the third integral: 

l
Y+i'" 

l(w)=:(21Ti)-I. . ~'z-2Rk(Z,0)Lk(0)2gdz. 
y-1W 

We show that {l(w) IWER +} forms a Cauchy sequence. We 
use the estimate on the resolvent from (4.10): 

IIRk (z,O)lIr,p«Y + Ik 1m 0 I )-1{1 + €(O,z)} 

since 0eS 0- and ZEr ",' Using the bound 

10k Uzlk) I;;d -y- 1Iklll7111111 

for ZEr", and evaluating (4.1 Ob) for Q(z), ZEr"" it follows 
that €( O,z) depends only on y = Re z. Since 
Lk (0)2R k (z,O)g = Rk (z,0)LdO)2g, we obtain, for 
w > w' > 0, 

IIl(w) -1(w')11 

«21T)-111 (L," - LJ~'z-2Rj(Z,0)LdO)2gdZII 

<KeY'(y + Ik 1m 0 I) -IIiLk (0)2gllr,p(L~ r ~ ~) 
(5.5) 

I 
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FIG. 8. The contour r for the inverse Laplace transform (5.1) is chosen to 
lie to the right of a(Lk (0», 1m 0 < O. 
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for some K> 0 depending only on 71, y, and 1m Ok' As 

i'" ds - -I[t _I(W) t -I(W')] ----y an - - an -
""r+~ y y 

we see that the sequence is Cauchy by the properties of 

tan-I u. Hence, s -lim l(w) exists and we have 

lim Ill(w)II <y-Ie'YM1IILk (0) 2g11 r,p . 
"'-00 

Hence, it follows from (5.3)-(5.5) that the strong limit of 
the integral in (5.1) exists and is bounded above by 

IIG(t) IIr,p < IIgllr,p + It IIiLk (O)gllr,p 

+ y-Ie'YMdiLk (0)2gll r ,p . (5.6) 

It is clear from (5.3)-(5.5) that G(t) can be extended to 
t = O. For t = 0, the integral (5.5) can be made arbitrarily 
small by taking y large [by (4. lOb), K is a decreasing func
tion of y], so that G(O) =g. The strong continuity of 
tE[O,oo) -G(t) follows from the identity 

G(t) = g + tLk (O)g + (21Ti) -I L ~'z-2Rk (z,O) 

(5.7) 

and the continuity of each term [the continuity of the inte
gral follows from the majorization in (5.6)]. D 

Lemma 5.2: For any geD(L i), the map 
tE[O,oo) -G(t) defined in (5.1) is strongly differentiable 
and satisfies 

a,G(t) =Lk(O)G(t), G(t=O) =g 

and, consequently, G(t) = W,g. 
Proo/" LetgeD(L i). From identity (5.7) we have 

a,G(t) = Lk (O)g + (21Ti)-1 L ~'Z-I 

XR k (z,0)LdO)2g dz (5.8) 

since the integral in (5.7) is strongly differentiable in t. This 
can be seen by computing the strong derivative directly. 
[The integral in (5.8) converges by the same argument giv
en in the proof of Lemma 5.1.] Next, note the identity for 
t>O used in (5.3): 

lim (21Ti)-1 ( z-I~'=l, 
w- 00 Jr w 

so that the rhs of (5.8) can be written as 

(21Ti)-1 L [Z-I +z-IRk(Z,O)Lk(O)]~'Lk(O)gdz 

= (21Ti)-1 L Rk(Z,O)~'LdO)gdz 
= Lk(O)G(t) . 

The last equality follows by the fact that Lk (0) is closed. 
That G(t) can be extended to t = 0 and G(O) = g was prov
en in Lemma 5.1. Finally, by the uniqueness part of Theorem 
4.8, G(t) = W,g. D 

Remark 5.3: Although the contour integral (5.1) pro
vides a solution to the initial-value problem (4.13) associat
ed with L k ( 0), it is difficult to establish from (5.1) that 
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L k (B) generates a one-parameter group and that G( t) satis
fies the exponential bound (4.22). 

Weare now in a position to construct the eigenfunction 
expansion for G(t), gED(L ~) by deforming the contour 
r={y + irlrER} in the integral (5.1). We will assume that 
Fo satisfies Assumptions 1 and 2. Moreover, without addi
tional information on the behavior of 7J(k,z) on the bound
ary of its domain of analyticity 1m z = + Bo, we must limit 
the maximum complex translation such that 11m B I < Bo - 8 
for some small 8> O. Then by the results of Appendix A, 
o(Lk (B» consists of finitely many isolated eigenvalues of 
finite multiplicity and the line {zl Re z = - I k 11m B} (on 
which there may be at most finitely many embedded eigen
values). Since we are interested in the contribution from the 
damped modes, we will take fJES 0- • 

The eigenfunction expansion that we derive here ex
presses W,g for t> 0 in terms of a finite sum over the eigen
functions of Lk (B) (including those corresponding to the 
embedded eigenvalues) and an integral over the essential 
spectrum of L k (B). This integral is shown to converge abso
lutely in Xp and can be interpreted in terms of distributional 
solutions to the eigenvalue equation for Lk (B), i.e., general
ized eigenfunctions. The weights for the eigenfunctions are 
given by the dual pairing between X; ~L q(R) and Xp, 
which we write as (J,I)EXp XX;f---+.(I!) and with AEC, 
(AI!) = A *(1!) [i.e., an extension of the dual pairing for 
L p and L q = (L P) * introduced above] . 

The eigenfunctions and generalized eigenfunctions of 
Lk (B), k #0 are derived in Ref. 1 and we simply list them 
here. Let z=iAk -I, where Lk (B)f/! = Af/!. Let {A):"= I de
note the eigenvalues of Lk (B) and let Zj = iAj k -I. The iso
lated eigenvalues of Lk (B) are given by the roots Ok (Zj) = 0 
which satisfy 1m (B k - Zj) # 0 and the corresponding eigen
functions are 

f/!k,j(V) = - 7J(k,v + Bd/(v + Bk - z) . (5.9) 

The embedded eigenvalues satisfy 0i ±) (Zj) = 0 and 
Im(zj-Bk ) =0, where 0i±)(z)=limE _ o+ 0dZ±E). 
The eigenfunctions have the same form as in (5.9): 

f/!k,j (v) = - 7J(k,v + Bk )/(v + Bk - z) . (5.10) 

Note that Ok ±) (Zj) = 0 implies 7J(k,zj + Bk ) = 0; thus f/!k,j 
is not singular. Note that by Assumption 2, f/!k,jEXp. The 
generalized eigenfunctions corresponding to points with 
1m Z = 1m Bk , 0i + ) (z) or 0i - ) (z), or both nonvanishing 
are given by 

f/!k,z(V) =P[ -7J(k,v+Bk )/(v+Bk -z)] 

+ OJk (z)t5(v + Bk - z) , (5.11 ) 

where lim .. _o+ O(±)(Z±E) =OJdz) ±i1T7J(k,z) for Imz 
= 1m Bk and P denotes the Cauchy principal value. 

The action of L k (B) on Xp induces an adjoint operator 
Lk (B) + acting on the dual space X;: It is densely defined 
and closable. 16 By a simple calculation from (3.14), we find 

(LdB)+g)(v) = ik [(v + B!)g(v) 

+ f: '" 7J(k,v' + B!)g(V')dV'] 

( 5.12) 

2831 J. Math. Phys., Vol. 30, No. 12, December 1989 

for gED(Mv) ex;. As above, we list the eigenfunctions for 
L k (B) + using the scaled eigenvalues z* = iA * k -1. As 
in Ref. 1, we write the eigenvalue equation as 
LdB)+~k =A*~k' The isolated eigenvalues {Aj}:,,!,1 sat
isfy 1m (B k - Zj ) # 0, Odzj) = 0 and the eigenfunctions 
are 

The embedded eigenvalues {A j} satisfy Ok ± ) (zj) = 0, 
1m (B k - Zj) = O. There are two linearly independent eigen
functions 

~i~}(v)=t5(v+B!-zj), (5.14a) 

~ i~} (v) = P [ - c(2)(k,B)/(v + B! - z*)], (5.14b) 

where the normalization constant C(2)#0. The generalized 
eigenfunctions corresponding to A * = iz* k - I EUess (L k (B», 
Imz= 1m Bk are 

x {p [ - 7J ( k,z) * I (v + B! - z*) ] 

+ OJdz)*t5(v + B! - z*)}, (5.15 ) 

where OJ k is defined after (5.11 ). We can now state the main 
theorem. 

Theorem 5.3: Let Fo satisfy Assumptions 1 and 2. Let 
gED(L l) and fJES 0- , with 1m B> - Bo + 15 for some 8> 0 
small. Let g(t) = W,g be the solution to the evolution equa
tion a,g(t) = Lk (B)g(t) as described in Theorem 4.8, with 
the initial condition g. Let {AJ:"= I be the eigenvalues of 
L k (B) (which we assume for convenience are simple). Then 
there exist constants cj (g,B) given by 

Cj(g,B)=(~k,j,g) (5.16) 

and a distribution A z (g,B) with 1m z = 1m Band 

A z (g,B) = (ilk I)-I(~k,z,g) (5.17) 

such that for all t>O, 
N 

(W,g)(v) = L /'lcj(g,B)f/!k,j(V) 
j=1 

f
i"'-Iklmll l 

+ lflAjzlk (g,B)f/!k,jZlk (v)dz. 
-j", -Iklmlll 

(5.18 ) 

The integral is absolutely convergent and defines an element 
ofXp. 

Proof: (i) By the hypotheses, it is shown in Appendix A 
that there exists y>O such that o(Lk(B»e{zIRez<y}. 
Hence, W,g=g(t) is given by the contour integral in (5.1) 
for t> O. Choose E, 0 <E< 1 such that o(L k (B» 
n{zl- Ik 1m B I <Rez< -Ik 1m B 1+ d = ¢; see Fig, 9. 
For any R > 0, let r R,E be the closed rectangular contour, 
with the sides rl,R ={y + iYI - R<y<R} and r 2,R 

={ -Ik 1m B 1+ E + iyl - R<y<R} and the ends E 1 
={x ± iR I - Ik 1m B 1+ E<X<y}. We can take R so large 
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fT 
II 

iR 

-Ik Im81 /'" 

II L k (81)--..---' 

-iR 

+ -E
R 

~ 

-rZ,R r l , R 
~ 

~ 

'\ 0 M y 

-lklm81 +~ 

FIG. 9. The contour r R.E = r'.R U ( - E it)U ( - r2.R) UE R appearing 
in the contour integral (5.19); E and R are chosen such that all eigenvalues 
of L. (8) with real parts greater than - I k 1m 8 I lie within the contour. 

that all the eigenvalues of Lk(O), {A)j"~I' with ReAj 

> - Ik 1m 0 I, lie within r R,E' Let 

I(z) == (217'i) -lez'Rk (z,O)g . 

Then by the residue theorem, 

t
R 

•• I(z)dz = jtl /l Res(I(z) ,iAjk -I) 

where Res( J,zo) is the residue of/at zoo By Lemma 5.1, 

1~~ t"R I(z)dz = g(t) . (5.20) 

We show that 

1~~ L± I(z)dz=O. 
R 

(5.21) 

SincegED(L l) we can use identity (5.2) in (5.21) and show 
that each integral vanishes as R -+ 00. For the first integral, 
we have 

<;R -Iey,( r + Ik 1m 0 I - E) Ilgllr,p 

and for the second, 

IILl z-2~'LdO)gll r.p 

<;R-2eY'(r+ IklmOI-E)IILdO)gllr.p' 

(5.22a) 

(5.22b) 

Equations (5.22a) and (5.22b) vanish in the limit R-+ 00. 

For the third integral, we must estimate IIRk (z,O) II, zEE if. 
From (4.10), it follows that for all R sufficiently large, 

IIRk (z,O) IIr,p <;E-IM( 1],O,E) 

for some constant M depending on 1], 1m 0, and E, but inde
pendent of R. Hence, we have 

IILI z-2~'Rk(Z,O)LdO)2gdZllr,p 

2832 

<;R -2E-'eY'M(r + Ik 1m 0 1- E)IILk (O)2g ll r ,p . 
(5.22c) 
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From (5.22a)-(5.22c), we see that (5.21) holds. Conse
quently, (5.21) and (5.20) imply, by virtue of (5.19), that 

WIg = lim _1_. r ~'Rk (z,O)g dz 
R- 00 217'1 Jr2•R 

N, 

+ L /lRes(I(z),iAjk -I). (5.23 ) 
j=1 

(ii) With reference to Fig. 10, we define the following 
contours. Let r.+ denote limR _ oo r2•R and on the Ihs of 
{zlRez = -lklmOI},wedefinerE~=={-lklmOI-EI 
+ iylJlER} and r3,R =={ -Ik 1m 0 1- EI + iYI - R 
<;y<;R}; for lU > 0 let r "',R =={ -lU + iYI - R<;y<;R} and 
E!R =={x ± iR I -lU<;X<; - Ik 1m 0 1- EI}. Let 
{Aj }j",; N, + I denote the eigenvalues of L k (0) lying in 
{zl Re z < - I k 1m 0 I}; we assume E I > 0 is chosen small 
enough such that a(Lk(O»n{zl-lklmOI-E,<;Rez<; 
- Ik 1m 0 I} = ¢. We now denote by E the minimum of EI 

and E from part (i). By taking lU and R sufficiently large we 
have, by the residue theorem, 

N, L Res(I(z),iAjk -I) 
j=N, + I 

= ( r - r + i -i )I(Z)dZ. 
Jr],R Jr'V,R E,-:;'R E(~R 

We show that for fixed R, 

lim r I(z)dz = 0 
W-oo Jr (v,R 

and then that 

lim lim i I(z)dz = 0 . 
R-- 00 w- 00 E (~R 

To prove (5.25), we have 

!~n; lit I(z)dz II 
lV,R r,p 

<; lim 2 Re - ",I [ sup. IIRk (z,O) II r,p] 
w ...... 00 ZE[W - IR,w + IR ] 

X Ilgll r,p = 0 

iR 

+ 
~ .. 

w 

(5.24) 

(5.25 ) 

(5.26 ) 

(5.27) 

FIG. 10. The contours lying on the Ihs of 17"",(L. (8») used in identity 
(5.24). 
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since (supliRk (z,O)llr,p) = O(w- I
) by (4,10), As for 

(5.26), we use identity (5.2) and show that each integral 
vanishes. For the first integral we have 

IIL£R z-I~'gdZllr,p 
<,R -I r- w 

e" dsllgllr,p 
Jlklmol-£ 

<, (Rt)'-:'I [e - (Ik 1m 01 H)' _ e - W'] Ilgllr.p (5.28) 

and a similar estimate holds for the second integral. For the 
third integral, we again use the estimate on the resolvent 
(4.10) and obtain IIRk (z,O)llr,p = O(C I ) for zEE ~R [as 
after (5 .22b ) ]. Hence, (5.26) holds. 

(iii) We now combine (5.24)-(5.28) with (5.23) to 
obtain the following representation of WIg: 

N, 

WIg = I Res(~'Rk (z,O)g,iAjk -I) 
j~ 1 

+ (L.+ -L.- )~'Rk (z,O)gdz, (5.29) 

where both integrals converge in the strong Xp sense and the 
sum is over all isolated eigenvalues of Lk(O), i.e., Re(zj) 
=1= - I k 1m 0 I. That the coefficients cj (g,O) for these eigen
values are given as in (5.16) (assuming that they are simple) 
can be easily seen by evaluating the residues and using for
mulas (5.9) and (5.13). The contour integrals in (5.29) can 
be evaluated by first taking the limit as E ..... O+ for R suffi
ciently large and then the limit as R ..... 00. This argument is 
presented in Ref. 1 for the case of no embedded eigenvalues 
and can easily be extended to include embedded eigenvalues. 
As showl} in Ref. 1, the E ..... O+ limit requires the existence of 
boundary values of the hybrid dielectric function 
Ok (r + Ok ± iE), reR. By Assumption 2 and the condition 
that 1m 0> - 00 + 8, the boundary values exist and are 
continuous on r k =={ - Ik 1m 0 I + iylyER}.20 0 

Remark 5.4: (i) Let / be a U( 0) analytic vector and 
defineg= U(O) f Letg(v,t) be the solution to the evolution 
equation (4.13), with the initial condition g. In Ref. 1, it was 
shown that U(O) -I g(v,t) is equal to/(v,t), the solution to 
the evolution equation for Lk with the initial condition f 
One can obtain another proof of this result using the eigen
function expansion (5.18) directly. If U( 0) -I is applied to 
the finite sum in (5.18), one finds that the contribution from 
the zeros of Ok with non-negative real parts is identical to 
that obtained in the van Kampen-Case expansion for/ (un
stable and neutral modes). The contributions from those 
zeros of Ok with -Ik 1m 0 I <Rez<O correspond to the 
Landau resonances and do not appear in the van Kampen
Case expansion. The amplitude of these modes are the same 
(independent of 0) as in the usual Landau theory. What is 
interesting is that evaluation of 

f
iOO-'klmo, 

U(O)-I eZ'Aizlk(g,O),pk,iZldv) 
-ioo-lklmOI 

by contour deformation yields three contributions. One con
tribution precisely cancels the finite sum over the Landau 
resonances. Another contribution provides the contribution 
to/(v,t) from the stable van Kampen-Case eigenfunctions 
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(Re z < 0) and one contribution is the van Kampen-Case 
spectral integral for Lk over the real axis. Hence, one recov
ers the van Kampen-Case eigenfunction expansion for 
/(v,t). 

(ii) By applying U(O)-I tog(v,t) as described in (i), 
we obtain an expansion for / (v,t) in which the physically 
observed Landau damped waves appear explicitly in the sum 
over resonances: This has the form 

/(v,t) = I cj(/)e-ikZ/,pk,j 

where 

A,(z) ~O 

Rezj>O 

+ I d l (/)e - ikz/,pk,1 
£,(z,) ~O 

-lklmOI<Rez,<O 

J
ioo-Iklmol 

+ AiZ1k(U(0)J,0) 
-ioo-lklmOI 

XU(O)-l,pk,izld v) , 

,pk,j (v) = 1](k,v)/(v - Zj) . 

(5.30) 

Note that the rate of decay ofthe integral in (5,30) is faster 
than that for the Landau resonances. Hence, in the absence 
of zeros of Ak with positive real part, the Landau resonances 
determine the time-asymptotic behavior of/ (v,t). Compari
son of the results discussed here with the van Kampen-Case 
expansion described in Ref. 1 shows that the spectral defor
mation method provides for a decomposition of the van 
Kampen-Case spectral integral in such a way that some of 
the resonances are exhibited. The number of resonances ap
pearing depends upon the size of the complex velocity trans
lation (and hence the analyticity of 1] and /). 

(iii) Weitzner1
? has observed that the time-asymptotic 

behavior of the electrostatic potential ¢' k (t) or electric field 
Ek (t), both of which are proportional to S /(v,t)dv, is domi
nated by terms O( t - N ), rather than an exponential, if the 
initial perturbation/is not analytic in a strip around the real 
axis. We note that such vectors in Xp are not U( 0) analytic 
vectors. Indeed, for such nonanalytic vectors, (5.30) is not 
valid. Recalling the normalization of eigenfunctions, (5.30) 
predicts exponential decay of the electric field E k (t) for sta
ble equilibria [all cj ( /) = 0]. 

(iv) The electric field amplitude Ek (t) computed from 
(5.30) agrees exactly with that computed using the one-sid
ed Laplace transform method as utilized by Landau.6 This 
can be seen by evaluating the coefficients cj (/) and d k (/) 

as in Theorem 5.3, using the normalization S,pk,j (v)dv = 1, 
and evaluating the integral over v of the integral in (5.30). 
Hence, we easily obtain the usual results using this new ex
pansion for f 

(v) We mention related results obtained by Tro
cheris21 ,22 and Degond,z3 Trocheris introduces a modifica
tion of the linearized Vlasov operator L such that the 
damped modes appear as true eigenfunctions of this modi
fied operator. This modification is obtained by redefining the 
velocity integral in Poisson's equation. Degond considers 
the inverse Laplace transform formula (5.1) on L 1 (R X R) 
and deforms the contour of integration into the left-half 
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plane after defining a merom orphic continuation of the re
solvent of Lk into that region: Hence, he obtains an expan
sion for/similar to (5.30). 
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APPENDIX A: DIELECTRIC FUNCTIONS 

Three related analytic functions appear in our discus
sion of the linearized Vlasov operator (see, also, Ref. 1) and 
we present some properties of these functions in this Appen
dix. Let 1](k,v) be as defined in (1.3). We assume that the 
equilibrium distribution Fo and 1] satisfy Assumptions 1 and 
2. We assume k # 0 and let p == sgn (k) and (h == pO, as above. 

DefinitionAl: (i) The Case-van Kampen spectral func
tion Ak (z) is defined for any zeC\.R by 

A k (z)==l+ f:oo (v-z)-I1](k,v)dv. 

(ii) The Landau dielectric function €k (z) is defined for 
any z with p 1m z> - °0 , where 00 is given in Assumption 2 
by 

€k (z) == 1 + i (v - z) -11](k,v)dv, 

where L is the Landau contour as shown in Fig. 11. 

(0) Ek (z). k > 0 

• Imz >0 

L 

(b) .o.k (z) o • z 

k>OEllm8<o 

o 

FIG. 12. An illustration of the various relations between the functions Ok' 
Ek • and Ak • depending on 1m z. for the case ofsgn(k) >0 and 1m 8<0. 

(iii) The hybrid dielectric function Ok (z) is defined for 
any z with 1m z#lm Ok by 

0k(z)==1 + f (v-z)-I1](k,v)dv, 
Jr. 

where r k =={veC!lm v = 1m Ok} (see Fig. 11) and 
11m Ok 1<°0 , 

lt follows from Lemma 4.1 that functions (i)-(iii) are 
analytic (also in the strong Xp sense) on the regions where 
they are defined. As is well known, €k (z) can also be defined 
as the unique analytic continuation onto R of the function 
Ek (z) given by 

{
Adz), 

Ek(Z)== Adz) + 21Ti1](k,z) , 
klmz>O, 

0> k 1m z> - 00 • 

Functions (i)-(iii) are simply related: To describe the 
relationships, we must consider the boundary values of these 
functions on the boundaries of their regions of analyticity. 

o 
0> rmz >-8

0 

FIG. II. Contours used in the definition of (a) E. (z) and (b) O. (z). The location of the contours depends on sgn(k) and sgn(Im 8). 
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We define 

A(±)== lim A(x + i€), xeR, 
£-0+ -

Ok ± )(r + ilm Ok) == lim 0k(r + ilm Ok ± i€), TER. 
E_O+ 

It follows from Assumption 2 that these boundary value 
functions are continuous and, in fact, Holder continuous 
with the Holder index 1 - € for any € > 0. 20 As above, we 
assume 11m Ok I < °0 , Then forIm 0<0 and depending upon 
the location of z, we have the following relations (see Fig. 
12): 

€dz) = 0k(Z) = Ak(z), p Imz>O, 

€k (z) = Odz) = AkP)(z), p 1m z = 0, 

€k(Z) =Odz)#Adz), O>plmz>lmO. 

If 11m Ok 1< °0 , 

€dZ)#Ok(Z) =Ak(z), ImO>plmz> -°0 , 

€dz) #Ok (z) = Ak (z), p 1m z = - °0 , 

If 11m Ok I = °0 , 

€iP)(z) =O}[>(z)#Ak(z) =Oi-P)(z), plmz= -00 

and for p 1m z < - °0 , Ok (z) = Ak (z); however, this func
tion does not equal €k (z) whenever it can be extended into 
this region. 

Finally, we turn to the location and number of zeros of 
functions (i)-(iii). For the Landau dielectric function, this 
has been discussed by many authors.2

4-26 Our first result is 
similar to that obtained by Saenz.26 

Theorem A2: Let Fo and 'T/ satisfy Assumptions 1 and 2. 
(i) All the zeros of €k (z) lie in the strip - 00 

<.p 1m z<.M, where M== II'T/k III = S~ '" I'T/(k,v) Idv. 
(ii) For any h such that ph> - °0 , €k (z) has finitely 

many zeros in the strip - h<.p 1m z<.M. 
Proof: Letz = x + iy. Statement (i) of Theorem A2 fol

lows from the fact that I v - zl > Iyl, so that 

Hence, if Iyl > II'T/k III' €k (z) cannot vanish. In fact, 
lim lyl _ '" I€k (z) I = 1. Statement (ii) of Theorem A2 follows 
from the Paley-Wiener theorem27 for functions analytic in 
strips. Condition (iii) of Assumption 2 and the analyticity 
part of Assumption 2 imply that r" the Fourier transform of 
'T/, is a function of exponential type, i.e., for any u such that 
lui <.00 : 

(AI) 

Given any 8, 0 < 8 < 2°0 , let u = - 00 + 8. Then by the 
Plancherel theorem for z = r + iu, 

f: '" (s - z) -I'T/(k,s)ds = Sa'" r,(S)e'(CT- iT) ds. (A2) 

Since u - 00 < 0, it follows by the Schwarz inequality and 
(Al) that the integral on the rhs of (A2) converges abso
lutely. Hence, since 1'ER, 'T/(s)eSCT eL I(R+). By the Rie
mann-Lebesgue theorem, 
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lim r'" r,(S)e'(CT- iT) 

ITI-", Jo 
= lim f'" (s - z) -I'T/(k,s) = 0 , 

IRezl-", _ '" 

so that along any line z = r + iu with pu> 0, €k (z) ..... O as 
IRe zl ..... 00. Furthermore, for - (}o <pu < 0, it follows from 
the Paley-Wiener theorems and part (ii) of Assumption 2 
that 

lim [J (s - z) -I'T/(k,s) + 21Ti'T/(k,z)] = O. 
IRezl-", 

Hence, for each u = 1m z with pu> - 00 there exists 
R(u»O such that r=Rez>R(u) implies that €k(Z) is 
bounded below away from zero. It now follows from the 
analyticity of €k (z) and the assumed continuity of 
'T/(k,s - ipOo) that R(u) is a continuous function of u on 
(poo, - pOo], in particular, on [pM, - pOo]' Consequently, 
for any 8>0, l€dz)I<1 if and only if 
IRezl> max R(u) and -Oo+8<.plmz<.M. 

oe[pM. - p( 9" - Il) I 

Since €k (z) is analytic on an open set containing this rectan-
gle, it can have at most a finite number of zeros. (Note that 
we cannot take 8 = 0 unless we specify further the behavior 
of'T/ on the boundary s - ipOo, seR.) 0 

Corollary A3: The Case-van Kampen spectral function 
Ak (z) has at most finitely many zeros and they all lie in the 
strip -M<.lmz<.M,whereM= II'T/kili' 

Proof: For p Imz>O, €dz) = Adz) and Ai!')(x) 
= €k (z). Hence, by Theorem A2, Ak has finitely many ze
ros in O<.p 1m z<.M. Since Ak (z)* = Ak (z*), Ak has only 
finitely many zeros in - M<.lm z<.M. 0 

Corollary A4: Suppose that 11m Ok I < °0 , Then the hy
brid dielectric function Ok has at most finitely many zeros 
and they all lie in the strip mine - M,lm 0) <.p 1m z<.M. If 
00 = 11m Ok I, then for any 8> 0, Ok (z) has at most finitely 
many zeros in the strip mine - M, - 00 + 8) <.p 1m z<.M. 

Proof: This follows from the relations between A k, €k' 
and Ok given above and Theorem A2. 0 

On the basis of Assumption 2 alone, we do not see how 
to eliminate the possible existence of accumulation points of 
zeros of €k (z) on the line segments 1m z = - pOo and 
IRezl <R( - pOo)' Consequently, when the complex trans
lation is performed in Sec. V, we restrict ourselves to Osuch 
that I ° I < °0 , This insures the finiteness of the point spec
trum of Lk (0). 

APPENDIX B: GENERAL SPECTRAL DEFORMATION 
WHEN Fo VANISHES ON OPEN SETS 

The choice of the velocity group as the spectral deforma
tion group is inappropriate, for example, in the case that 
supp Fo (the support of Fo) is compact (or vanishes on some 
open set). We briefly indicate how to obtain results similar 
to those discussed in Secs. III and IV in more general situa
tions where Fo satisfies weaker analyticity assumptions. The 
method is an extension of that presented in Sec. II and is due 
to Hunziker. 10 The group U( 0) discussed in Sec. II is con
structed from a flow on Rn generated by some vector field. 
Hunziker noted that it suffices to work with the first-order 
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approximation to this flow. It is convenient to do this in the 
case that supp Fo is compact, for example. 

Let us suppose (for the sake of concreteness) that 
supp Fo C [ - e,e] for some 0 < e < 00 and that Fo is analytic 
on some open rectangle R=={zIIRezl <e, -J.l<Imz 
< 8,0 <J.l,8 < oo}. The choice of a rectangle is convenient, 
but not necessary. The essential point is that Fo has some 
sufficiently large domain of analyticity about the point 
where spectral deformation is to be performed. The transla
tion group used in Sec. III is generated by the constant vector 
field on R. For the case at hand, we choose a vector field 
I/'ECO'(R) with supptf!C[ -eI2,eI2] and 11tf!1100 <1. We 
consider the infinitesimal transformation on R: 

V--+V + ttf!(v) ==St(v). 

For each t, It 1<1, the map st:R--+R is a smooth diffeomor
phism. Let Jt (v) == 1 + ttf!' (v) > 0 be the Jacobian. We de
fine a transformation UCt) on Xp by 

(U(t)g) = Jt (v) IIPg(St (v». 

Then U(t), It 1< 1 is a bounded, invertible map on Xp with 
the bound 

for some constant 0 < d", < 00 depending on tf!. [Here, U(t), 
like U( 0), is not an isometry on Xp; see (3.11).] 

Even though the family of operators {U(t) I I t I < 1] 
does not form a group, Hunziker (see, also, Cycon28

) has 
shown that it is possible to recover the major aspects of the 
theory using such a family. In particular, there exists a dense 
set of analytic vectors for this family and the poles of the 
meromorphic continuation of matrix elements of the resol
vent (between vectors from this set) are in one-to-one corre
spondence with the eigenvalues of an analytic family of oper
ators. We indicate this for the linear Vlasov operator. 

We first compute the conjugated linearized Vlasov oper
ator and obtain, for tER, It 1< 1, ad gED(Mv )' 

(Lk (t)g)(v) ==(U(t)Lk U(t) -lg)(V) 

= - ik [St(V)g(V) + ll(k,st(v» 

X J: 00 g(V')dV'] 

for k #0. Note that this expression reduces to (3.14) upon 
taking tf!(v) = 1 and t = Ok' Clearly, the differomorphism St 
extends in t to an analytic map of {zllzl<l}cC--+c' For 
convenience, we assume that 11tf!1I 00 < 1. Then for Fo analytic 
on the rectangle R, the map 

t --+ ll(k,st (v» 

is analytic in t on the disk I t I < min (J.l,8, 1 ) == 80 , As in Sec. 
III, one easily shows that Lk (0) is an analytic type-A family 
of operators on the disk I t I < 80 , 

To see the effect of this scaling on the spectrum of Lk we 
compute the resolvent as in Sec. IV: The result is 

2836 J. Math. Phys., Vol. 30, No. 12, December 1989 

k> 0 
Imt < 0 

FIG. 13. The local spectral deformation of u"'" (Lk ) corresponding to the 
vector field t/J, with compact support for k> 0 and 1m t < O. 

(R k (t,z)g)(V) 

=(z+iks,(V»-1 g(V) - .....:....-.:....-.~ [ 
ll(k,s, (v» 

n k (t,izl k ) 

XIoo g(v') dV'] 
- 00 z + iks, (v') , 

where 

Ok (t,z) == 1 + J: 00 (s, (v') - z)-l ll(k,s, (v'»dv'. (Bl) 

Now it is clear from Sec. IV and Appendix A that 

CTess (Lk(8» = {zlz+iks,(v) =O}. (B2) 

Equation (B2) is precisely the locally distorted contour 

{zlz = k(t2tf!(v) - iv), VER, t2 == 1m t}; 

see Fig. 13. Note that for IImzl >elk I theCTess (Ld8»coin
cides with CTess (L k ). Hence, we have obtained a loeal spec
tral deformation. An examination of the hybrid dielectric 
function nk (t,z), (Bl) in this case indicates-that resonances 
lie between the imaginary axis [i.e., CTess (L k )] and the de
formed spectrum (B2). It is obvious that by varying tf! we 
can obtain other local deformations provided that we respect 
the domain of analyticity of Fo. 

Note added in proof The method of spectral deforma
tion has recently been used by H. Ye and A. Kaufman29

,30 to 
obtain an analytic solution for the second harmonic mode 
conversion problem in the ion-cyclotron-frequency heating 
of tokamaks. 
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The Dirac equation for the spin-! field in Kasner's space-time is discussed and various possible 
solutions are obtained. For further interpretation of the theory a current vector is derived and 
Gordon decomposition of the current for massive fields is discussed. 

I. INTRODUCTION 

Under the scheme of uniting quantum mechanics and 
general relativity, the search for solutions of relativistically 
covariant equations for spin-~ particles is very interesting. In 
1985 Shishkin and Andrushkeirsh I solved the Dirac eqution 
in degenerate Kasner space-time. Recently, Barut and 
Duru2 have gotten exact solutions of the Dirac equation in 
spatially flat Robertson-Walker space-times. Audrestsch 
and Schafer3 have also discussed the dynamics of spin-! par
ticles in spatially homogeneous cosmological models. 

In the present paper, the plan is to investigate solutions 
of the Dirac equation in Kasner space-time, which is a model 
for an anisotropically expanding universe with the line ele
ment 

(1.1 ) 

where the speed of light c = 1. This model is the vacuum 
solution of Einstein's equations if the real numbers aI' a2, a3 
satisfy the constraints 

( 1.2) 

The focus here lies on getting the solution of the Dirac equa
tion in the degenerate as well as nondegenerate cases. Here, 
a I' a2, and a3 in ( 1.1) and (1.2), are taken to be 
(1 + a) / ( 1 + a + a 2

), a (1 + a) / (1 + a + a 2
), and 

- a/(l + a + a 2
), respectively (where a is real). It is in

teresting to see that when a -+ 00, one gets the degenerate 
case, al = 0, a2 = 1, a3 = O. 

Section II contains the definition of the tetrad compo
nents and the Dirac eqution in Kasner's model. In Sec. III, 
various solutions of Dirac equtions for chiral and nonchiral 
spinors are obtained. Section IV is devoted to a discussion on 
the current vector. Gordon decomposition of the current for 
massive spin-! fields is discussed. 

Hereafter fz = c = 1 is used as the fundamental unit. 

II. DIRAC EQUATION IN KASNER SPACE-TIME 

The tetrad components h ~ are defined as4 

h ~h ~gl'v = 'TJab' (2.1) 

where 'TJab is the Minkowski metric and gl'v is the metric 
given by the line element (1.1). Here /-t, v are curved space 
indices and a,b are flat space indices. So, 

h g = 1, h: = t - a" h ~ = t - a" and h ~ = t - a,. 
(2.2) 

The Dirac equation, in curved space-time, for spinor field 1/1 
is given as 

iyl'1/I;1' + m1/l = 0, 

where 1", the Dirac matrices in curved space, are 

yl'=h~ra 

and satisfy the anticommutation rule 

{yl',yv} = 2gl'v. 

(2.3) 

(2.4) 

(2.5) 

In (2.4) r a are the standard Dirac matrices for flat space
time and satisfy the anticommutation ruleS 

{ -a ::)J} _ 2 ab Y,r - 'TJ . (2.6) 

The covariant derivatives for 1/1, in curved space-time used in 
(2.3), are given as 

1/1;1' = (al' - r 1') 1/1, 

where 

rl' = - !(al'h~ + {~I'}h ~)gvph ~rr 
and {~I' } is the affine connection. 

(2.7) 

(2.8) 

Using the metric from (1.1) in (2.3), the Dirac equa
tion for Kasner's space-time looks like 

[yo{ao + (l/2t)(a lt
a, + a2t

a, + a3tO,)} 

+ t -a'rlal + t -a'r2a2 + t -a'r3a3 - im]1/I= O. 
(2.9) 

III. SOLUTION OF THE DIRAC EQUATION 

Substituting 1/1 = '" exp [ - ~ (t a, + t a, + t a,) ] in 
(2.9), one gets an equation for'" as 

[yoao + t -a'rlal + t -a'r2a2 + t -a'r3a3 - im]'" = O. 
(3.1 ) 

Setting 

q; = (211") -3/2 expUklx + ik2 Y + ik3Z) 

X ~
I (kl,k2,k3,t) ] 

(3.2) 
II (k l,k2,k3,t) 

in (3.1) the two-component spinors obey the following cou
pled equations: 

(ao - im)h. + i(t - a'ulkl + t - a,u 2k2 

(3.3a) 

and 
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(ao + im VII + i(t - a'ql kl + t - a'q 2k2 

+ t - a'q 3k3 )ii = 0, 

.(t-a'qlk +t- azq 2k +t- a'q 3k) 
q = - I I 2 3 • (3.5) 

t -2a'k~ + t -2a'k~ + t -2a'k~ (3.3b) 

where ql, q 2, and q 3 are Pauli matrices. 

A. Nondegenerate case (case I) 

In this case, a l #0, a2 #0, a3 #0. From (3.3a) and 
(3.3b), one gets the second-order differential eqution forii 

(a~ +~ao+m2-im~-~)ii =0 (3.4a) 
q q q2 

andiiI is expressed as 

iiI = - q(ao - im)ii· (3.4b) 

In (3.4a) and (3.4b), q is given by 

Introducing 

JI dt' 
r= q(t')' 

(3.4) is rewritten as 

:~ + [m2q2(t) - imqq(t) - 1]fi = 0, 

iiI = - q(t) [:r - im}li. 

Now, (3.6a) yields the WKB solution 

ii = 2q2 . 1. 1/4 {NI exp(i J dr~m2q2 - imqq - 1) + N2 exp( - if dr~m2q2 - imqq - I)} 
[m -lmqq - 1] 

and 

iiI = - q(t) 1 [N3{ - q/4(2mqq - imqq - im~) + i(m2q2 - imqq - 1 )3/2 
(m2q2 _ imqq _ 1)S 4 

- im(m2q2 - imqq - 1 )S/4} exp(iJ dr~m2tt - imqq - 1) + N4{ - (q/4) (2mqq - imqq - imq2) 

- i(m2q2 - imqq - 1)3/2 - im(m2q2 - imqq - 1)S/4} exp( - i J dr~m2tt - imqq - 1))]. 
where N I, N2, N3, N4 are normalization constants. Corresponding to ii and iiI , '" can be written as 

\{I . _ exp{;klx+ik2y+ik3Z-!(ta'+ta,+ta,)} 
I • .Y' - (21T)3/2[m2q2 _ imqq _ 1 ]1/4 

X {NIUs exp(iJ ~ ~m2q2 - imqq - 1) + Nils exp( - iJ ~ ~m2q2 - imqq - I)}, 
\{I _ - q exp{iklx + ik2y + ik~ - !(ta, + ta, + ta,)} 

II •. Y - (2 )3/2( 2 2 • • 1 )5/4 11' m q -lmqq-

X [N3US{ - (q/4)(2mqq - imqq - im~) + i(m2q2 - imqq - 1)3/2 - im(m2q2 - imqq - 1)5/4} 

- im(m2q2 - imqq - 1)5/4} exp( - i J ~ ~m2q2 - imqq - 1)] 
with spin quantum number s = ± 1 and 

u'~(i) "-,~m, 
U I = ( ~) and U I = ( ~) . 

- k3 . - - kl + ik2 

- kl -lk2 k3 

(3.6a) 

(3.6b) 

(3.7a) 

(3.7b) 

(3.8a) 

(3.8b) 

(3.9) 

The normalization constants N j are determined in such a way that asymptotically, i.e., in the flat space-time limit, '" 
satisfies the usual 0 ss. 0 (k 1 - k ; ) 0 (k2 - k 2 ) 0 (k3 - k 3 ) normalization. The norm of '" is defined as 
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(tll,t/F) = i t d 3X ¢J<'ftIF, 

where 

1i = tPt'f. 
Using the above process for normalization of the wavefunction tP, 

[( 
2)2 (a k 2 + a k 2 + a k 2 )2] 112 

N 1 =k- 1 exp(1.5) 1+;2 +m2 I I 2k s2 33 , 

N = 1 +~ + 1 1 2 2 3 3 [( 
2)2 m2(ak 2 +ak 2 +ak 2 )2]0!' 

2 k2 k S ' 

N3 = rl4 
exp( 1.5) , 

~(v + m1312 sin(38 /2) - m?74 sin(58 /4)f + (v1372 cos(38 /2) - m?74 cos(58 /4W 

N
4
= r I4kexp(1.5) , 

~(v + m1374 sin(38 /2) - m?74 sin(58 /4»2 + (v + 13 12 cos(38 /2) - m?74 cos(58 /4)f 

where 

and 

_ m(alk~ + a2k~ + a3q) 
v=----------

2k 5 

(3.10) 

(3.l1a) 

(3.11b) 

(3.l1c) 

(3.lld) 

If tP has a definite chirality (left-handed or right-handed), m = O. So, in this case, the Dirac equation for tP can be solved 
exactly. As a result 

II = Nl exp It I + 2 + 3 + N2 exp _ It 1 + + 3 
_ [.(t- a '(71k t- a2(72k t- a'(73k )] _ [ . (t- a'(7l k t- a2(72k 2 t- a'(73k )] 

1 - a 1 1 - a2 1 - a3 1 - a I 1 - a2 1 - a3 
( 3.12a) 

and 

(3.12b) 

(3.13a) 

(3.13b) 
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where Us and Us has the same meaning as given earlier in 
(3.9). 

.( Ik + t - I 2k 3k ) 
I' = 1 0' I 0' 2 + 0' 3 (a _ im)' I' . 
In k 2 -2k 2 k 2 0 'J. 

I+t 2+ 3 
Applying the scheme of normalization given above, Ii; 

are calculated as 
(3.16b) 

NI = k -I exp(1.5), N2 = exp(1.5), 

N3 = exp( 1.5), N4 = k exp( 1.5). (3.14 ) 

Case II (a): In the early universe, when t is very small 
(3.16) may be approximated as 

[t2a6 + tao + {k~ - imt + (m2 + ki + q )t 2}]h = 0 
(3.17a) 

B. Degenerate case (case II) 
and 

In the degenerate case, one of ai' a2, a3 is equal to 1 and 
other are vanishing. So, it is taken as a l = 0, a2 = 1, and 
a3 = O. As a result, (3.3a) and (3.3b) are written as 

hI = (ita 2k21k ~ )(ao - im)h· 

Equation (3.17a) yields the solution 

(3.17b) 

(ao-im)h +i(o.lkl +t-Ia2k2+a3k3)h. =0, 
(3.1Sa) 

(ao + im)h. + i(alkl + t -10' 2k2 + 0' 3k3)h = O. 
(3.1Sb) 

I' I' 1- 112[C F (21l' - im 21 I' ) J. = exp( t)t I I I 2/' ,,- 2 t 

Equations (3.15) imply that 
+ C ( - 2/'t) 1- 21 F (21' - im 2 - 21 - 2/'t)] 

2 I I 2/'" , 
(3.18 ) 

and 

and 

where IFI (a,c,x') is the confluent hypergeometric function, 6 

1=~[1 ±~1-4kn,and/'= ±i~m2+ki +k~.Now, 
using the identity 

(k i + k ~ t -2 + k ~) 
(3.19) 

(3.16a) + (k i + k ~ t -2 + k ~ ) ] h = O. 
onecanfindouthI from (3.17b) and (3.18). Now, ifJ. and 
ifJn are written as 

ifJI.s = (21T) -3/2 exp{iklx + ik2 Y + ik3Z - 1 - ~t I + I 't}t 1- 112 

X [ Clus IFICIl ~~ im ,2/, - 2/'t ) + C2us IF{ 21 '2~' im ,2 - 2/, - 2/'t ) ( - 2/'t) 1- 21 ] (3.20a) 

.1. '(2 )-3/2k- 2 {'k 'k 'k 1 I I'} 1+1/2 2k ern .. /' = 1 1T 2 exp 1 IX + 1 2 Y + 1 3Z - - 'it + t t 0' 2 

X [c U {(I' + (/- ~)t -I - im) F (21l' - im 21 _ 2/'t) _ 2/' F (21l' - im + 21' 21 + 1 - 2/'t)} 
3 s 2 I I 21 ' " I I 21 ' , , 

+ C U {( - 2/') I - 21 (~ + I' + 2(1 - ~)I ' t - 2/ _ im) F ( 21' - im 2 - 21 - 2/' t ) 
4 s 2 2 I I 21 " , 

(3.20b) 

where I and I' are defined as in (3.18); Us and Us, for Y = ± 1 are the matrices given in (3.9); and C I , C2, C3, and C4 are nor
malization constants, which are determined using the normalization scheme for ifJ given above. So, 

CI = k -I exp( ~ -I') IIFICIl~~ im,2/, - 21')1, 
C2 = ( - 2/') 2/- I exp( ~ - 1') IIFI ( 21 ' 2~' im ,2 - 2/, - 2/') I ' 
C - k - I k (~ _ l') I (I' I -~ -' ) I F (21l' - im 21 - 2/') - 21' F 1

21l
' - im + 2l' 1 + 21 - 21' I 

3 - 2 exp 2 + 2 lm I I 21' " I I 21 ' , , , 

( - 21')2/-1 exp(~ -I') 
C -----------------~~----~~--~--~~~~~~----~~--~--~~ 

4 - 1 (I' + 1'(1 -~) - im)IFI«2/' - imI2/'),2 - 21, - 2/') - 2/'IFI«4/' - imI2/'),3 - 21, - 2/')1 

Case II (b): If t is large, (3.16a) can be approximated as 

[t2a6 +{k~ + (m2+ki +k~)t2}]h =0 (3.21a) 
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and 

III = it(O' zkzlk ~) (ao - im)h· 

Equation (3.21a) yields the solution 

h = t I exp(l 'tHCI IFI (I, - 2/, - 2/'t) + Cz( - 2/'t) 1- 21 IFI (1 + 1,2 - 2/, - 2/'t)], 

where I =!(1 ± ~1- 4k~) and I' = i~mz + k~ + q. From (3.21b) and (3.22a), 

hI = itO' zkz [C3t I exp(l 't){ (It -I + I') IFI (I, - 2/, - 21 't) 
k~ 

+ ( - 2/') IFI (1 + 1,1 - 2/, - 2/'t) - im IFI (/, - 2/, - 2I't)} 

+ C4 ( - 2/') 1- 21t -I exp(l't){(/t' -I + 1) IFI (1 + 1,2 - 2/, - 2/'t) 

+ t( - 2/') IFI (2 + 1,3 - 2/, - 2/'t) - im IFI (1 + 1,2 - 2/, - 2/'t)}]. 

SO, "'I and "'II are written as 

"'I,s = (217')-3/zexp(iklx+ikzy+ik3z-1-~t+I't)tl 

X [CIUS IFI (/, - 2/, - 2/'t) + Czus ( - 2/'t) 1- 21 IFI (1 + 1,2 - 2/, - 2/'t)], 

"'II,s = i(217')-3/2k z-
2t l+ IO'zkz exp(iklx + ikzy + ik3Z- 1 - !t+ I't) 

X [C3Us{(lt' + I')IFI(I, - 2/, - 2/'t) - 2/' IFI(1 + 1,1 - 2/, - 2/'t) - im IFI(I, - 2/, - 21't)} 

+ C4us ( - 2/') 1- 21t - 21{(/'t -I + 1) IFI (1 + 1,2 - 2/, - 21't) 

- 2/'t IFI (2 + 1,3 - 2/, - 2/'t) - im IFI (1 + 1,2 - 2/, - 2/'t)}]. 

(3.21b) 

(3.22a) 

(3.22b) 

(3,23a) 

(3.23b) 

Here Us and Us have the same meaning as earlier. CI , C2, C3, and C4 , being normalization constants, are determined according 
to normalization scheme mentioned above. So, 

and 

CI = k -I exp(~ -I')/IIFI(I, - 2/, - 2/')1, 

Cz = ( - 2/')1-1 exp(~ -I')/IIFI (1 + 1,2 - 2/, - 2/') I, 

C3 = k - I kz expq - I') II (I + I' - im) IFI (I, - 2/, - 2/') - 21' IFI (1 + 1,1 - 2/, - 2/') I, 

_ ( - 2/') -I + 21kz exp(~ -I') 
C --------------------------------------------------

4 - 1(1' -I + 1 - im)IFI(1 + 1,2 - 2/, - 2/') - 2/' IFI(2 + 1,3 - 2/, - 2/')1 

Case IJ(c): If", obeys Weyl's symmetry, i.e., it has definite chirality, 

h = C; exp(i[ (O'Ik l + 0' 3k3)t + 0' Zk210g t ]) 

+ C ~ exp( - i[ (O'lk l + 0' 3k3)t + 0' Zkzlog t ]) 

hI = i(O'lkl + t -10' zkz + 0' 3k3) [C i exp(i[ (O'lk l + 0' 3k3)t + 0' Zkzlog t ]) 
(ki+tZk~+k~) 

+ C ~ exp( - i [ (0'1 k I + 0' 3 k3) t + 0' z kz log t ]) ] . 

Now "'I and "'II can be written as 

"'I,s = (217')-3/2 exp(iklx + ikzy + ik3Z- 1 -!t) [C; US exp(i[(O'lkl + O' 3k3)t+ O'Zkzlog t]) 

+ C ~ Us exp( - i [ (0'1 k I + 0' 3 k3 ) t + 0' z kz log t ])] 

and 

"'II,s = i(217') -3/2(O'lkl + t -10' zkz + 0' 3k3) -I exp(iklx + ikzy + ik3Z - 1 - !t) 

X [C ius exp(i[ (O'lk l + 0' 3k3)t + 0' Zkzlog t ]) + C ~us exp( - i[ (O'lk l + 0' 3k3)t + 0' Zkzlog t ])] 

On normalization of "', C; , C ~, C i , and C ~ are determined as 

C; = k -I exp( 1.5), C; = exp( 1.5), 

Ci = exp( 1.5) and C~ = k exp( 1.5). 
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IV. CURRENT 

The current is defined as 

j" = ¢r"t/J 
which is divergence free as.t:p = 0. If t/J is a massive field, r 
can be rewritten as 

(4.1 ) 

jI" = ¢ryl-'t/J = (l/2m)¢(iaryAyl-' - iyl-'Y'''aA - i[ yArA,yl-'])t/J. (4.2) 

Equation (4.2) can be reexpressed as 

jI"= (l/2m)(¢QAI-'t/J),A - (i/4m)gJ-LA.¢aAt/J- (i/4m)¢<[y.1,yl-'] + [yA,y,~])t/J- (i12m)¢[y Ar A,yl-']tP, (4.3) 

where ¢a A t/J = ¢a A t/J - t/Ja A ¢. In the space-time considered here 

Y.1=0, [Y\Y.~]=[f,y.~], [f,f,o] =0, 

[f,y1] = [yo,yl]( - a,t -a, -I), [f,r,o] = [YO,r)( _ a2t -a,-I), 

[f,ro] = [yo,?)( - a3t - a, - I ),dH = (i12) [f,yl] = it - a'YoYI' 

aD2 = (i/2)[f,y] = it -a'YoY2' aD3 = (i/2)[f,r] = it -a'YoY3' 

Ql2 = (i/2)[yl,y] = (i12)t - (l-a,l[yl,r]' Q23 = (i/2) [ror] = (i/2)t - (I-a,l[r,?], 

Q 31 = (i12)[ r, yl] = (i12) t - (I - a,l [ ?, yl ], r 0 = 0, 

r2 = - (a2/2t)t a'rYO, and r3 = - (a3/2t)t a,?yo. 

Now, from (4.3) 

jO= + (i12m)t -a,a/froYlt/J) + (it -a'/2m)a2(¢YoY2t/J) 

+ (i/2m)t -a,a3(¢YoY3t/J) - (i/4m)¢aot/J, (4.4) 

i a - - -i = ---(t/Jt -a'YoYlt/J) 
2m at 

+ 4~ t -(l-a,la3(¢[?,yl ]t/J) - 4~ t -2a'¢alt/J 

- 4~t -1-a'¢[yo,yl]t/J, 

i a - - -j2= ---(t/Jt -a'YOY2t/J) 
4m at 

i - - -+ 4mt -(l-a,lal(t/J[yl,y]t/J) 

--,-' t -(l-a,la3(¢[r,?]t/J) --,-' t -2a'¢a2t/J 
4m 4m 

and 

'3 i a - - -
J = - --(t/Jt -a'YoY3t/J) 

2m at 

- 4~ t - (I - a,lal (¢[ ?,yl] t/J) 
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(4.5) 

Writing 

l = alPI + a2P2 + a3P3 + Pconvective 

(Pconvective = jc~nvective) and 
. ap . i(a l -1) 
J = - -a + VXM + Jconvective + 2 PI 

t mt 

i(a2 - l)p i(a3 - 1) P 
+ 2+ 3 

2mt 2mt 
the polarization densities PI' P2, and P3 are given by 

PI = (i/2m)t -a'¢YoYlt/J, 

P2 = + (i/2m)t -a'¢YoY2t/J, 

and 

P3 = + (i/2m)t - a'¢YoYlt/J 

and M are given by 

(4.8) 

MI = (i/4mt) [ta'(¢[?,yl]t/J) - ta'(¢[yl,r]t/J)] , 

M2 = (i/4mt) [ta'(¢[yl,r]t/J) - ta'(¢[r,?]t/J)] , 

and (4.9) 

M3 = (i/4mt) [ta'(¢[r,?]t/J) - ta'(¢[?,yl]t/J)] 

(with regard to external electromagnetic field, M has the 
meaning of magnetization current density). 

Connecting expressions for polarization density and 
magnetization density with solutions obtained in Sec. III, it 
is interesting to note that the magnitudes of PI' P2, and P3 
become almost equal for large t. Similarly magnitUdes of M I , 

M2, and M3 also come very close for large t. This shows that 
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anisotropy might be possible for small t but when time in
creases anisotropy decreases. 

In case of massless fields, Gordon decomposition of the 
current (discussed above for massive fields) is not possible. 
But here also, one finds that by using the solutions obeying 
Weyl constraint, the magnitude of the three space compo
nents of the current come close with advancement in time 
(t). 
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Approximate relativistic quantum Hamiltonians for N interacting 
particle systems 
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Time evolution of relativistic particle systems can be accomplished by means of a Schrodinger 
wave equation, provided the Hamiltonian of the N particle system satisfies some commutator 
equations involving the other generators of a suitable representation of the ~oinc~re grou~ on 
the initial data space of the Schrodinger equation. This set of operator equations IS solved in 

the N free particle case. Further, the structure of N interacting particle Hamiltonians is worked 
out to include second-order relativistic corrections, i.e., (lIc2 )-terms. It is shown that Breit 
and Barker-O'Connell Hamiltonians (nonzero spin particles) and the Bazanski Hamiltonian 
(zero-spin particles) are particular cases of this more general Hamiltonian. 

I. INTRODUCTION 

Bel and Ruiz· have developed in a previous paper (here
after we refer to it as BR) relativistic quantum mechanics for 
N particle systems based on a Schrodinger-like wave equa
tion. Our purpose here is to apply this theoretical framework 
to two different classes of particle systems. First, we deal 
with free particle systems. In this case we are able to obtain 
exact expressions for all the infinitesimal generators of the 
BR representation of the Poincare group, and the Hamilto
nian as well. This example is a first test of the consistency of 
the theory and a helpful guide to the more interesting, but 
also more involved, interacting particle systems we deal with 
throughout Secs. III and IV. There we consider particle sys
tems whose interaction reduces to a purely Newtonian po
tential in the nonrelativistic limit (i.e., two-body potential 
depending only on the distances between particles). We ob
tain the first relativistic corrections to the Hamiltonian. 
Moreover, we prove that the standard nonrelativistic scalar 
product is a suitable one for these kinds of particle systems 
up to this order of approximation. (This result is exact in the 
free particle system case.) This approximate Hamiltonian 
contains three arbitrary functions of some definite combina
tions of particle operators that depend on the type of interac
tion we want the Hamiltonian to describe. In Sec. V, we give 
the expressions of the unknown functions that fit the two 
most widely known second-order relativistic Hamiltonians: 
the Breit Hamiltonian and the Barker-O'Connell one. 

We devote the rest of this section to outlining the princi
pal features of the theoretical framework we use in this pa
per; for further details we refer the reader to the above-men
tioned BR paper. 

The BR starting point is a (3N + I)-dimensional sur
face in the momentum-space of the N particle system (a, 
b, ... = 1,2, ... ,N label the particle) 

I: Fa'(k~= -k~kbJl) =Ca' (a',b', ... =2,3, ... ,N). 

(1.1 ) 

Such a surface is invariant under the standard action of the 
Lorentz group on the momentum-space. It is assumed that ~ 
admits the parametric equations 

( 1.2) 

where the ha's obey the following constraint2: 

€"ha(E,ki) =E (€"= + 1). (1.3) 

Restricting the action of the Lorentz group to ~, we get a 
nonlinear action of it as a family of one-one mappings of ~ 
onto ~. The pullback under these mappings of functions 
qJ(Ekb ) defines a representation of the Lorentz group on 
that function space. Adding to these transformations the 
time-space translations, defined in the usual way it is done in 
momentum-space, we get the BR representation of the full 
Poincare group [see BR equations (2.10), (2.12), and 
(2.13) ]. 

Fourier transforming the operators of the above-men
tioned representation, we get the position-space representa
tion, that is, a representation ofthe Poincare group acting on 
functions of the time coordinate and the spatial coordinates 
of all the particles t/J( t,xb ). 

That tool makes it possible to discuss the relativistic 
invariance of a Schrodinger-like wave equation 

i ~ l!J = Hl!J, at 
where 

(1.4 ) 

( 1.5) 

Here {p} = p.P2 , •• PN denotes a multi-index and X{P} is a 
basis of the spin-space of an N particle system; i.e., a basis of 
the tensor product of N complex vector spaces, one for each 
particle, of respective dimensions 2sa + 1 (sa is the value of 
the spin of the particle labelled a). Equation (1.4) is said to 
be Poincare invariant if their solutions go into solutions un
der the action of the position-space representation. 

It turns out that (1.4) is Poincare invariant if H does not 
depend on time and 

[pi,H] = [J\H] = 0, 

[Ki,H] = iPi, 

( 1.6a) 

(1.6b) 

where Pi,Jj , and K, are, respectively, the time-space transla
tion, spatial rotation, and boost infinitesimal generators of 
the representation induced by the position-space representa
tion on the initial data space of the Schrodinger equation 
(i.e., Heisenberg's representation). The operators Pi and Jj 
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have the familiar expressions 

(Pai=: -i~), axa, 

( 1.7) 

Ji = ~jkXajp; + Si, 

where Si are the spatial rotation generators of a finite-dimen
sional representation of the Lorentz group on the spin-space 
of the N particle system (direct sum of Lorentz group repre
sentations on one-particle spin-spaces). The operator j( has 
a rather involved expression that is given in the Appendix. 

Let us summarize. To obtain relativistic invariant 
Schr6dinger equations implies obtaining solutions of the 
highly nontrivial set of operator equations ( 1.6). That is the 
question we are going to deal with throughout the following 
sections. 

II. FREE PARTICLE SYSTEMS 

We consider in this section a system composed of N 
noninteracting particles. Even though it may be regarded up 
to a certain extent as an academic topic, we have at least two 
reasons for dedicating some attention to it. First, it can be 
exactly solved. Second, it actually provides useful informa
tion to treat the interacting case. We may further point out 
that, if interaction dies off when spatial separation between 
particles increases, the behavior of interacting systems must 
tend to that of free particle systems when the distances 
between anyone particle and the others are large enough so 
their mutual influence can be neglected. 

We are not going to solve Eqs. (1.6) imposing some 
reasonable conditions. We just propose to check the follow
ing Hamiltonian, 3 

HF=ga(p~ +m~)1/2=:~liJa [(ga)2= + 1], (2.1) 

where ma is a constant: the mass of the particle a.4 We allow 
the square roots on the left-hand side of (2.1) to take both 
signs for the sake of completeness. Nevertheless we shall 
consider only the positive sign (real massive particles) in the 
following sections. Anyhow, the results we shall derive there 
can be obtained for a different choice of signs following the 
same line of reasoning. 

It is straightforward to check that H F verifies the pair of 
equations (1.6a). Equation (1.6b) requires an explicit 
expression for the boost generator. Setting W = 0 in the for
mula for j( given in the Appendix (A18) [or (A19)], we 
get 

K~ = xai'Jz ~O) + Qi=:xaiha (HF'P~) + Qi (2.2) 

(Qi is the boost infinitesimal generator of the finite-dimen
sional representation of the Lorentz group we have men
tioned in Sec. l). The commutator of this operator with H F 

reads 

[K~,HF] =i~liJa-lha(HF'P~)P~' (2.3) 

We now recall the definition of the surface 1: (1.1) and its 
parametric equations ( 1.2) and ( 1. 3 ). If we choose the con
stantsca . = Fa' (m b 2), the implicit function theorem ensures 
that ha (H F'P~) = galiJa' Hence we conclude that H F verifies 
(1.6b).5 Therefore HF is a Poincare invariant Hamiltonian, 
as was expected. 
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The operator Pi is Hermitian with respect to the stan
dard nonrelativistic product 

('" I' "'2) = f t/I't{P} tP2{P} dX I A dX2 A ... A dxN , 

(2.4) 

where we have introduced the shorthand notation 
dXa = dXa I A dXa 2 A dXa 3. [Hereafter, we shall say that an 
operator is Hermitian when it is Hermitian with respect to 
the scalar product (2.4).] However, it is well known that no 
representation of the Lorentz group on a finite-dimensional 
vector space can be unitary. Therefore Si and Qi may be 
non unitary , and consequently Ji and K Fi as well. As far as Si 
closes the Lie algebra of the rotation group we can always 
assume that it is Hermitian. Then, J i is also Hermitian. But 
KFi is clearly not, because neither Qi nor the spin indepen
dent part of the operator is Hermitian. 

Now we proceed to prove that it is possible to achieve 
Hermicity by means of a nonunitary transformation. We 
shall do it in two steps. Firstly, we perform the following 
change of representation: 

N 

"'-M'" = II (liJa/ma) 1/2",. (2.5) 
a=1 

The operator M commutes with H F , Pi' and Jk • Therefore 
they have the same expressions in the new representation. 
On the other hand, 

K~-MK~M-I = !g"(x~liJa + liJax~) + Qi. (2.6) 

To perform the second step, we have to specify the operators 
Si and Qj. Let Sai and Qaj be the infinitesimal generators of 
the Lorentz group representation on the spin-space of the 
particle a. We fix all these individual representations by 
making Qai = ± is ai . For instance, if the particle a has spin 
Sa =~, Sai = ~O'i (O';'s are Pauli's matrices), then 
Qai = ± ~O'i> yielding to the (0, ~) or q, 0), depending on 
the choice of sign, representations of the Lorentz group.6 
Having in mind that Sai and Qaj are one particle operators 
(i.e., they only act on their respective spin-spaces, ignoring 
the others), we can write 

Si=E"S~, Qi=i8as~ [(8a)2= + 1]. (2.7) 

We try a transformation quite similar to the one that is 
used to go from the Dirac to the Foldy-Wouthuysen repre
sentation,7 that is, 

N 

",-L", = II exp[ea(lpal)p;Sad"', (2.8) 
a=1 

where the function ea (IPa I) [iPa I = (Pa kpak ) 1/2] is defined 
by 

(2.9) 

This transformation leaves unchanged HF , Pi' and J k , as 
well as the previous one. However, KFi comes to an explicit 
Hermitian form, 

K~-LK~L -I 

=~[HX~liJa +liJax~) + (ma +liJa)-I€ikmP;S:;']. 
(2.10) 

The infinitesimal generators of the Poincare group 
( 1. 7), (2.1), and (2.10) coincide with those of the Foldy-
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Wouthuysen representation, either the positive or negative 
energy part of it, when Nis set equal to 1, SI =!, and SI and 
QI are the infinitesimal generators of the q, 0) or (0, ~) 
representations of the Lorentz group we have mentioned 
above. 

We would like to point out that expressions (1.7), 
(2.1), and (2.10) can be obtained by simply applying the 
correspondence principle to the constant of motion associat
ed to the invariance under the Poincare group of a classical N 
free particle system.8 

III. APPROXIMATION SCHEME. NONRELATIVISTIC 
QUANTUM HAMILTONIANS 

In BR the (local) equivalence between representations 
based on different surfaces (1.1) was proven. An extremely 
convenient choice of ~ is 

~. k2 k2 2 2 
~. a' - I =ma , -mI' (3.1 ) 

The parametric equations of this surface can be written in a 
half-explicit form (we restrict ourselves to the region 
ka °>0) 

k~, =!a'(k~,k~) = + [(kn2+w~, -wn l12
, 

(3.2) 

k o 'r kO 2 
I + €' J a' ( I ,kb ) = E. 

The last equation defines implicitly k l o = hI (E,kb 2); substi
tuting this function in the other one, we get the rest of 
the parametric equations of ~: ka' ° 
= fa, [ h I (E,kb 2) ,kc 2] = ha' (E,kd 

2). In fact, we do not need 
to know how these functions are, because they enter into the 
expression of Ki [see (AlS)] only by means of its deriva
tives with respect to E at the point E = HF=€,wa , and such 
derivatives can be obtained directly from (3.2). 

It is easily shown that 

_ Jnh 
h (n) = __ a (H k2 ) 

a JE F' b 

(3.3 ) 

where 

(3.4) 

and we have introduced the definition!1 (kIO,kb 2) = kt 
Using a slightly different version of the formula (AS), 

we expand the operator on the right-hand side of (3.3) to get 

I 2 - s, n - I - Sn - 2 (1) 
li~n) = L L ... L 

1,=01,=0 In_I=O II 

X(2 -SI) .. . (n -1-Sn _ 2 ) 

12 In _ I 

Xnn(/,) ... n(/n-l)fa(n-sn-I)lo ' (3.5) 
k, =w. 

wheresp = II + 12 + ... + Ip (p<,n) and n(r)=Jrn/Jk IO. 

We now proceed to use the Faa di Bruno formula9 (an 
expression for the nth derivative of a composite function) to 
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evaluate ncr) and!a (m) at k l o = WI' It leads to 

!~m) (wI,k~) = wI- m + IPa (WI/We' ), 

nCr) (wI,k~) = wI- rQ(w/w e,), 

(3.6) 

wherePa is a polynomialin the n - 1 variables WI/We' andQ 
is a rational function in the same set of variables. Inserting 
(3.6) into (3.5) we get 

(3.7) 

where Ra is a rational function as well. 
Restoring conventional units, where e is the speed of 

light in a vacuum, and assuming that ka ° and consequently E 
have energy dimensions, we have 

Wa = e(m~e2 + k~) I 12:::::: mae2 + 0(1). (3.S) 

Thus taking into account (3.7), we conclude that the leading 
term in the expansion of lia (n) in powers of lIe2 is propor
tional to (1/e2 )n - 1. 

This result lends support to an approximation scheme 
based on such a kind of expansion. To be precise, we assume 
that the Hamiltonian of the N particle system H = H F + W 
can be expanded in a formal power series of lIe,1O that is, 

N p2 1 N p4 
HF = €'wa =-Me2 + L _a_ - 2 L ---;- + "', 

a=12ma e a=1 Sma 

(3.9) 
1 1 

W::::::W(O) +- W(I) +2 W(2) + "', 
e e 

here M denotes the total mass of the system, M = €'ma. It 
induces a similar expansion ofthe boost generator Ka . More
over, if we let Ki have units of mass times a length, as it is 
used to be, and recall the dependence of lia (n) on lIe2

, it 
turns out by simple inspection of the formula (A 19) that the 
nth term in the expansion of Ki is completely determined by 
the (n - 2)th term in the expansion of H (3.9), 

-. ~ . 1 ~ . 1 ~ . p~ 
K'=- ~ max~ + - ~ S~ + 2 ~ x~ --

a=1 e a=1 e a=1 2ma 

II N . W(O) 
+~Lx~--+'" 

e a= 1 ma 
(
IN 1) -=L-
Il a=1 ma 

(3.10) 

(Sai has units of angular momentum). Neither Pi nor J k 

have to be expanded. 
Inserting (3.9) and (3.10) into Eqs. (1.6) and equating 

to zero terms of the same order in 1/ c, we obtain an infinite 
set of operator equations for the infinite set of operators 
Wen) . It has the structure of a ladder, in the very sense that 
the nth order equation is well posed [i.e., it is useful to deter
mine the operator W(n)] if and only if all the preceding 
equations have been solved; that is, we know the operators 
W(m) m<n. 

The zeroth-order equations read 

[Pi,W(O) ] = [J\W(O) ] = [K~ol'W(o) ] = 0, (3.11) 

where K(O)i obviously stands for the first term on the right
hand side of (3.10): the infinitesimal generator of the Gali
leo transformations in nonrelativistic quantum mechanics 
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(or despite a factor 1/ M the classical definition of the center 
of mass). Therefore, we recover at this order of approxima
tion the Lie algebra of the standard representation of the 
Galileo group used in nonrelativistic quantum mechanics. 

The most general solution of (3.11) is an arbitrary func
tion of all the scalars we can build up by combining the fol
lowing operators: 

i p~ p~ 
Vab ==---, S~. (3.12 ) 

mb mb 

That leads to the well-known structure of a Galileo invariant 
nonrelativistic quantum Hamiltonian describing a system 
composed of N particles having arbitrary and unnecessary 
equal spins whose interaction can be described, in general, 
by a momentum dependent potential. II 

We shall devote the next section to work out the first 
corrections to the nonrelativistic Hamiltonian. 

IV. FIRST- AND SECOND-ORDER RELATIVISTIC 
CORRECTIONS 

Since [(i has a (1/e)-term [see (3.10)], we must con
sider a term of this kind in the expansion of W. It has to 
verify the following set of equations: 

( 4.1a) 
N 

[[(~\),W(\)] = -i I [S~,W(O)]' (4.1b) 
a=1 

Even though we only know how the structure of W(o) is, we 
may evaluate the right-hand side of (4.1 b) and try to solve 
these equations. However, we shall not do that. We recall 
that the presence of such a term was representation depen
dent in thefree particle case [see (2.2) and (2.7) ] . Here, it is 
as well. Let us perform the same change of representation we 
used in the free particle case (2.8), but retaining terms of 
order not higher than 1/ e2

• Then we get 

N 1 N 2 

[(i-.L[(iL -1- I m Xi +- I Xi ~ 
-a=1 a a e2

a =1 a 2ma 

Pi and Jk commute with L. (It will be true for every trans
formation we shall perform hereafter.) As far as we have 
gotten rid of the (1/e)-term of [(i in the new representation, 
we have modified the expansion of Eqs. (1.6): I W( I)' the 
new ( 1/ e) -term in the expansion of H, does not have to satis
fy (4.1 ) as W( I) has to do, but rather the same equations that 
W(o) did. 

It is clear that we can obtain W( I) by transforming back 
LHL - I. Nevertheless, it is more convenient in order to get 
the next term in the expansion of W to continue using the last 
representation (4.2) instead of the previous one (3.9), 
(3.10). That way, we avoid the annoying presence of I W(\) 

2848 J. Math. Phys., Vol. 30, No. 12, December 1989 

in the equations for I W(2) , that is I W( I) will not appear until 
the third-order approximation. 

Hereafter we shall restrict ourselves to interactions that 
are purely Newtonian at the lowest order of approximation, 
that is, W(o) is a two-body potential depending only on the 
distances between pairs of particles, rab == + (Xab kXabk ) 1/2 

(a=j:.b), 

1 N N 

W(o) =- I I Vab(rab ), 
2 a =la=1 

V[ab J = Vaa = O. (4.3 ) 

Before solving, not even wntmg, the equations for 
I W(2) , we are going to search for a more suitable representa
tion of the generator algebra. We turn back to formula (4.2) 
and examine it more carefully. Let us assume that the inter
action is separable (Le., Vab -.0 when rab -. + 00 ) and pic
ture a situation in which some of the particles are distant 
enough from the rest that we can ignore the influence of one 
group of particles on the other group. One may expect that 
the operator J(i can be split into two pieces each one depend
ing on variables of one of the two clusters, but not on vari
ables of the other one. Unfortunately, the expression (4.2) 
does not exhibit this physically reasonable clustering proper
ty. However, it is not an intrinsic property of the theory; it is 
just a peculiar feature of the representation we are using. 
This undesirable fact can be removed by an appropriate 
change of representation, 

"HC",= 1- _1-2 .!!:... Pk I I (xZ - X~)<I>bc + ... 'II, 
{ 

. N N } 

4Me (J b=lc=1 

N 

<l>bc = I (Pb Vcd - Pc V bd ), 
d=1 

where we have introduced the shorthand notations 

A straightforward calculation leads to 

N 1 N 2 

[(i C[(iC- I _" m Xi +_ " Xi ~ ----. -L au 2L a 
a=1 e a=1 2ma 

1 N N . 

+-2 I I VabX~ 
2e a=1 b=1 

1 ~ 1 k 
+-2 E'jk L -PaSa + .... 

2e a=1 ma 

(4.4 ) 

(4.5 ) 

(4.6) 

Moreover, CHC -I differsfromHin terms of order 1/e2
• We 

collect all of them and I W(2) in a unique term that we call 
2 W(2) . Therefore, we have 

H-.CHC- 1 

1 N p! 1 
--2 I -3 +2"2W(2) + .... (4.7) 

8e a= I ma e 

Finally, we bring [(i to a Hermitian form by applying 
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the transformation (2.5) to (4.6), 

.f .f iV 1.f. Po k + -2 ~ ~ Xa ab + -2 2 ~ €'jk - S a + .... 
2e a=lb=l e a=l ma 

(4.8) 

H differs from (4.7) in terms of order 1/ e2
, which we take 

into account by renaming the indeterminate (1/e2 )-piece of 
H: instead of 2 W(2) ' now we write 3W(2). 

Inserting (4.7) and (4.8) into Eqs. (1.6) (we recall that 
these equations are invariant under changes of representa
tion) and omitting terms of order higher than 1/e2

, we get 

[ 
i3 [ k3 P, W(2)] = J, W(2) ] = 0, 

A straightforward but lengthy calculation makes the above 
equations into the following: 

i k - I [P ,X(2)] = [J ,X(2)] = [K (0) ,X (2) ] = 0, (4.10) 

where 

3 W 1.f.f {I Vkl X(2) = (2) + -8 ~ ~ --- (PakPbl ab 
a=lb=l mamb 

V kl 4E"lm aVab Pal S } 
+ abPakPbl) + -a k -2 am , 

Xa ma 
(4.11 ) 

kl kl aVab 1 
Vab = Vab{j ---Xab· 

aX~ 

Thus we conclude that X (2) is an arbitrary function of all the 
scalars we can build up with the operators (3.12) as well as 
W(O) and 1 W(l) . 

The Hamiltonian up to this order of approximation 
reads 

V kl 4 kim aVab Pal S} 1 
+ abPakPbI) + E --- am +--zX(2)···· 

ax~ m~ e 
( 4.12) 

We would like to remark that this equation only shows 
what an approximate relativistic N particle Hamiltonian 
must look like, whenever the interaction between particles 
has a reasonable nonrelativistic limit. Ifwe want the Hamil
tonian ( 4.12) to describe a system of particles acting on each 
other by means of a definite interaction (e.g., electromagnet
ic, gravitational, etc.), we should complete it by giving the 
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adequate expressions to the indeterminate operators 
Vab ,IW(ll'andX(2)· 

Let us say something about these operators. The first 
one Vab is, as we said before, a Newtonian potential energy, 
that is, it governs the dynamic of the system in the nonrela
tivistic limit. Moreover, Vab also determines without ambi
guity some ( 1/ e2

) -terms of the relativistic Hamiltonian. The 
other operators 1 W( 1) and X (2) are obviously pure relativis
tic terms. However, as far as they are solutions ofEqs. (3.11 ) 
[or (4.10)], they have the structure of a general nonrelativ
istic potential energy, that is, they are functions of the dis
tances between particles and the velocities of every particle 
relative to the others, apart from the spin operators of all of 
them. The above-mentioned structure suggests that 1 W( 1) 

and X(2) take into account the contributions to the energy 
related to the dynamic of a particle in an external field. In 
fact, if we let the mass of one of the particles be much smaller 
than the masses of the rest (it amounts to making the linear 
momenta of all the particles except the lightest one approxi
mately equal to zero), all the Newtonian potential energy 
dependent second-order terms goes to zero except the spin
orbit interaction energy. Then, the potential energy of the 
particle in the field created by the others must be included in 
1 W(ll and X(2). (It may include static three-body interac
tion terms if we are dealing with a nonlinear theory.) Cer
tainly, it does not prevent other interaction terms of a differ
ent kind from occurring in 1 W(l) and X (2). However, we 
think that this situation will not, in general, appear at this 
order of approximation. 

Let us learn more about the meaning of 1 W( 1) and X (2) 

by comparing (4.12) with some well-known second-order 
relativistic Hamiltonians. 

V. SOME RELATIVISTIC HAMILTONIANS 

We show in this section how the more widely known 
relativistic Hamiltonians can be accomplished by conve
niently fixing the free operator functions that the general 
Hamiltonian we have derived in the preceding section 
(4.12) contains. 

First of all, we consider Breit's Hamiltonian. It de
scribes a system of N electromagnetically interacting parti
cles having charges ea and gyromagnetic factors Aa. The 
operators should have the following expressions in order to 
fit Breit's Hamiltonian l2

: 

1 N eaeb + - I I AaAbSakSbl (5.1) 
8 a = 1 bola mambr;,b 

X ({jkl - 3rab 2X~bX!b ) + "contact terms." 

Substituting this expression into (4.12), we get a straightfor
ward generalization of Breit's Hamiltonian (any number of 
particles is allowed and the values of the particle spins are 
not restricted to ~), that is13 
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1 N e a e b kl _ 2 k I" " + -2 L L AaAbSakSbl Uj - 3rab XabXab ) + contact terms +.... (5.2) 
8c a~ I b#a mambr;,b 

Our second example is the Barker-O'Connell Hamiltonian. It described a system of N nonzero spin particles interacting 
by means of gravitational forces in the framework of Einstein's theory. 14 Now the indeterminate operator should have the 
expressions 

Inserting (5.3) into (4.12), we obtain 

2 ~ P~ 1 ~ '" Gmamb 1 ~ p! 3 ~ '" Gmb I 2 2 I 
HS-QC;:::,Mc + ~ ---- ~ ~ -2 ~ --3 --2 ~ ~ --Crab Pa +Parab ) 

a~12ma 2 a~lb#a rab c a~18ma 4c a~lb""a ma 

1 ~ '" G kl -2 k I 1 ~ '" '" G2mambmc 
- -2 ~ ~ ~ SakSbl (/j - 3rab XabXab ) + -2 ~ ~ ~ + "contact terms" + .... (5.4) 

2c a~lb""arab 2c a~lb""ac""a rabrac 

Strictly speaking, this is not the Barker-O'Connell Hamilto
nian. 15 Ifwe drop all the spin dependent terms in (5.4) (i.e., 
system of spinless particles), we recover the Einstein-In
feId-Hoffmann Hamiltonian. 16 Ifwe set the number of par
ticles N = 2 and ignore the quadratic term in the gravitation
al constant G, (5.4) reduces to the Hamiltonian obtained by 
Ibanez and Martm. 17 By writing the last mentioned Hamil
tonian in the center of mass Pi = 0 and making a coordinate 
transformation,18 it coincides with the Barker-O'Connell 
Hamiltonian if the quadrupole interaction terms are omit
ted. 

Another important Hamiltonian is the Bazanski Hamil
tonian. 19 It takes account of the interaction on N spinless 
charged particles in the framework of Einstein's theory up to 
the inclusion of 1/ c2 terms. Even though we are not going to 
write it explicitly here, let us say that the interaction terms in 
this Hamiltonian that are not included in the Darwin Hamil
tonian or the Einstein-Infeld-Hoffmann Hamiltonian, so 
that they describe the coupling between the electromagnetic 
and gravitational fields, are functions just of the operators 
rab' Therefore, we need only to add them to the operator X (2) 

given by (5.3) after setting Sai = 0 to obtain the adequate 
X (2) for this new Hamiltonian [the operator X (2) corre
sponding to the electromagnetic case (5.1) vanishes for spin
less particles]. Obviously Vab must be the sum of the electro
magnetic and gravitational Newtonian potential energies. 
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I 
VI. REMARKS 

Our aim in this paper has been to show that the BR 
relativistic quantum theory has a good agreement with the 
more basic and widely accepted results on relativistic N par
ticle systems. On the other hand, we also have attempted to 
elucidate as to what are the utilities of a theory of this kind. It 
is clear that the BR theory is a likely framework. It tells us 
the structure that an N interacting particle Hamiltonian 
must have in order to be Poincare invariant. However, it 
does not explain to us what we should do to work out the 
Hamiltonian that describes a system of particles interacting 
by means of the particular forces we are interested in. 

This does not mean that the BR framework may not be 
useful to solve some problems. It can be done if we complete 
the BR framework with some good guessing work. We have 
pointed out in the last paragraph of Sec. IV that the indeter
minate operators that the Hamiltonian (4.12) includes may 
be related to a simpler dynamical problem: the motion of a 
single particle in an external field. In fact, it can be checked 
that X (2) only contains terms of this kind in both of the cases 
we have dealt with in the previous section. Moreover, X(2) 
can be obtained from two-body terms (one particle in the 
field created by another) by making them symmetrical un
der arbitrary changes of particle labelling; the only exception 
is the G 2 term in the Barker-O'Connell Hamiltonian that is a 
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three-body term, even though it also takes account of the 
potential energy of a particle in a field. 

Another important feature of the BR scheme is that it 
gives explicit expressions for the infinitesimal generators of 
the Poincare group; mainly, it shows how to build up the 
boost generator, provided that the Hamiltonian is known. It 
has permitted showing that the boost generator is Hermitian 
and exhibits good clustering properties in the representation; 
it is commonly used to write down the Breit and the Barker
O'Connell Hamiltonians. 

Finally, we would like to make some comments on the 
set of equations (1.6), the expansion in powers of lie, and 
the relativistic invariant scalar product. Though we have 
demonstrated that there are approximate solutions of Eqs. 
(1.6), we have stopped at the crucial point. Beyond the sec
ond-order approximation, one can ignore neither radiative 
effects nor that Lagrangians should depend on accelerations 
and higher-order derivatives of the position coordinates. 20 

Fortunately, these nonstandard classical Lagrangians21 ad
mit a kind of Legendre's transformation; it leads to a Hamil
tonian that is a function of the canonical coordinates and 
momenta, but does not depend on the derivatives of these 
quantities. 22 Therefore, one may expect that there also exists 
quantum partners to these classical Hamiltonians; that is, 
there are solutions of Eqs. (1.6) up to any order of approxi
mation. Anyhow, it is far from being evident, due to the 
highly nonlinear character of the system (1.6). The nature 
of the relativistic scalar product is another question related 
to the problem of existence of solutions. We have proved that 
one can use the nonrelativistic scalar product in the relativis
tic scheme at least up to the second-order of approximation. 
It raises the question of whether it will be compatible with 
higher relativistic corrections. These two problems will be 
the matter of a forthcoming paper. 
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APPENDIX: THE BOOST GENERATOR 

The Boost generator formula given in BR [BR equation 
(3.4) ] is not very useful for the sort of perturbation calculus 
to which this paper is devoted. We derive in this Appendix a 
different expression for this infinitesimal generator that may 
be regarded as a power series expansion in some nonspecified 
coupling constant. 

Our departing point is the position-space representation 
that is linked to the momentum-space representation by 
means of the invariant Fourier transform [BR equation 
(5.17)] instead of the ordinary Fourier transform. As we 
said in the beginning of the paper, there is a representation 
on the initial data space of the Schrodinger equation asso
ciated to the position-space representation (induced repre
sentation). A formal expression for the boost generator of 
this last representation can be easily obtained from the BR 
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equation (5.19) by using the technique explained in the BR 
appendix. [It differs slightly from the above-mentioned BR 
equation (3.4) since we are using another position-space 
representation.] This procedure leads to 

(AI) 

Let us assume that the functions ha (E,kb 2), which de
fine the parametric equations of the surface ~ (1.1), are 
analytic in a neighborhood of the subset E = HF = €"OJa , 

that is, 

h (Ek2) = ~ ~ii(n)(E-H )n 
a 'b £., I a F , 

n~ I n. 

(A2) 

Then, the derivatives of ha (E,kb 2) are series of positive pow
ers of E and therefore their respective Fourier transforms are 
well-defined operators (at least in all that it may concern to 
E), 

(T = ia fat is the position-space version of the E operator). 
The operators (A3) acting on initial data space (functions 
independent oft) is what we have called (a nhafaE) (O,Pb 2) 

in formula (A 1 ). Thus a formal expression for these last 
operators can be easily obtained from (A3 ) by simply setting 
T=O. 

Combining (A 1) and (A3), we get 

We now write the Hamiltonian as a sum of two terms, 
the free Hamiltonian H F and an interaction term W Then, 
the nth power of H reads 

n 

Hn = (HF + W)n = I {H~-r,wr}, 
r=O 

where 

{H~-r,wr}= I 
k. + ... + ky+ I = n - r 

{H~,WO}=H~ (r=O). 

We use the identity 

WH} = ± (k)H}-r[ W,HF ](r), 
r~O r 

(AS) 

(A6) 

[W,HF] (r)= [[ ... [W,HF ]HF]" 'HF ]HF] (A7) 
..., , 

"'" (r-times) 

to bring all the terms on the right-hand side of (A6) to the 
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following form: 

H';:+'WH';:··· WH~' 

= I mIs, ... m'r;-' (7 1) 

I, = 0 I, = 0 I, = 0 1 

(A8) 

where we have introduced the notations sp = II + ... + Ip 
and mp = kl + ... + k p. 

Substituting this expression into (A6) and changing the 
order of the sums over the kp's and Ip's indices, we get 

n - r- Sr~ I 

~ D(n-r) H n- r- s, 
L (1,.···.1,) F 

1,=0 

x [W,HF ] (I,) ••• [ W,HF] (1,\ (A9) 

where 

n-r 
D (n-r) - ~ 

(1, .... ,/,)= L 

m, 

(AlO) 

Let us come back to (A4). Substituting (A5) into (A4) 
and reordering the sums over the n, m, and r indices, we 
obtain 

co co co ( l)m-n 
ki=xui L L L ,- , h~m) 

r=Om=rn=r n.(m-n). 

XH~-n{H~-r,wr} + Qi. (A11) 

We now take into account (A9) and rewrite (All) moving 
the sum over n to the right side of the block of sums over the 
Ip's indices; so we get 

co 

ki=xui L s(m.o)hu(m)H'; 
m=O 

m-r-Sr_1 

~ s(m.r) 
L (1, ... ·.1,) 

1,=0 

X h(m)Hm-r-s'[W,H ](1,) 
u F , F 

(A12) 

where 

s(m.O)-= ~ (_l)m-n =tr 
L '( )' 0' n=on.m-n. 

s (m.r) _ ~ ( - l) m - n D (n - r) 
(1, ... ·.1,) = L n!(m _ n)! (1, ... ·.1,) 

n = r+ 5,. 

(r>l,sr<m - r). (A13) 

Changing the order of the sums one more time, we obtain 

ki=XUih(O)+xui ~ ~ ... ~ ~ s(m.:-). 
a £- ~ ~ ~ (I,. ,I,.) 

2852 

r = 1 I, = 0 I,. = 0 m = r + S,. 

xli ~m)H;-n -5,[ W,Hp) (I,) ... [W,H
F

] (I,) + Qi. 
(A14) 

Now we proceed to evaluate the numerical coefficients 
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(A 13 ). First of all we calculate (A 10) by applying succes
sively the combinatorial identity 

Ita(J = (!: ~). 
It leads to 

D(n-r) 
(I,." '.1,) 

= ( n ) IT (SP + P - 1). 
r+sr p=1 Ip 

Inserting this expression into (A 13 ), we have 

S (m.r) = om IIr 
1 

(I, .... ,!,) r+s, I '( + ) p=1 p.Sp P 

-=0';'+ s r«~). I)' 
r \- 'r 

(A15) 

(A16) 

(A17) 

It turns out that the sum over m in (A 14) is trivial. 
Therefore we finally obtain 

co <lO co 

k i =xuih ~O) +xui L L L q~: ..... I,) 
r= 1 I, =0 1,.=0 

xh ~r+s,) [W,HF] (I,) ••• [W,HF] (I,) + Qi. (A18) 

A more comprehensive formula can be derived by iso
lating in the preceding one all the terms in the multiple sum 
corresponding to II = 12 = ... = lr = 0, that is 

001 00 00 

ki=xui ~ -h (r)w r +xui ~ ~ r(r) ... L r! u L L (I,. .1,) 
r=O • r= 1/, .. ··.1,.=0 

s,.>O 

Xh ~r+s,) [W,HF] (I,) ••• [W,HF] (I,) + Qi. (A19) 

The first term on the right-hand side of this expression is the 
usual Taylor expansion at the point E = H F; the second one 
contains all of the quantum corrections to the classical for
mula coming from the fact that Wand H F do not commute. 

'L. Bel and E. Ruiz, J. Math. Phys. 28, 18 (1988). 
2Summation over repeated upper and lower indices is assumed. Neverthe
less we sometimes make explicit the summation symbol, mainly in the last 
sections. 

'This Hamiltonian is the sum of N standard one particle Hamiltonians. See, 
for instance, S. Schweber, An Introduction to Relativistic Quantum Field 
Theory (Harper & Row, New York, 1961). 

"The action of the operator H F is perfectly well defined in the momentum
space. See, for instance, Ref. 3. 

'These calculations are more clearly and rigorously made using the mo
mentum-space representation [BR equation (5.19) ]. This last procedure 
requires solving the Schriidinger equation in the momentum-space 
(HF - E)IjJ(E,kb ) = 0; the general solution of this equation is 
IjJ(E,ka) = 6(ka )t5(E - H F ). 

"See, for instance, S. Schweber (Ref. 3). 
7L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950); J. Bjorken 
and S. Drell, Relativistic Quantum Mechanics (McGraw-Hili, New York, 
1965). 

8We refer to the work on these classical systems by L. Bel and J. Martin, 
Ann. Inst. Henri Poincare A 33, 409 ( 1980). The description of the system 
is made by means of an extension to N particles of the one-particle sym
plectic form worked out by J. M. Souriau. Structure des Systemes Dynami
ques (Dunod, Paris, 1970). 

9M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions 
(Dover, New York, 1972). 

IOIt amounts to saying that the system will be accurately described by some 
few terms of the series whenever the energies involved are much smaller 
than the rest masses of the particles. It means that we are dealing wi th true 
massive particles, ma > 0 for a = 1,2," . ,N; zero-mass particles are ex
cluded from our analysis. 
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lISee, for instance, K. Gotfried, Quantum Mechanics (Benjamin, London, 
1974). 

12Even though contact terms can obviously be included in X(2)' we have 
preferred to omit them, since their usual expressions come from spin-~ 
particle calculations and perhaps they may be rather different for some 
other kind of particles. 

I3H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One and Two 
Electron Atoms (Springer-Verlag, Berlin, 1957); V. Berestetski, E. Lif
chitz, and L. Pitayevski, Theorie Quantique Relativiste (Mir, Moscow, 
1972); a classical version of the Breit Hamiltonian that allows arbitrary 
values of the intrinsic angular momenta (classical spin) can be found in L. 
Bel and J. Martin, Ann. lnst. Henri Poincare A 34, 235 (1981). 

14For gravitational interaction in theories other than general relativity 
(PPN with parameters P and r), see B. M. Barker and R. F. O'Connell, 
Phys. Rev. D 14, 861 (1976). The two-particle Hamiltonian that is given 
in this paper can be achieved by making the numerical constant that pre
cedes each multiple sum in the expression of the operator X(2) corre-
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sponding to the Barker-O'Connell Hamiltonian (5.3) into a simple func
tion of the parameters P and r. 

15B. M. Barker and R. F. O'Connell, Phys. Rev. D 12, 329 (1975); Gen. 
Relativ. Gravit. 11, 149 (1979). 

16L. Landau and E. Lifchitz, Theorie du Champ (Mir, Moscow, 1966). 
I7J. Ibanez and J. Martin, Gen. Relativ. Gravit. 14,439 (1982). 
I"See the first source in Ref. 15. 
19S. BaZlioski, in Recent Developments in General Relativity (Pergamon, 

New York, 1962); B. M. Barker and R. F. O'Connell, J. Math. Phys. 18, 
1818 (1977). 

20J. Martin and J. L. Sanz, J. Math. Phys. 19,780 (1978); 20, 25 (1979). 
21The electromagnetic Lagrangian up to order lie' is discussed in B. M. 

Barker and R. F. O'Connell, Ann. Phys. (NY) 129,358 (1980); thegrav
itational Lagrangian in general relativity up to the same order is discussed 
in T. Damour, in Gravitational Radiation, edited by N. Deruelle and T. 
Piran (North-Holland, Amsterdam, 1983). 

nX. Jaen, J. L1osa, and A. Molina, Phys. Rev. D 34, 2302 (1986). 
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A formulation of quantum mechanics on p-adic number fields is presented. Quantum 
amplitudes are taken as complex functions of p-adic variables and it is shown how the Weyl 
approach to quantum mechanics can be generalized to the p-adic case. The p-adic analogs of 
simple one-dimensional systems (free particle, compact and noncompact oscillators) are 
defined by a "group of motion," which is an Abelian subgroup ofSL (2,Q ). In each case the 
evolution operator is a unitary representation of the appropriate group. It: spectrum is given 
by characters and its eigenstates are calculated. 

I. INTRODUCTION 

To describe the physical world one obviously needs a 
number field. In classical physics, the field of real numbers, 
R, is clearly singled out, while in quantum mechanics it is the 
field of complex numbers, C, that is of fundamental impor
tance. 1 

A rather remarkable mathematical theorem2 states that, 
besides Rand C, the only other number fields with reasona
ble algebraic and topological properties-which will be stat
ed explicitly below-are the fields Qp (see Refs. 3 and 4) of 
p-adic numbers or algebraic extensions thereof. The essential 
difference between R (or C) and the Qp 's lies in a property of 
their respective metric: in the former case, the metric satis
fies the usual triangular inequality, while in the latter, a 
much stronger inequality, often called ultrametricity, holds. 

It is precisely via the ultrametric structure of the ground 
states of spin glasses5 that, to our knowledge, Qp fields were 
first mentioned in the physics literature. 

In a completely different context, Volovich and colla
borators6 have suggested various uses of p-adic fields either 
as the expression of fundamentally new characteristics of 
space and time at the Planck scale or as tools to investigate 
the behavior of various physical systems. This has led to a 
growing interest in analyzing properties of a physical theory 
when defined over p-adic 7-9 (or even finite 10) number fields. 
The relevance of such investigations is certainly obvious in 
the context of string theories II: since the world sheet param
eters are intrinsically non observable, it is certainly legiti
mate and worthwhile to investigate the structure of strings 
when these parameters are p-adic. Interestingly enough 
some of the arithmetic ingredients of string theory such as 
modular forms have p-adic analogs as well. 12 One of the first 
important uses of p-adic numbers in string theory was by 

aJ Research assistant at Institut Interuniversitaire des Sciences Nucleaires 
(IISN). 

bJ Research assistant at Fonds National de Recherche Scientifique 
(FNRS). 

Freund and Witten (see Ref. 11). Their work certainly 
strengthens the idea that a "fundamental theory" is not only 
independent of the parametrization one uses, which is cer
tainly a key input of general relativity or conformal field 
theories, but also that, in some sense, it does not really de
pend on the number field in which the parametrization is 
expressed. We find this idea rather fascinating. 

Clearly if one wants to use Qp in string theory, it is useful 
and important to learn first how to formulate quantum me
chanics when the underlying degrees of freedom or param
eters are p-adic. 

Our purpose in this paper is to develop this formulation 
ab initio in the study of simple one-dimensional systems 
whose classical (real) Lagrangian is quadratic. This in
cludes the cases of a free particle, a particle in a constant 
field, and a compact or noncompact harmonic oscillator. In 
the p-adic version of these problems quantum amplitudes 
and wave functions will be taken as complex valued func
tions of p-adic variables. This point of view was originally 
suggested, among other possibilities, by Volovich.6 Freund 
and Olson (see Ref. 7) then proposed that matrix elements 
of the quantum evolution operator be taken as proportional 
to additive characters, exp (21TiScI ), where Sci is the classical 
action expressed in terms of initial and final p-adic positions. 
The present authors with Alacoque later elaborated8 on this 
idea by emphasizing the group theoretical structure; using 
the p-adic Gaussian integral, we checked that the Freund
Olson proposal indeed gives the correct evolution operator. 
In this paper we will justify the Freund-Olson ansatz by 
considering the Weyl formulation of quantum mechanics, 13 

which involves finite transformation operators instead of in
finitesimal ones. This makes it particularly suited for formu
lating quantum mechanics on p-adic fields. Indeed, an im
portant by-product ofultrametricity is that the fields Qp are 
disconnected: they are the union of disjoint closed sets.4 It 
follows that one does not really have the usual notion of a 
path in Qp : adding many "infinitesimal" displacements does 
not build up a finite one! An unavoidable consequence of this 
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fact is that "infinitesimal generators" cannot be properly 
defined on Qp and this clearly precludes a naive Schro
dinger-like formulation of p-adic quantum mechanics. 

To make this paper as self-contained as possible, we 
start in Sec. II with a brief summary of the salient features of 
Qp. We then sketch in Sec. III the Weyl formulation of ordi
nary quantum mechanics (i.e., over R) as well as its general
ization to Qp . 

When studied over R, the classical evolution matrices of 
the systems we consider here belong to Abelian subgroups of 
SL( 2,R). Going from R to Qp thus leads us to study Abelian 
subgroups of SL (2,Qp ). This is done, in some detail, in Sec. 
IV and Appendix C. As in the real case, we will distinguish 
three classes of subgroups (parabolic, hyperbolic, and ellip
tic l4

) and the elucidation of the precise structure of these 
subgroups will allow for an easy description of their unitary 
characters (i.e., one-dimensional unitary representations). 

In Sec. V we determine the eigenvalues and eigenfunc
tions of the evolution operators for the p-adic free particle 
(parabolic group) and noncompact oscillator (hyperbolic 
group). In Sec. VI we solve the corresponding problem for 
the p-adic compact harmonic oscillators (elliptic groups). 
In all cases the eigenvalues of the evolution operators are 
unitary characters of the relevant subgroup ofSL(2,Qp)' 

Section VII contains our conclusions. 
Several Appendices are included to deal with more tech

nical aspects of our study. Appendix A is devoted to p-adic 
integration with particular emphasis on Gaussian integrals. 
In Appendix B we consider the case when the classical evolu
tion is inhomogeneous, namely, the problem of a particle in a 
constant force field. Appendix C, as already mentioned, con
tinues Sec. IV and contains, in particular, an explicit descrip
tion of the elliptic subgroups in the more difficult cases. We 
are not aware of any reference containing these results. Ap
pendix D contains the explicit evaluation of some integrals 
and, finally, Appendix E presents a method for calculating 
the trigonometric sums that appear in the harmonic oscilla
tor eigenfunctions. 

II. THE p-ADIC NUMBER FIELDS Qp 

In this section we briefly review definitions and proper
ties of various number fields. 4 Our description of Qp' the 
field of p-adic numbers, is, of course, non exhaustive. The 
interested reader should consult the mathematical literature 
for more details and proofs. We begin with a general descrip
tion of the field Qp' then discuss quadratic extensions 

Qp (fi), and finally collect useful formulas for p-adic "cir
cles." 

A. General properties 

The simplest example of a number field is IF p' the set of 
integers modulo p, where p is a prime number. The field lFp 
contains p elements, which can be taken as 

lFp = {O,}, ... ,p -1}; (2.1) 

IF p is of characteristic p: for any xelF p' one has px = 0. 
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One can show that IF;, its multiplicative group, is iso
morphic to the cyclic group 

(2.2) 

with {U a primitive (p - l)th root of 1. 
The field of rational numbers, Q, is significantly richer 

than IF p' It contains an infinite number of elements and is of 
characteristic 0. 

The "absolute value," which we will denote I 100' de
fines a norm on the field Q, i.e., it satisfies the properties 

Ixl oo = ° iff x = 0, (2.3a) 

IxYloo = Ixl oo IYloo , (2.3b) 

(2.3c) 

With the help of this norm, one can define a distance on Q, 

d(x,y) = Ix - yl 00' (2.4) 

and start playing topological games. Q is a discrete field: it is, 
so to speak, full of holes. However, one can fill up these holes 
by "completing Q with respect to the norm I 100 ": the result
ing field is R, the field of real numbers. 

There are other norms that one can define on Q. Indeed 
let p be an arbitrary prime number. Every rational number x 
can be written as 

(2.5 ) 

where a,a,bEl and p does not divide a nor b. The integer a is 
called the ordinal of x (at p). The p-adic norm Ix Ip of x is 
defined as follows: 

Ixl
p 

=p-a=p-ordx. (2.6) 

One checks that I Ip is indeed a norm, i.e., Eqs. (2.3) are 
satisfied. In fact, a stronger form of Eq. (2.3c) is seen to 
hold, namely, 

(2.3c') 

Norms with the property in Eq. (2.3c) are called Archime
dean and those with property in Eq. (2.3c') non-Archime
dean or ultrametric. 

With respect to the p-adic norm [Eq. (2.6)], Q is still 
discrete, of course, but, again, it can be completed: the result
ing number fields are the Qp's, the fields of p-adic numbers 
( one distinct field for every rational prime p) . 

Here Rand Qp are the only number fields that can be 
built in this way: one can prove (Ostrowski's Theorem4

) 

that any norm on Q is equivalent to I 100 or to one of the I Ip· 
The abstract construction of Rand Qp from Q makes 

clear that ultrametricity, i.e., Eq. (2.3c') instead of Eq. 
(2.3c), is really at the heart of the quite different properties 
of real and p-adic numbers. 

A very concrete and practical realization of Qp is given 
by the set of power series, 

Qp = {x=pa(toxjpi)!o";;Xj";;P-l, xo#O, aEl}. 

(2.7) 

The xj's are the "digits" of the p-adic number x and the 
integer a is the ordinal of x. All series in (2.7) are convergent 
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with respect to the p-adic norm I I p' Indeed, because of ul
trametricity, a series ~an is convergent iff Ian Ip ..... 0. Let us, 
for example, rewrite x = - 1 in this way: 
- 1 = (p - 1) + ( - 1) ·p.lterating this equation, one gets 

00 
- 1 = 2: (p - 1 )pJ. (2.8) 

J~O 

We note that while I 100' when extended from Q to R, can 
take any (positive) value, I Ip remains valued on a discrete 
set: the integral powers of p. An immediate consequence is 
that Qp is only partially ordered (while R is totally ordered). 

Subsets ofQp that will often be used in the following are 

'l..p = {xEQpl Ixlp..;1}, (2.9) 

which is the ring of p-adic integers, and 

'l..; = {XEQp I Ixlp = 1}, (2.10) 

which is the multiplicative group of p-adic "units." 
Concerning the topological properties of Qp, the follow

ing remarks4 will be sufficient for our purposes. Call 

U(a;n) = {xEQpl Ix-alp..;p-n} (2.11) 

ap-adic "ball" with center a. In this notation, Zp = U(O;O) 

while U(O;n) is the setpnZp = {XEQp; Ixlp";p - n}. Note that 
every point of U(a;n) is a center, i.e., if bE U(a;n), then 
U(a;n) = U(b;n). This is ultrametricity at work! 

The p-adic balls are both open and closed sets, 

U(a;n) = {xEQp I Ix - alp <p - n + I}, (2.12) 

and they are disconnected sets, namely, 
p-I 

U(a;n) = U U(a + pnx;n + 1) (2.13 ) 
x=Q 

is the union of closed disjoint sets. Finally one can show that 
U( a;n) is compact. Thus Qp as well as R is a locally compact 
topological field. Note that 'l.. is dense in 'l..p as well as Q in Qp. 

One can now start doing analysis on the Q/s. We will 
make essential use of additive (X) and multiplicative (1T) 

characters,3 which are continuous complex valued functions 
of a p-adic variable, 

X,1T: Qp ..... C, 

with the property 

(2.14 ) 

and 

X(x + y) = X(x)X(Y) (2.1S) 

1T(XY) = 1T(X)1T(y). (2.16 ) 

Furthermore unitary characters have the property 

Ix(x)I=I, 11T(X)I=1. (2.17) 

Characters will be extensively discussed in Sec. IV. Thus 
we give only a couple of examples here: 

1T(X) = Ixl~, (2.18 ) 

with s real or complex are multiplicative characters while 

X(x) = exp(21Tix) (2.19) 

is a unitary additive character. The precise meaning of Eq. 
(2.19) is the following: for x given by Eq. (2.7), 

X(x) =exp(21TiPa(~.foa xJPJ)). (2.20) 
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In other words, for x E 'l..p, X(x) = 1. It is important to rea
lize that the "series expansion" of Eq. (2.19) makes no 
sense. 

Integration over Qp is discussed in Appendix A. 

B. Quadratic extensions of Qp 

The algebraic structures ofR and Qp are quite different. 
The field R is clearly divided into two quadratic classes: a 
(nonzero) real number y is either the square of another real 
number or minus such a square. One writes 

(2.21 ) 

Squaring a generic element x of Qp as given by Eq. (2.7) 
leads to 

x2 = p2a(x6 + 2xoXIP + "'). (2.22) 

Comparing this with the digital expansion of an arbitrary p
adic number y, 

(2.23 ) 

shows that two necessary conditions for y to be a square are 
its ordinal is even ({3 = 2a) and its first digit Yo is a square 
modulo p. Hensel's lemma4 guarantees that these necessary 
conditions are also sufficient for p =j. 2. 

Since YoEF; can be written as wk (mod p) with w a 
primitive (p - 1 )th root of unity, half the elements ofF; are 
squares (w k with k even) while the other half are not (k 
odd). This property is formalized by the Legendre symbol 

(YO/P)L = (- l)k, if Yo=Wk modp. 

The Legendre symbol is a multiplicative character of order 
2. To give a simple example, 

F; = {1,2,3,4} = {24,2YY} 

and 

(l/S)L = (4/S)L = 1 

while 

(2IS)L = (3/S)L = - 1. 

Hence given an arbitrary p-adic number y, one and only one 
ofthefournumbersy,£y,py,or£pywith (£/P)L = - 1, will 
be a square. Thus Qp (p=j.2) has four quadratic classes la
beled by the parity of the ordinal and the quadratic class of 
the first digit. One writes 

y = x 2 or y = rx2
, where r = £,p,£p. (2.24) 

In the case p = 2, Eq. (2.22) reads x 2 = p2a 

(1 + O(p3», where the notation O(pk) means IO(pk) Ip 
..;p - k. The parity of the ordinal and the value of the first two 
significant digits (x I and x 2 ) distinguish the eight quadratic 
classes: 

y = x 2 or y = rx2
, where r = - 1, ± 2, ± 3, ± 6. 

(2.2S) 

From Eq. (2.21) it follows that R has a unique quadrat

ic extension obtained by adding [=T, the solution of the 
equation x 2 + 1 = 0: 

C = R(i=!) = {z = XI + i=!x2Ixl,X2ER}. (2.26) 
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Once we have C, we are done with extensions. In C every 
polynomial equation has a solution: the field C is algebraical
ly closed. It is also complete with respect to I I 00 , which is 
defined as follows: 

Izloo = Izzl ~2 = Ixi + x~ I ~2, (2.27) 

where Z, the conjugate of z = x I + ..r=T X 2, is given by 

z = XI - ..r=Tx2 • 

Note also that any (nontrivial) extension ofR is identical to 
IC. 

In Qp one proceeds along similar lines. From Eqs. 
(2.24) and (2.25), it follows that for p=/-2, Qp has three 
distinct quadratic extensions while for p = 2, Q2 has seven of 
them. They can all be written as 

Qp (.,fi-) = {z = XI + .,fi-x2IxI,X2EQp}, (2.28) 

with 7 = E, p, or EP, for p=/-2, and 7 = - 1, ± 2, ± 3, ± 6, 
for p = 2. The three distinct quadratic extensions of Qs, for 

example, are Qs(v2), Qs( $), and Qs( JIO). 
One shows that two quadratic extensions Qp ( .,fi-) and 

Qp ([i') are identical iff 7/7' is a square in Qp. For example, 

Qs( JIO) and Qs(~) are identical fields. 

In contrast with C = R (..r=T), none of the extensions 

Qp ( .,fi-) are algebraically closed and, in fact, the extension 
process (i.e., adding to the field a "solution" of an algebraic 
equation) can be continued "indefinitely," e.g., with the 
equations 

(2.29) 

leading to Qp (n -JP), etc. 

The conjugate z of an element z = X I + .,fi-x2 of Qp ( .,fi-) 
is again defined as 

(2.30) 

and the norm I Ip is uniquely extended to Qp(.,fi-) via the 
formula4 

Izlp = Izzl!12 = Ixi - 7X~ 1!12. (2.31) 

The possible values of Izlp are thus integer or half-integer 
powers ofp. 

It is a theorem2 that R, C, and finite extensions of Qp 
exhaust all possibilities of Abelian locally compact number 
fields of characteristic O. The fields Rand C are connected 
fields while any finite extension of Qp is not. 

The quadratic field extensions C and Qp (.,fi-) are two
dimensional vector spaces over their base field. Particularly 
important subsets of these extensions correspond to "cir
cles," which we now proceed to describe. 3 

C. p-adic circles 

The circle of square radius p in the complex plane is 
defined as 

2857 

C_I(p) ={ZEqzZ=X~ - (-l)x~ =p}. 

In Qp (.,fi-), one defines analogously 
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(2.32) 

(2.33 ) 

This equation allows one to define, on Qp' the functions 

sgnT P associated with each quadratic extension Qp ( .,fi-): 

{ 
+ 1, if 3x l ,X2EQp: xi - 7X~ =p, 

sgnTP = 
- 1, otherwise. 

(2.34 ) 

In other words, Cr (p) is not empty iff sgn r P = + 1, 
but, in contrast to Eq. (2.32), sgnT P = + 1 does not neces
sarily imply that P is a square of an element of Qp. 

An explicit calculation IS leads to the following results: 
for t=pordl(to+tIP+ t2p2+ ... ), 7=pordr 
(Eo + EIP + E2P2 + ... ), one finds, for p=/-2, 

sgn t = (!.2.)Ord r. (Eo)Ord I. (--==--l)Ord T·ord I. (2.35) 
r PL PL P L ' 

while, for p = 2 (Eo = to = 1), 
sgn

r 
t= (_1)E,I,.( _1)(I,+I,)ordT+(E,+e,)ordl. (2.36) 

All these functions are multiplicative characters of or
der 2, i.e., 

sgnT (ut) = sgn r (u) 'sgn r (t), 

sgnT (t 2) = 1. 

A special role is played by the unit circle C
T

, 

CT = Cr (1) = {ZEQp (.,fi-) Izz = n, 

(2.37) 

(2.38) 

whose elements form a multiplicative group. Writing 

z = e + .,fi-s, with e2 
- 7S2 = 1, 

the group law zz' = Z" reads 

e" = ee' + 7SS', 

S" = se' + es'. 

(2.39) 

(2.40a) 

(2.40b) 

The circle Cr is most usefully described through the so
called "rational parametrization3

,,: 

e= (1 +7t 2)/(1-7t 2), s=2t/(1-7t 2
). (2.41) 

When t = s/ (e + 1) runs over Qp' z = e + .,fi-s runs over the 
circle Cr' In terms of t, the group law now becomes 

til = (t + til )/0 + ttt '). (2.42) 

The detailed structure of the groups Cr will be discussed in 
Sec. IV. 

III. P-ADIC QUANTUM MECHANICS a/a WEYL 

In the following we will be mainly interested in one
dimensional systems described by one of the following qua
dratic Lagrangians: 

L 1'2 
I =2mx , 

L2 = Imx2 
- 1kx2 

2 2' 

( 3.1a) 

(3.1b) 

L3=~mx2-Fx. (3.1c) 

We will mostly be concerned with the free particle and 
harmonic oscillator problems [Eqs. (3.1a) and (3.1b)]. 
The case of a particle in a constant field [Eq. (3.Ic)] is 
discussed in Appendix B. For the harmonic oscillator, we 
will distinguish the compact (k > 0) and noncompact 
(k <0) cases. 
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The classical equations of motion are easily solved and 
yield, the Eqs. (3.1a) and (3.1b), 

( x(t») = (a(t) b(t»)(X(O») = M(t)(X(O»). (3.2) 
p(t) c(t) d(t) p(O) p(O) 

By Liouville's theorem, M(t) is "volume preserving" 
and is thus an element of the group SL(2,lR), i.e., 
det M(t) = 1. 

More specifically, for the free particle, 

(
1 tim) 

Mf(t) = 0 1 ; (3.3a) 

for the compact harmonic oscillator (k = mOJ2) , 

(
COS OJt ( 1/ mOJ) sin OJt) " 

Meo (t) = . 
. . - mOJ sm OJt cos OJt 

(3.3b) 

while in the noncompact case (k = - mOJ2), 

(
cosh OJ t ( 1/ mOJ ) sinh OJt) 

M (t) = . . 
n.c. mOJ smh OJt cosh OJt 

(3.3c) 

For our purposes it is important to realize that the ma
trices given by Eqs. (3.3) belong to specific Abelian sub
groups ofSL(2,lR). 

In the Heisenberg picture of quantum mechanics, the 
classical variables x(t) and p(t) become operators X(t) and 
P(t) which act on a Hilbert space. For the quadratic systems 
considered here, the time development of X(t) and P(t) is 
still given by Eqs. (3.2) and (3.3). The commutation rela
tion 

[X(O),P(O) 1 = ih 121T (3.4 ) 

is imposed at some initial time t = 0 and the unimodularity 
of M(t) guarantees that it will hold at any time. 

An explicit realization on the Hilbert space off unctions 
of a real variable is provided by 

X(O)/(x) = x/(x) , 

ih d 
P(O)/(x) = - --lex). 

21T dx 

( 3.Sa) 

(3.Sb) 

One also introduces a time evolution operator U(t) such 
that 

U -I (t)X(O) U(t) = X(t) = a(t)X(O) + b(t)P(O), 
(3.6a) 

U -I (t)P(O) U(t) = P(t) = c(t)X(O) + d(t)P(O). 
(3.6b) 

This operator is easily shown to be 

U(t) = exp{ - (21Tilh)Ht}, (3.7) 

where H is the Hamiltonian expressed in terms of X(O) and 
P(O). The proof relies on the possibility of expanding U(t) 
in powers of t and uses the canonical commutation relation 
Eq. (3.4). 

There are several obstacles to generalizing this quanti
zation procedure to p-adic variables. To respect the laws of 
quantum mechanics one must remain in a Hilbert space of 
complex valued functions, but then a relation like Eq. (3.Sa) 
becomes meaningless: x is p-adic while/ex) is complex! 

One could try Ixlp/'(x) or Ixlp sgnr(x)/(x) as right
hand sides ofEq. (3.Sa), but the operator X(O) then seems 
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much too "coarse" to admit a conjugate operator P( 0) satis
fying Eq. (3.4)! 

However, the rules of ordinary quantum mechanics can 
be expressed equally well in terms of finite trans/ormation 
operators, namely, the Weyl operators13

: 

WK(a) = exp{(21Tilh)aP(0)}, 

Wx (f3) = exp{(21Tilh)PX(0)}. 

( 3.8a) 

(3.8b) 

The commutation relation [Eq. (3.4) 1 is now expressed as 

Wx(P} WK(a) = exp{ - (21Tilh)ap}WK(a) Wx(P}· 
(3.9) 

An explicit realization ofEqs. (3.8) is given, e.g., in configu
ration space, where 

Wx(P} Ix) = exp{(21Tilh)Px}lx), 

WK(a)lx) = lx-a), 

and Eqs. (3.6) of quantum evolution now read 

U-I(M) WK(a) U(M) 

(3.10) 

(3.11 ) 

= exp{ - (21TiI2h)a2cd}WK (ad) Wx(ac), (3.12a) 

U -I (M) Wx (P) U(M) 

= exp{ - (21TiI2h)P 2ab} WK (Pb) Wx(pa), (3.12b) 

with M the classical evolution matrix given in Eq. (3.2). 
This "Weyl formulation" of quantum mechanics, where 

one represents the Heisenberg group rather than its algebra, 
provides an appropriate framework for a generalization to p
adic variables. 16 As already mentioned, p-adic quantum me
chanics sti11lives in a Hilbert space of square integrable com
plex functions of a p-adic variable: 

Jlt'={rp(x)l(rplrp)<oo}, (3.13) 

with the scalar product 

(rp Iif') = i dx rp *(x)if'(x). 
Qp 

(3.14 ) 

The details of p-adic integration are discussed in Appendix 
A. 

As usual, in order to handle continuous spectra, one 
must also introduce a space S of well-behaved test functions 
(locally constant and with compact support) and a space S' 
of functionals on S (the distributions). This can be done 
straightforwardly as shown in Ref. 3. 

One can thus use the standard (improper) "configura
tion space" basis Ix), which is now indexed by elements x of 
Qp: 

(xlx')=o(x-x'), (3.15) 

1 = i dxlx) <xl-
Qp 

(3.16 ) 

Equations (3.10) and (3.11) thus provide an explicit 
realization of the Weyl operators even when x, a, and pare 
p-adic: the complex phase exp(21Tipxlh) is simply reinter
preted as a unitary additive character on the field Qp and its 
precise meaning is given by Eq. (2.20). 

For the simple systems considered in this paper, one can 
go one step further and take Eqs. (3.12) as dynamical equa
tions even when the variables are p-adic: the phase factor is 
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again reinterpreted as a character while the entries a, b, e, 
and d, of the "evolution" matrix M are simply taken as p
adic numbers. In other words, we may define the p-adic free 
particle and compact or noncompact harmonic oscillator by 
Eqs. (3.12), where M is now an element of an Abelian sub
group ofSL(2,Qp)' which is the "analog" of the real Abelian 
subgroups ofSL(2,R) given by Eqs. (3.3). These subgroups 
will be discussed in Sec. IV. 

From Eqs. (3.10)-(3.12) one can explicitly determine 
the matrix elements of U up to an overall factor, whether the 
variables are real of p-adic: 

(YIUlx) = (OIWK(y)Ulx) 

= X( - y2ed 12h) (OIUWK (yd) WK (ye) Ix) 

= X( - y2ed 12h)x(yexlh) (01 UWK(yd - x)IO). 
( 3.17) 

If b #0, Eq. (3.12b) with {3 = (yd - x)/b gives at once 

(01 Wx«yd - x)/b)U 10) 

= (OIUIO) 

= x( - ~ (yd - X)2)(0IUWK(Yd -x)IO); 
2h b 

hence 

(YIU Ix) = x( - y~~d)X(y~X)x(;h (yd ~ X)2 )(OIU 10) 

= (_ y2ed +yex ~ (Yd-X)2)(0IUI0) 
X 2h h +2h b 

= x(_I_(ax2 + dy2 - 2xY») v(M). 
2hb 

If b = 0, Eq. (3.12b) reads 

Wx ({3) U = UWx ({3a). 

Hence 

(YIUlx) = (YIWx ( -{3)UWx ({3a)lx) 

= X«{3 I h) (ax - Y»(yl U Ix), 

(3.18 ) 

which shows that the matrix element vanishes unless y = ax. 
Equation (3.17) with ad = 1 also gives 

(Yl Ulx) = X( - a2x2ed 12h + aex2/h) 

X (0 IUWK (x (ad - 1 »10)8(y - ax) 

= x«aeI2h)x2)v(M)8(y - ax). (3.19) 

We have gone through the detailed derivation of these sim
ple formulas in order to show explicitly that all manipultions 
remain meaningful in the p-adic case. Note that we do re
cover the Freund-Olson ansatz (see Ref. 7): for the Lagran
gians given in Eqs. (3.1), matrix elements of U are propor
tional to unitary additive characters with the classical action 
as argument. 

The modulus of the overall factor v(M) is fixed by uni
tarity: 

f dz(zl U(M) Ix)*(zl U(M) Iy) = 8(x - y). (3.20) 

One finds 
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(YIU(M)lx) 

= /(M) Ihb Ip- 112X( (1I2hb) (ax2 + dy2 - 2xy», 

b #0, (3.21a) 

(YI U(M) Ix) 

=/(M) lal!/2x (aex2/2h)8(y - ax), 

b=O. (3.21b) 

With the phase factor /(M) these formulas define a projec
tive representation of the full SL (2,Qp) group. We show in 
Secs. V and VI that for the quadratic systems we consider 
one can choose/eM) so as to obtain a true representation of 
the relevant Abelian subgroup ofSL(2,Qp)' 

To conclude this section let us emphasize once again 
that, in the formulation of quantum mechanics over p-adic 
fields adopted here, there is no use nor need to define p-adic 
"momentum" or "Hamiltonian" operators. In the real case 
they are infinitesimal generators of space and time transla
tions, but, since Qp is a disconnected field, these infinitesimal 
transformation operators become meaningless. On the other 
hand, finite transformations remain meaningful and the cor
responding Weyl and evolution operators are p-adically well 
defined. 

We can now proceed with a more precise identification 
of what we mean by p-adic free particle and harmonic oscil
lators. 

IV. ABELIAN SUBGROUPS OF SL(2,Qp) AND THEIR 
CHARACTERS 

For an arbitrary SL(2,Qp) matrix, the secular equation 
has either a degenerate solution, two distinct solutions, or no 
solution at all in the field Qp. In the latter case it admits two 
conjugate solutions in one of the quadratic extensions 
Qp ( ,fT). By anaolgy with SL (2,K) we will call the corre
sponding elements of SL(2,Qp)' parabolic, hyperbolic, and 
l' elliptic, respectively. 

We now define the quantum mechanical p-adic free par
ticle by the evolution operator U(M) [Eqs. (3.21)], where 
M belongs to the following parabolic Abelian subgroup of 
SL(2,Qp): 

(4.1 ) 

Multiplication of elements of G1 corresponds to addition for 
the parameter t: G1 is thus isomorphic to the additive group 
Qp+ and hence noncompact. Note, also, that G1 is conjugate 
to the subgroup 

G1=S-IG1S={M=(_:lm ~)}, (4.2) 

with 

Similarly the noncom pact p-adic harmonic oscillator 
(for simplicity, we have taken mm = 2h = 1) is defined 
through matrices M that belong to the following hyperbolic 
subgroup of SL( 2,Qp ): 

Ruelle etal. 2859 



                                                                                                                                    

G2={M=(: ;), C,SEQp' C
2 -r=1}. (4.3) 

The eigenvalues of a typical element of G2 are c + sand 
c - s. Since c2 

- r = 1, they are each other's inverse; hence 
the group G2 is conjugate to 

62 = T- 1G2T= {M = (~ a~I); aEQ;} , (4.4) 

with 

T=G -~) 
~ . 

From Eq. (4.4) it is obvious that G2 is isomorphic to the 
multiplicative group Q; and thus noncom pact. 

Finally we define the various (three for p #- 2 and seven 
for p = 2) compact p-adic harmonic oscillators ( again, 
mw = 2h = 1) via matrices M that belong to the following 1'

elliptic subgroups of SL(2,Qp): 

GT = {M = (;S ;), C,SEQp' 

c2 
- 1'S2 = 1; l' not a square} . ( 4.5) 

The eigenvalues of an element of G Tare c ± J7s, which 
belong to the unit circle C

T 
[Eq. (2.38)] in the quadratic 

extension Qp ( J7). Clearly G T and C T are isomorphic. 
Our next problem is to compute the spectrum of the 

quantum p-adic free particle and harmonic oscillators, 
which are now completely defined. 

From the eigenvalue equation 

(4.6) 

one deduces that 

(4.7) 

and 

II1.(M)I", = 1. (4.8) 

The eigenvalues of the quantum evolution operators are thus 
unitary characters of the groups G1, G2, and G

T 
or equiv

alently ofQp+, Q;, and CT' In the remainder of this section 
and in Appendix C we give a complete description of all 
these characters. These results will then be used in the fol
lowing sections to determine eigenvalues and eigenfunctions 
explicitly. 

Let us recall that ch~acters of a topological group G 
themselves form a group G, the dual of G. If G is compact, 
which is the cases for C

T
, Gis discrete and vice versa; if Gis a 

direct product, so is G. When dealing with characters, cyclic 
groups are particularly easy to handle: specifying the value 
of a character for a generator determines its value for any 
element. Thus if one succeeds in decomposing a group into a 
direct product of (finite or infinite) cyclic groups, its dual 
group is easy to describe. This is the strategy used below for 
Q; and CT' 
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A. The additive group Qt ~ G1 

Every character is ofthe form 3 

Xu(x) = X(O'x) = exp{21TiO'x}, (4.9) 

with 0' an arbitrary p-adic number. Thus G 1 is isomorphic to 
G1• The completeness and orthogonality properties of the 
characters are expressed as 

(4. lOa) 

i dx X" (x)X:' (x) =0(0'-0"). 
Qp 

(4. lOb) 

Precisely as in the case of the real additive group, the 
characters Eq. (4.9) are the "Fourier modes" that can be 
used to Fourier transform complex functions of a p-adic 
variable. 3 

B. The multiplicative group Q~ zG2 

Any element of Q; can be written as 

(4.11 ) 

with k = ord x a rational integer and y a p-adic unit, i.e., an 
element ofZ;. For p>3, ap-adic unit can be uniquely decom
posed as 

y=wju, j=l,oo.,p-1, 

where u is a p-adic unit whose first digit is 1, i.e., 

UE0 1 = {I + O(p)} = 1 + pZp, 

( 4.12) 

(4.13 ) 

and w is a primitive (p - l)th root of 1 in Z;. Such roots 
exist in IF;, as we have seen in Eq. (2.2), and hence exist in Z; 
by Hensel's lemma.4 

The (mUltiplicative) group 0 1 has subgroups Om' with 

Om = {I + O(pm)} = 1 + pmzp (4.14) 

and 

(4.15 ) 

For increasing m, the subgroups Om thus contain ele
ments of 0 1 that are closer and closer to 1. 

From Eqs. (4.11) and (4.12) it follows that 

Q;;:::;Z®Z;, 

and, for p>3, 

( 4.16) 

Z;;:::;Zp_I®OI' (4.17) 

The dual group is thus also a direct product. Following the 
notation of Ref. 3 we will write 1T for a general character on 
Q; and () for a character on the compact subgroup Z;: 

1T(pky) = exp{21Tikp}(}(y) , (4.18) 

withpE[O,I]. 
For every () character, (}(1) = 1. Hence by continuity 

every character on Z; eventually becomes trivial on some 
subgroup Om. This leads to a classification of () characters 
according to their rank.3 

(i) The trivial character (}(y) = 1 on Z; is of rank O. 
(ii) Characters of rank 1 are trivial on 0 1 but not on Z;, 

i.e., not on Zp _ 1 • 

They read 
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O(w'u) = O(w') = X _1_ = exp 21Ti-l- , (4.19) · .. ('/) { '/} 
p-l p-l 

with 1.;;;I.;;;p - 2. There are thus (p - 2) o characters of rank 
1. For example, the Legendre symbol is the rank 1 character 
with 1= (p - 1)/2. 

(iii) Characters of rank m (;>2) are trivial on Om but 
not on Om -I' For an elementy ofZ;, 

y = w j(1 + UIP + ... + Urn _ Ipm - I + umpm + ... ) 
( 4.20) 

where hEOm , the value of the character can only depend onj 
and on the digits UI"",Um _ I' i.e., 

O(wju) = O(w j(1 + UIP + ... + um_Ipm-I». (4.21) 

In other words, a 0 character of rank m is a character on 
Zp_I ® Ol/Om, where 

Ol/Om = {I + UIP + .. 'um_Ipm-1, O.;;;uj';;;p -t}. 
(4.22) 

This finite group is of order pm - I. It is cyclic and any ele
mentgwith Ig - lip = p-I can be taken as a generator (see 
Appendix C). 

In summary, a 0 character of rank m;> 2 reads 

O( w ju) = O( w jgn) 

= X(p ~ 1 )xC:~ I) , 
1.;;;I.;;;p-l, l.;;;a.;;;pm-l, p(a. (4.23) 

There are thus (p - 1) 2p m - 2 such characters. 

The set of all1T characters defines a basis on the Hilbert 
space of square integrable functions on the group Q; with 
invariant measure dx/lxlp. Their completeness and ortho
gonality properties are expressed as 

f d1T 1T(X)1T*(X') = 8( 1 - ;,) = Ixlp8(x - x'), 

(4.24) 

where 

fd1T =(1-p-I)-ltdP L ' 
Jo (} characters 

(4.25) 

i ~(X)1T'*(X) = 8(1T - 1T'). 
Q; Ixl p 

(4.26) 

The case p = 2 is discussed in Appendix C. 

C. The elliptic groups C r 

The analysis of the CT groups is in many respects similar 
to what was done for the multiplicative group Q;. One fac
tors CT as a direct product of a finite cyclic group and an 
infinite group C!. The former is the set of all elements of 
finite order and the latter, in analogy with Eqs. (4.14) and 
(4.15), contains a sequence of subgroups C ,;" whose ele
ments get closer and closer to the unit element. 

We will give here the details of this analysis for the two 
cases p;>5, 'T = P or ep and p;>3, 'T = e. The other cases are 
treated in Appendix C. 
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Whenp;>5, 'T = P or ep, from c2 - 'Tr = 1 it follows that 
121p = 1, l'Trlp < 1; hence 11 - c21 < 1. Therefore either 
11 - clp < 1 or 11 + clp < 1. In terms of the parameter t [Eq. 
(2.41)], one has 

when It Ip.;;;l, (c,s) = (1 + O(p),O(1»; (4.27) 

while 

for It Ip;>p, (c,s) = (- 1 + O(p),O(1» 

= ( - 1,0) '(1 + O(p),O(1». (4.28) 

Thus 

CT = Z2 ® C!, (4.29) 

with 

Z2 = {(c,s) = ( ± I,D)}, (4.30) 

and C! is the subgroup of elements of CT for which 
11 - cl p < 1. We will say that CT splits into two "sheets." 

From the decreasing sequence of subgroups 

C
T 

== C~ ::J C ! ::J C; ::J ... ::J C ';'::J .. " 

where 

(4.31) 

C';' = {(c,s) = (1 + O(p2m-I),O(pm-I)}, m;>l, 
(4.32) 

one defines, as before, the rank m of a character 7] (z) on the 
circle zz = 1. A character of rank m is trivial on C';' but not 
on C';' - I. The determination of the characters proceeds as 
in the case ofthe multiplicative group Q;. Obviously there is 
one (trivial) character of rank 0, 7](z) = 1, and one charac
ter of rank 1, 

( 4.33a) 

with hEC!. 
For m;>2, any element of C! can be factorized as fol

lows: 

Z= [(1 +cIP+ "'cm_Ipm-l) 

+,fi-(so + sIP + ... +sm_ 2pm-2)] 

. [1 + O(p2m-l) + ,fi-O(pm-I)], 

where the second factor belongs to C ';'. Hence an 7] charac
ter of rank m;>2 only depends on the (m - 1) first signifi
cant digits of c and s. They can thus be viewed as characters 
on the finite group Z2®C!/C';', Once again we show in 
Appendix C that C !/ C ';' is a cyclic group of order pm - I and 

that any element g = c +,fi-s with Islp = 1 and 11 - clp 
= p-I can be taken as a generator. 

There are thus 2(p - 1) pm - 2 characters of rank m;>2 
given by (hEC';') 

7](z = ( - )jgnh) = 7]( ( - 1)jgn) = ( - ) Ijx(bn/pm - I), 

(4.33b) 

1=0,1, l.;;;b.;;;pm-l, p(b. 

The case p;>3, 'T = e is analyzed in a similar fashion. 
Since lel p = 1, the equation c2 

- er = 1 now implies Iclp 
.;;;1, Islp';;;1. Writing 

C=CO +CIP+ C2p2+ "', 

s = So + sIP + S2 p2 + "', 
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one has c~ - E.ro = 1 (mod p ) and this equation admits 
p + 1 solutions, (co,so) = ( ± 1,0), and p - 1 solutions 
with $0#0. These p + 1 solutions can be shown to form a 
cyclic group mod p. One can determine the higher digits of c 
and $ so as to obtain a finite cyclic subgroup of Ce • Let a> be a 
generator of this subgroup. Any element of Ce can thus be 
written uinquely as 

(c,s) = a>j. (c,s), l<J<p + 1, (4.34) 

with (c,s) = (1 + O(p2), O(p». In other words, Ce factor
izes into the product of a cyclic group Zp + I times a group of 
elements close to the identity 

Ce = Zp + I ® C!. (4.35) 

We show in Appendix C that this latter group is isomorphic 
to the additive group pZp. 

The p + 1 "sheets" of Ce can be characterized in terms 
of the rational parameter [Eq. (2.41)]: 

It Ip < 1, (c,s) = (1 + O(p2),O(p»; 

It Ip > 1, (c,s) = (- 1 + O(p2),O(p»; 

It Ip = 1, P - 1 sheets with Iclp<l, Islp = 1 

corresponding to the p - 1 possible values of to (to#O) in 

t = to + t tP + t2iJ2 + .... 
Once again one has 

Ce = C~::J C!::J C;::J'" ::JC;'::J"', 

where 

(4.36) 

C;'={(c,s) =(1 +O(p2m),O(pm»}, m>1. (4.37) 

As before, an 11 character of rank m is trivial on C;': it is a 
character of the finite group Zp + I ® C !/C;', which is now 
of order (p + 1)pm - I. (Note that elements of C! are now 
taken mod pm.) 

In Appendix C we show that C ! I C;' is cyclic. Let g be a 
generator. Then with heC;' and m>2, 

11(z = ulgnh) = x(-.!L)x( b~ I)' 
p+ 1 pm 

1 </<p + 1, 1 <b<pm - 1, p(b, (4.38) 

while for m = 1, the values of / are restricted to 1 </<p. 
There are thus, respectively, one character of rank 0, p char
acters of rank 1, and (p2 - 1) pm - 2 characters of rank m. 

For all circles, the invariant measure on CT is given by 

d =b dt 
P TII_7t 2Ip 

The constant b
T 

is fixed by the normalization 

i dp = 1 
C

T 

and a simple calculation yields 

{

(1 + p-I) -I, for p#2, 

b T = j, for p = 2, 

~, otherwise. 

7= E, 

7= - 3, 
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(4.39) 

The discrete set of 11 characters gives a basis for the Hilbert 
space of square integrable functions on the circle CT' 

Completeness and orthogonality properties read 

~11(Z)11·(Z') = 15(1 -~) = l5(z - z'), 
~ z' 

71 

(4.41) 

( 4.42) 

V. SPECTRUM OF THE NONCOMPACT EVOLUTION 
GROUPS 

In Sec. IV we defined the quantum mechanical p-adic 
free particle and noncompact oscillator by their evolution 
group G I and G2 [see Eqs. (4.1) and (4.3)]. We now pro
ceed to give the complete solution of these problems; name
ly, we obtain the full spectral decomposition of the corre
sponding evolution operators. 

A glance at Eqs. (3.21) shows that the spectral decom
position of U(M) is almost trivial when M is of the form 
.G~ ) . S~ce matrices belonging to the conjugated subgroups 
G1 and G2 [Eqs. (4.2) and (4.4)] are precisely of this form 
we will first determine the spectrum of these groups and then 
"conjugate back" to GI and G2 • 

A. Free particle 

For an element 

- (1 0) 
M= -tim 1 

ofG I , we write Ut for U(M) and Eq. (3.21b) then reads 

(YIUtlx) =[(M)X( - tx2/2hm)l5(x - y). (5.1) 

The phase factor [(M) can consistently be taken as 1. 
With this choice, Ut defines a true representation of G I' Ei
genvectors and eigenvalues of Ut are then given by 

rpk (x) = l5(x - k), 

AdM) =x( -tk 2/2mh), 

since 

(Urpd (y) = J dx(Y1 Ut Ix) (Xlrpk) 

=,1,( - tk 2/2mh)rpdy). 

(5.2) 

(5.3 ) 

To go back to the group G1 we still need the representation 
U(S) of the conjugation matrix S(~ I 10), 

From Eq. (3.21a), one may set 

(Y1U(S) Iz) = Ih Ip- 1I2X( - yzlh). (5.4) 

Note that it is simply the kernel of the Fourier transform. 
For the quantum evolution operator Ut = U(M) corre

sponding to the element 

M=(~ t~m) 
ofG1, we already know from Eq. (3.21a) that 

(Yl Ut Ix) =[(M) Iht Imlp-l12x«mI2ht) (x _ y)2). 
( 5.5a) 

Using 
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U, = U(S)U,U(S-I) 

and the results of Appendix A completely determines/(M) 
(see Ref. 8): 

I(M) = Tp-
I (2mht). (5.5b) 

With this phase factor, U, is a true representation of G I . 

The eigenfunctions 1h (x) of U, are given by 

1/Jdx) = f dy(xl U(S) Iy) <YIIPk) 

(5.6) 

These "plane waves" correspond to the doubly degener
ate eigenvalue 

Ak(M) =Ak(M) =X( -tk 2/2mh)=Xu(t), (5.7) 

with (J" = - k 2/2mh. Once hand m are given, the quadratic 
class of (J" is fixed: for p f= 2, one-fourth of all possible char
acters of Qp+ appear as eigenvalues of U" while, for Q2+ , 
only one-eighth of them do. This is analogous to the real case 
where one-half of the characters ofR + are eigenvalues of the 
evolution operator. Orthogonality and completeness of the 
wave functions follow immediately from Eq. (4.10) and the 
spectral decomposition of U, reads 

<YI U,lx) = Ih Ip- J dk X( x: )X( - ;k)x( ;~~ 2) . 
(5.8) 

The problem of a particle in a constant field can be treated in 
a similar way. Details are given in Appendix B. 

B. Noncompact oscillator 

Essentially, the previous analysis can be repeated step 
by step. 

For an element 

M= (~ a~l) 
of 62, the propagator Ua reads 

<YI Ua Ix) = lal!/2c5(y - ax), (5.9) 

where, again, the phase factor/(M) can be taken equal to 1: 
Eq. (5.9) then defines a true representation of 62, 

For 1T', an arbitrary multiplicative character, 

IP1T(X) = Ixlp-1I21T'-I(X) (5.10) 

and 

A1T (M) = 1T'(a) (5.11) 

are the eigenfunctions and eigenvalues of Ua • The conjuga
tion kernel U( n of the matrix T = (: IX2) can be taken as 

<Y1U(nlx) = 12Ipx(-2(x2+V-2xy». (5.12) 

For an element M = (~~) of G2 , the quantum evolution 
operator 

U(M) = U(nUc+sU(T-I)=U(c,s) (5.13) 

finally becomes8 

<Y1U(c,s) Ix) = Is/2I p- 1I2Tp- I(S(S + c» 

(5.14) 

2863 J. Math. Phys., Vol. 30, No. 12, December 1989 

The eigenfunction of U(c,s) for the eigenvalue 
A1T (M) = 1T'(c + s) is 

1/J1T(X) = f dy(x lU(nly)<YIIP1T) 

= 121px( - X2)f~-I(y)X( - 2y + 4xy). 
IYI~2 

(5.15 ) 

It follows from Eqs. (4.24)-(4.26) that they are orthogonal 
and complete. 

One can check that each unitary multiplicative charac
ter 1T' appears once and only once in the spectrum of U ( c,s) . 

For multiplicative characters 'IT that do not involve a () 
character [see Eq. (4.18)], the corresponding eigenfunc
tions are easily calculated with the help of Appendix A. 
For 1T'(x) = 1 and pf=2, for example, one finds 

for Ixlp<l, 
(5.16a) 

for Ixlp'>p. 
(5.16b) 

When nontrivial () characters are present, the task of 
evaluating Eq. (5.15) is considerably harder since one must 
eventually compute nontrivial Gauss' sums. We will not 
pursue the problem here. 

VI. SPECTRUM AND WAVE FUNCTIONS FOR THE 
COMPACT ELLIPTIC GROUPS 

We have seen in Sec. IV that compact p-adic harmonic 
oscillators are defined by T-elliptic subgroups ofSL(2,Qp)' 
These cannot be diagonalized within SL(2,Qp); hence the 
conjugation trick used in the noncompact cases is not appli
cable anymore. 

For a matrix M = (~s ~ ) belonging to CT , we determined 
in Sec. III [Eq. (3.21a)] the evolution operator 
U(M) = UT(c,s) up to a phase/(M) =IT(C,S): 

<YI U, (c,s) Ix) 

(6.1 ) 

We will first fix the phase factor, then compute the com
plete spectrum with its degeneracies, and finally illustrate 
the calculation of wave functions. 

A. Determination of f .. (c,s) 

The phase factor IT (c,s) can again be chosen so that 
UT (c,s) defines a true representation of the group CT' As 
discussed in Sec. IV its eigenvalues are then CT characters. 
This leads immediately to the following functional equation: 

(6.2) 

where (c",s") = (cc' + TSS',SC' +s'c). [ThefactorTp disap
pears from Eq. (6.2) when ss's" = 0.] 

Equation (6.2) determines IT (c,s) up to an arbitrary 
character of CT , which we take equal to 1. 

Let us consider the case p,>3, T= E. We have shown 
[Eq. (4.35)] that 
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TABLE I. Solutions for the phase factor IT (e,s). [For p = 2, it may happen 
that the phase factors associated to two equivalent extensions are different. 
This is the origin of a mistake in Eq. (32) of Ref. (8), where the result 
mentioned for T = - 3 is in fact the phase for T = 5.] 

Extension Qp (,[r) 

p>3, T=t:; 
p=2, T=-lor3 

p>3, T = ap(a = I,t:); 

p = 2, T = ± 2, ± 6 

p= 2, T= - 3 

C£ = Zp + 1 ® C!. 

T; '(es), lel p > Islp 

I, lel p "; Islp 

T2- '(es), 

- T 2(es), 

lel2> Isb 
lel 2 = Isl2 = 2 

Therefore we solve Eq. (6.2) separately on each factor group 
and then use the group law to obtain the general solution. 

For (c,s) belonging to C!, the solution reads 

Ie (c,s) = 'Tp- 1 (s). (6.3) 

This is easily shown from Eqs. (A28) and (A30), using the 
fact that (c,s) = (1 + O(p2) ,O(p» and that 'Tp depends only 
on the first digit of its argument. 

For the finite group Zp + l' we can consistently choose 

Ie (w j
) = 1, kJ<;.p + 1. 

Using Eq. (6.2) for (c,s)EZp+ 1 and (C',S')EC! gives the 
solution quoted in Table I. 

Exactly the same strategy can be applied in all other 
cases except p = 2, 'T = 3, where the solution is, however, 
easy to guess. 

B. The spectrum of U.,. and its degeneracies 

In terms of the "rational" parametrization of the circle 
[Eq. (2.41)], the propagator reads 

TABLE II. Spectrum of the compact harmonic oscillators for p>3. 

(Y1U.,. (t) Ix) 

= Il-'Tt21112f.,.(t)x(X-y)2 + 'Tt(X+y)2). (6.4) 
t p 2t 2 

Its spectral decomposition 

(Y1U.,.(t) Ix) 

d(",) ( 1 + fTt) = L L (YltP",) (tP",.i IX)1J fT 
'" i~ 1 1 - 'Tt 

(6.5 ) 

allows us to calculate the degeneracy d(1J) of a given C.,. 
character1J using theformulas [Eqs. (4.41) and (4.42)] of 
harmonic analysis on the group C.,.: 

(6.6) 

The computation of this integral is rather lengthy. An ex
plicit evaluation is presented in Appendix D for the circle C£ 
whenp;;;.3. The results are summarized in Tables II and III, 
which show that all eigenvalues are nondegenerate, as in the 
noncompact case, and that, roughly speaking, half the C.,. 
characters enter in the spectral decomposition of U.,.. 

c. Eigenfunctions 

The last problem is now the computation of the eigen
functions. Since no eigenvalue is degenerate, the spectral de
composition given in Eq. (6.5) leads to the following rela
tion: 

Circle Generator Multiplicity d( TJm ) of TJ characters of rank m 

Extension Zk ®C~ z = w'g" TJm (wig") = x( nxC:~ , ) 
C,=Zp+, ®C~ d(TJm) =!(1 + (- )m) 

Cap =Z2®C~p 
1+ .JaPu d( TJo) = I, d(TJ,) =0 g= 
1- .JaPu 

lul p = I 

[ ( 2Ub) ( a)'" - '] d( TJm) = ~ I + ~ L ~ L (m>2) 

a= I or t: 

C, = Z2®C~ 
1+ v'1u g=---
1- v'1u d( TJo) = I, d(TJ,) =0 

lui, = I d(1/2) =!(1 + ( - ub/3)L) 
d(TJm) = HI + (- )m(ub/3)d (m>3) 

C_, = Z6® C'_J UJ=! + ~v'-3 d(TJo) = I 
1+ v'-3u r' for 1=1,4 

g= d(TJ,) = 0, for 1 = 2,3,5 1- v'-3u 
lui, = j d(TJm) = HI + (ub/3)d (m>2) 
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TABLE III. Spectrum of the compact harmonic oscillators for p = 2. 

Extension 

a=l+a,'2+a2 '22 

(r=2a= ±2,±6) 

Q2(,.[=T) 

Circle 

x 1/* ( 1 + fit) . 
1- fit 

Generators 

z = ulg" 

I +v'Ju 
g=--

1-v'Ju 
u=I+0(2') 

w=,.[=T 

u = 2 + 0(2') 

(6.7) 

The following properties of the wave functions are worth 
pointing out. 

(i) Eigenfunctions have definite parity. From the 
change of variable u = Iht [see Eq. (A42)] [i.e., 
(c,s) -- ( - c, - s)], one finds that 

¢*(x)¢( - y) = 1/( - 1)¢*(x)¢(y). 

The eigenfunction with the character 1/ as eigenvalue has the 
parity of 1/. 

(ii) The eigenfunctions can be taken real valued. The 
complex conjugation ofEq. (6.7) followed by the change of 
variable u = - t [i.e., (c,s) -- (c, - s)] gives indeed 

(6.8) 

(iii) Eigenfunctions have compact support. This can be 
seen by computing P k ( ¢ '7 ), the total probability for the sys
tem to be in the set pkZ; of p-adic numbers of norm p - k: 

Pk (¢'7) = L,p=p-< dx ~(x)¢'7 (x). (6.9) 
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Multiplicity d( 1]m) of 1] characters of rank m 

1]m (cJg") = x( t)xC~~ ,) 
b = I + b,2 + b222 + ... 

d(1],,)=1 

d( 1],) = ° (see Appendix C) 
d(1]2) = I (see Appendix C) 
d(1]3) = l(1 + ( - »)(1 + ( _ )b,) 
d(1]4) =HI + (_ )'+b,) 
d(1]m)=!(1+(_)m+b,) (m;;.5) 

d(1],,) = I, d(1],) =!(1 + (-») 

d {
I, for 1= 3,4 

(1]2) = 
0, for 1 = 1,2 

d(1]m)=HI+(_)h'+'j (m;;.3) 

d(1],,) = I 

d {
I, for 1 = 2,3,4 

(1],) = 
0, for 1=1,5 

d(1]m)=HI+(-)m+'j (m;;.2) 

As an example, let us take p>5, T = ap. With the results of 
Appendix A, one finds, for every character of even rank m, 

Pk (¢TJ) #0 iff - k = m12, (6.10) 

while in the case of odd rank characters, parity introduces an 
additional distinction: 

Pk(¢TJ) #0 iff -k«m-1)/2,even1/, (6.11a) 

Pk (¢'7) #0 iff - (m - 3)/2< - k«m - 1)/2, odd 1/. 
(6.11b) 

(iv) Eigenfunctions are locally constant. We will not 
prove this fact but in the examples discussed in the remain
der of this section it follows immediately [see Eqs. (6.12) 
and (6.15)]. 

Obtaining explicit expressions for the wave functions is 
rather complicated except when the 1/ character is trivial. In 
this case, Eq. (6.7) gives, for any T,p#2, 

{
I, 

¢TJ=1 (x) = 0, 
if Ixlp<l, 

if Ixlp> 1. 
(6.12 ) 

For 1/ characters that are nontrivial, we limit ourselves 
to the case p>5, T = ap (a = 1,£) and to even characters of 
odd rank, namely, 

1/( - 1) = 1/(1) = 1, 

m = rank 1/ = 2v + 1. 
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Under these conditions, we learn from Table II that 
( - 2ub / p) L must equal + 1 and one can then show that 
the wave function does not vanish at the origin. Hence we 
obtain the following integral representation of the wave 
function: 

t/l." (x) = t/l;; 1(0) iT dJi rp-l(cs)x(~x2)7J*(C + [is), 

(6.14 ) 

where tfr, (0) = 2p - ". 
This integral is computed in Appendix E. The calcula

tion is based on a method, due to Odoni,17 for evaluating 
Gauss' sums mod pn (n > 1). The final result reads 

Ixlp =p-k,;;;,p-", t/l.,,(x) = t/l.,,(0); (6.1Sa) 

Ixlp =p-v+1 

t/lTf(x) = !t/lTf(0)p-1/2e*(p) 

XPi l (!:) x( - bv + V-Ip-2kX2) ;(6.1Sb) 
V= I P L P 

P - ,,+ I < Ixlp <p", t/lTf (x) = t/l." (O)COSC:~~k*) ) ; 

(6.1Sc) 

Ixlp>p", t/lTf(x) =0. (6.1Sd) 

The function G (y) depends on the label b of the charac
ter, the label r of the circle CT , as well as on the value x at 
which the wave function is evaluated. It is defined by 

where 

00 (r'y2)n 
CPT' (y) = 2y L -

n=o2n+l 

is the additive parameter on the circle C~, and 

r' = rp2"(x2/ - b). 

Finally 

y*= + ~ 
-\j(1+r') 

satisfies 

dGI -0 
dy y=y. - • 

(6.16 ) 

(6.17 ) 

(6.18 ) 

(6,19) 

(6,20) 

Note that it is not possible to give a more explicit form 
for t/l." (x) in Eq. (6.1Sb) since such Gauss' sums mod p can
not, in general, be evaluated in closed form. IS 

The algebraic structure of the wave functions will be 
examined elsewhere but it is worth pointing out that there is 
a rather remarkable relation among eigenfunctions corre
sponding to characters ofthe same rank, namely, 

t/l."U("" (xa) = (t/lTf(x»u(a'). (6.21) 

In this equation u(a2 )-with a any p-adic unit-is the 
following (Galois) map among the complex p2"th roots of 
unity: 

u(a2) :exp{21Ti/p2,,} -+exp{ (21Ti/p2V)a2}. 

The reader can verify that the wave functions are indeed 
expressed in terms of such roots. Varying a over the residues 
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modulo p2Y prime to p, Eq. (6.21) gives all wave functions 
corresponding to even characters of odd rank 2v + 1 in 
terms of one of them. 

VII. CONCLUSION AND OUTLOOK 

In this paper we have given a consistent formulation of 
quantum mechanics on p-adic number fields for simple sys
tems, The essential difference between real and p-adic quan
tum mechanics stems from a topological property of the cor
responding number fields: while R is connected and thus 
allows for an infinitesimal as well as a global formulation of 
quantum mechanics, Qp is disconnected and hence only a 
global (W eyl) formulation seems possible. There is no infin
itesimal generator of translation in p-adic space, i.e., no mo
mentum operator. Similarly there is no infinitesimal evolu
tion operator (Hamiltonian). Finite transformations 
remain, however, well defined and, in particular, there is a 
"global" evolution operator, which we have explicitly com
puted, Quantum mechanics takes place in a Hilbert space of 
complex valued functions of a p-adic variable. We have re
stricted ourselves to "configuration space" where the wave 
functions are labeled by a p-adic index, which refers to the 
"p-adic position," 

The quadratic one-dimensional systems we have 
worked out in this paper have the characteristic feature that 
their classical evolution is described by a one parameter Abe
lian subgroup of SL(2,R). We have defined the p-adic ana
logs of these systems by corresponding subgroups of 
SL(2,Qp)' Our study of their quantum mechanical proper
ties relies in an essential way on a precise analysis of p-adic 
Gaussian integrals. 

We have shown that the eigenvalues of the quantum 
evolution operators are simply characters of these Abelian 
subgroups. Characters thus provide an elegant and universal 
solution to the dynamical problem at hand irrespective of the 
number field one uses. This is a truly remarkable fact. 

For the free particle or particle in a constant field we 
have completely determined the spectrum of the evolution 
operator and explicitly constructed the corresponding eigen
functions. The similarity with plane waves or Airy functions 
is rather striking. 

For harmonic oscillators the spectrum has been entirely 
determined as well and we have illustrated the computation 
of some wave functions. This required an application of a 
method due to Odoni for calculating Gauss' sums 
modpn (n>2). It is, however, not possible to give a com
pletely closed form to these wave functions because of the 
presence of Gauss' sums mod p. 

In ordinary quantum mechanics, time is not an operator 
but a parameter. In our formulation of p-adic quantum me
chanics, evolution has been identified through group theo
reticallaws. One may wonder if it is possible to define a p
adic "time" parameter. In our context this would simply 
mean an additive parametrization of the full group of mo
tion. For a free particle the answer is trivial, while for har
monic oscillators the results of Sec. IV and Appendix C im
ply that such a parameter can only be defined on a subgroup. 
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One of our motivations for studying p-adic quantum 
mechanics is to develop tools for p-adic strings. The detailed 
study of characters presented in this paper already suggests 
various possibilities for string amplitudes that will be exam
ined elsewhere. 
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APPENDIX A: p-ADIC INTEGRATION 

The purpose of this appendix is to explain in some detail 
how to compute p-adic "Gaussian integrals." 

The Haar measure dx is the (essentially) unique invar
iant measure on the additive group Q/ : for any aeQ/ ' 

d(x+a)=dx. (AI) 

Its normalization is fixed by taking the measure ofZp ' the set 
of p-adic integers, as equal to 1: 

/-l(Zp) = , dx =' dx = 1. (A2) 
Jzp J1Xlp<1 

It is now straightforward to calculate the measure of any ball 

U(a;n) = {xeQp: Ix - alp<p- n}. 

Consider, for example,p - kZp = U(O; - k), i.e., the set 
of numbers 

(A3) 

with Ixlp<pk. Let us start with k = 1, i.e.,p-1Zp' Using Eq. 
(2.13), 

p-I 

p-1Zp = U U(XOp-I;O); 
~)=O 

(A4) 

hence 

p-I p-I 
/-l(p-1Zp) = L /-l(U(XOp-I;O»= L 1 =p. (AS) 

-,<,=0 -,<,=0 

Repeating the reasoning one gets 

/-l(p - kZp) = pk. (A6) 

Let us now take the set of numbers with a given p-adic norm 
pk. Clearly 

/-l({lxl p =p+k}) =/-l(p-kZp) _/-l(p-k+IZp) 

(A7) 

The last two formulas are essentially all one needs for inte
gration over Qp or any of its subsets. 

Suppose, for example, that one wants to compute 

, dxf(x), 
Jzp 

(A8) 

for a "sufficiently well-behaved function" fZp --+ C. In the 
spirit of Riemann integrals on R, one considers a sequence of 
partitions of ZP' 

pN_1 

g; N(Zp) = U U(j;N) , 
j=O 

and computes Eq. (A8) as the limit 
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(A9) 

, dxf(x) = lim PI f(X(j»p-N, x(j)eUU,N). 
Jzp N-oo j=O 

(AlO) 

In calculating integrals, it is often useful to be able to 
change variables. Formula (A6) gives us the "Jacobian" for 
any scale transformation 

d(ax) = lal p dx, a#O. (All) 

For Gaussian integrals it is also practical to perform qua
dratic changes of variables: 

dx2 = !12xlp dx. (AI2) 

Concerning this formula, valid for all p, it is worth pointing 
out that the factor! is necessary to prevent "overcounting": 
the integration on x is over both square roots ( ± x) of x 2

• 

The following calculation is illustrative. Let us compute the 
measure on:;, i.e., the set of squares in Zp (p#2). Remem
bering that there are (p - 1) 12 squares mod p in F; and 
using Eq. (A6) gives 

i;dY = a~o :.tll lpou(yo+ ... )} dy 
(y,,1P)L= +1 

1 00 
= p - L p - 2a - I = ! (1 + p - I) - I. (A 13a) 

2 a=O 
Alternatively, using Eq. (A12), 

'2 dy =!' dxl2xlp=! Ip-a' _adx 
Jzp Jzp a=O J1Xlp=p 

(AI3b) 

We can now proceed to evaluate p-adic "Gaussian inte
grals," 

G(a) = , dx x(ax2
), a#O, 

JQp 

(AI4) 

where X(z) = exp 2rriz is the usual character on Qp. We 
write 

+00 +00 , 

G(a) = m~oo Gm(a) = m~oo J1xlp=p-m dxx(ax2), 

(AIS) 

where Gm (a) is an "incomplete" Gaussian integral. Chang
ing variables in Eq. (AIS) and focusing on the casep#2, we 
have, with t = ax2

, 

dt = !Ialp Ixlp dx, (AI6) 

and ord t = k = 2m + ord a, 

Gm (a) = I~p pm ~llp=P-,k dt X(t)· 
tERan(ax-) 

(AI7) 

If k>O, teZp and hence X(t) = 1; it follows that 

Gm(a) = (2Il alp)pm-k(1_p-I)!=p-m(1_p-I), 
(AI8) 

where 2m> - ord a. The factor ! keeps track of the con
straint on the first digit to of tERan(ax2

), namely, (tol 
p) L = (aol p) L' If k = - 1, one readily obtains, using the 
character property of X ( t) , 
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Gm (a) = \~p pm :t1l exp {21Ti ; }. (A19) 

(t,,/plL ~ (a,,/plL 

Standard number theory gives for the quadratic Gauss' 
suml5 

:t: exp {21Ti *} = ~ {e(PhP (; t -I} , 

(t IplL ~ (alplL 
(A20) 

where 

e(p) = i«P- ll/2)'. (A21) 

Equation (A19) thus reads 

Gm (a) = _1_ [e(p) (.!!.-) __ 1 ], 
\a\!/2 p L .JP 

(A22) 

for 2m = - 1 - ord a. 
Finally if k < - 1 we will show that Gm (a) = o. The 

argument is simple and is used again and again in computing 
integrals on Qp. It rests on the following identity: 

p- 1 { } I exp 21Ti~ = o. 
x~o p 

(A23) 

Noting that the constraint tERan(ax2) is a constraint only 
on the first digit to of t and repeating the previous argument, 

:t1l exp {21Ti ;~} 
(t,,/plL ~ (a,,/plL 

p- 1 p-l {t} 
X I ... I exp 21Ti ~ . 

t,~O tk_I~O P 
(A24) 

The identity (A23) then completes the proof that 
Gm (a) = 0, for k < - 1. Summing up Eq. (A18) and Eq. 
(A22) gives, for the complete Gaussian integral, 

+ 00 1 
G(a) = I Gm(a) =--rp(a), (A25) 

m ~ - 00 \2a\!/2 

where, for a = pOrda(ao + alP + a2P2 + ... ) andp#2, 

rp (a) = 1, if ord a is even, 

rp (a) = e(p)(ao!p)u if ord a is odd. 

Repeating the calculation for p = 2 gives 

r2(a) = [1 +i( _1)a,]!~, if orda is even, 

if ord a is odd. 

(A26a) 

(A26b) 

(A27a) 

(A27b) 

The following relations are very often used in the main text: 

rp(b 2a) = rp(a), (A28) 

rp(a)rp( -a) = 1, 

rp (a)rp (b) = rp (a + b)rp(ab I(a + b», 

rp (a)rp ( - ra) = rp (1 )rp ( - r)sgn T a. 

Equation (A30) is a consequence of the identity 

(A29) 

(A30) 

(A31) 

~ (z - at)2 + ~ (z + bt)2 = (~+~) Z2 + (a + b)t 2. 
a b a b 

(A32) 
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The last identity [Eq. (A31)] is interesting to derive. One 
starts from 

G(a)G( - ra) = i dx i dy x(a(x2 - ry2» 
Qp Qp 

= i dz x(azz). 
Qp(,[Tl 

(A33) 

The integral on the extension field Qp (.,fi-) can easily be 
computed by going to "polar coordinates" 

z = x +.,fi-y = r(c + .,fi-s) = r( 1 + .,fi-t)/( 1 - .,fi-t), 
(A34) 

with zz = rr = p, sgnr p = + 1, and c +.,fi- s an element of 
the unit circle Cr written here in terms of the t parametriza
tion [see Eq. (2.41)]. The "Jacobian" is given by 

dz = dx dy = ar dp dll(t), (A35) 

where dll(t) is the invariant measure on the group Cr nor
malized to 1 [Eq. (4.39)]. Theconstantar computed in Ref. 
3 is given by [aT = b; 1, Eq. (4.40)] 

{

I +p-l, when p#2, r=e, 

aT = 3, when p = 2, r = - 3, 
2, in any other case. 

(A36) 

Remembering that sgnr (x) is a character [Eq. (2.37)], one 
obtains 

i dzx(azz) 
Qp(,[Tl 

(A37) 

where r r ( 1) is the Gel'fand gamma function defined by 

(A38) 

CombiningEq. (A37) withEq. (A33) andEq. (A25) gives 

Taking a = 1, one obtains 

(A4O) 

It is amusing to note that this formula determines an unspe
cified sign in Ref. 3 (pp. 149-150). The identity (A31) is 
simply Eq. (A39) for a#O. 

Finally, the reader can now test his skill in p-adic inte
gration by deriving the incomplete shifted Gaussian integral 
(p#2) 

Ik = r dx x(a(x - 1 )2), 
J1xlp<pk 

which gives, for k>O, 
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if k<! ord a, 

if k>!( 1 + ord a), 
(A4la) 

and, for k< - 1, 

h = {pkx(a), 
0, 

if k<ord a, 

if k>ord a + 1. 

(A4lb) 

(A4lc) 

(A4ld) 

We conclude this appendix by giving the Jacobian needed for 
a generic fractional linear change of variable: 

d (ax + b) = lex + d Ip-2lad - belp dx. (A42) 
ex+d 

APPENDIX B: THE PARTICLE IN A CONSTANT FORCE 
FIELD 

For the quadratic Lagrangian 

L = (m/2)x2 
- Fx, (Bl ) 

the solution of the classical equations of motion is of the form 

(
x(t») = (a(t) b(t») (X(O») + (e(t») 
p(t) c(t) d(t) p(O) !(t) 

= M(t) (X(O») + C(t). 
p(O) 

(B2) 

The classical evolution is thus governed by an Abelian one
dimensional subgroup of the semidirect product 
SL(2,R)Q<T2, where T2 is the two-dimensional translation 
group. The group composition law reads 

(M,C)o(M',C') = (MM',MC' + C). (B3) 

The inhomogeneous case is quite similar to the homoge
neous one treated in the main text: the Weyl formulation of 
quantum mechanics remains meaningful when M and Care 
valued on Qp. Proceeding as in Sec. III yields 

{

f(M'C) X (_1_ [ax2 + dy2 - 2xy + 2(bf - de)y + 2Xe J ), 
Ihb 1112 2hb 

(YlUlx) = p 

lal!12f(M,C)X (~X2 + af X) o(ax + e - y), 
2h h 

(B4a) 

b=O. (B4b) 

The case at hand, Eq. (Bl), corresponds to the following 
parabolic Abelian subgroup ofSL(2,Qp )Q<T2: 

M=(1 tim) c=(-Ft
2
/2m). (BS) 

o l' -Ft 

We exploit once again the fact that the group (M,C) is con
jugate to a simpler one: 

(M,C) = (S,O)O(M,l')o(S-I,Q) = (SMS-I,Sl'), 

For the evolution operator U(M,l') one then finds, from Eq. 
(B4b), 

(YI U(M,l') Ix) 

=x( _F2t3)X(~X2_ Ft
2 

X)O(X+Ft- y ). 
6mh 2mh 2mh 

(B7) 

The phase factor f(M,C) has been chosen so as to obtain a 
true representation ofthe group specified by Eq. (BS). The 
group of elements (M,l') is isomorphic to Q/ and the eigen
values A (t) of U(M,l') are thus additive characters 

AE(t) = X( - Et /h), EEQp. (BS) 

The corresponding eigenfunctions are given by 

lPE(X) = NX( - x3/6mFh + Ex/Fh) , (B9) 

where N is a normalization factor. Using the conjugacy rela
tion (B6), one obtains,S for the operator U(M,C) , 
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, 
(Yl U(M,C) Ix) = \ m \112 rp- I (..!!!..-) 

ht p 2ht 

[
m(x_ y )2 Ft F2t 3] 

Xx 2ht - 2h (x + y) - 24mh 

(BlO) 

while the eigenfunction corresponding to the eigenvalue 
[Eq. (BS)] is 

U(S,Q)llPE) = I"'E)' (Bll) 

which reads, explicitly, 

Its normalization is such that 

("'E' I"'E) = o(E - E'). (B13) 

APPENDIX C: MISCELLANEOUS RESULTS 
In this appendix we complete the analysis given in Sec. 

IV. We will first introduce the p-adic functions log and exp, 
which provide the appropriate tools for discussing isomor
phisms between additive and mUltiplicative groups. These 
functions are also of practical use in determining generators 
of the various cyclic groups discussed in Sec. IV. This appen
dix also contains a description of the various multiplicative 
and "r-elliptic" groups left out of the main text. 

We define the p-adic functions3 .4 

x 2 x 3 

log(l +x) =x-'2+3"- "', (Cl) 

2 

exp(y) = 1 +y+L + .... 
2! 
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These series converge p-adically iff, Ixlp < 1 and 
IYlp <p - lI(p- I), respectively. Note thatx andy may belong 
to any finite extension of Qp. 

Provided that the convergence conditions are satisfied 
one has 

log (xy) = log (x) + log(y), 

exp (x + y) = exp(x) 'exp(y), 

log (exp(x» = x, 

exp (log(x» = x. 

1. The groups Q~ (P;;;.3) 

(C3) 

(C4) 

(C5) 

(C6) 

IfxEOI (withQ; =l®Zp_1 ®Ol), Ilogxlp<p-I and 
the multiplicative group 0 1 is thus isomorphic to the additive 
group plp. Similarly for an element x of the subgroup 
Om = {I + O(pm)}, I log xl p <p - m; hence Om is isomor
phic to pmlp. Then Ol/Om is cyclic since it is isomorphic to 
the finite additive group plp/pmlp. A generator of the latter 
group is any element ofnormp-I; hence a generator of OJ 
Om is any g with Ilog glp = p-I or, equivalently, 
Ig-llp=p-l. 

The product Zp_ I ® OJOm is also cyclic, since p - I 
and pm - I are coprime. 

2. The group Q~ 

One still has Q~ = l ® l~, but the analysis of this group 
cannot proceed as in Sec. IV. Although the elements of l~ 
have a well-defined log with IlogyI2<2- 1

, the exp function 
only converges for lyI2<2- 2: the isomorphism between l~ 
and some additive subgroup of l2 is lost! The reason is that 
log 1 = loge - 1) = 0; hence log is not injective anymore. 
The problem is, however, easily solved by recognizing that 
any element of l~ can be uniquely written as 

i.e., 

l~ = Z2 ® O2 , (C8) 

Elements of the group O2, x = I + 0(22) have I log xI 2<2-2 

and are isomorphic to the additive group 22l 2• The "sheet" 
of l~ that contains - 1 has, so to speak, been "factored 
out." 

Repeating the previous argument shows that any ele
ment g with Ilog gl2 = 2 -2 is a generator of the cyclic group 
02/0m' Note that this time the product Z2 ® 0210m is not 
cyclic! (The orders of the factors, 2 and 2 m - 2 , are not co
prime.) Characters of rank m > 2 take the form (hEO m ) 

1T(X) = 1T(p\ - )jgnh) = exp(21Tikp){}« - l) jgn), 

0« - l)jgn) = (-l)!ix(an/2m- 2 ), 

pE[O,1 [, 1=0,1, l<a<2m
-

2
, a odd. (C9) 

The characters of rank 0 are 1T(X) = exp(21Tikp) and those 
of rank 2 are 1T(X) = ( - l)j exp(21Tikp). The complete
ness and orthogonality relations are still given by Eqs. 
(4.24 )-( 4.26). 
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3. Additive parametrization of subgroups of the elliptic 
group C~ 

We now establish an isomorphism between C~, Eqs. 
(4.29) and (4.35), and an additive subgroup of lp (except 
forp=2andp=3,r= ±3). 

For any element z = c +,fi s of C~, we define the Qp 
valued function of the parameter t [Eq. (2.41)]: 

1 1 1 + ,fit 00 ( rt 2) n 
CfJr(t) =-logz=-log =2t L --. 

,fi ,fi 1 - ,fit n = 0 2n + 1 
(ClO) 

This series converges iff I rt 21p < 1. On the other hand, the 

reciprocal mapz = exp( ,fiCfJr), as defined in Eq. (C2), con
verges iff I,fiCfJr Ip <p-I/(p-I). 

By construction the function CfJr is additive with respect 
to the group law 

CfJr(t") =CfJr (/ +t',) = CfJr(t) + CfJr(t')· (Cll) 
+ rtl 

From ICfJrlp = It Ip it thus follows that 

C~p::::::lp, C';p::::::pm-Ilp, a=l,e, (CI2a) 

C!::::::plp, C;::::::pmlp' (C12b) 

As a consequence the finite groups C !I C '; are cyclic of or
der pm - I. Obviously a generator of C !/C;, is any element 

g= (1 +.j£u)/(1-.j£u) with lulp =p-I, while for 
C ~pIC';p the sameform for g holds with lulp = 1. 

4. The special cases 

For completeness we now describe the r-elliptic groups 
for p = 3, r = ± 3 and for p = 2. 

Proceeding as in Sec. IV we factorize Cr as a product of 
a finite (cyclic) subgroup Zk and an infinite cyclic group 
C~. Then Zk contains all elements of finite order, while C ~ 
again contains a sequence of subgroups C ';. 

More precisely the following results hold: 

p= 3, r= - 3, 

C_3=Z6®C~3' Z6={± 1,±~±/=3/2}, 

C~3 = {z= 1 +/=3
t

; It I3<3- m
}; (C13a) 

1-/=3t 
p = 3, r= 3, 

C3 = Z2 ® C L Z2 = { ± 1}, 

C~ = {z= 1 + ;t; It 13<3-m+ I}; 
1 - 3t 

p = 2, r = ± 2, ± 6, 

Cr = Z2 ® C!, Z2 = {± 1}, 

c'; = {z = 1 + ~t; It 12 < 2 - m + I} ; 
1- rt 

p= 2, r= - 1, 

C_ I = Z4®C I
_ 1 , Z4 = {± 1, ± J=T}, 

(C13b) 

(C13c) 

C~I = {z= 1 +J=Tt; It I2<2- m
}; (C13d) 

I-J=Tt 

Ruelle etal. 2870 



                                                                                                                                    

p=2,T= -3, 

C_3=Z6®C~3' Z6={±I,±!±f"=3/2}, 

C~3 = {Z = 1 + f"=3
t

; It 12.;;;2 -m} ; (C13e) 
I-f"=3t 

p = 2, T= 3, 

C3 = Z2 ® C L Z2 = { ± 1}, 

C 1 = {z = 1 + ~t ; 
1-~t 

It 12 = 2 or It Iz.;;;~ or t = ± 1 + 0(23)} , 

2 { 1 + ~t } C 3 = Z = ; It 12 = 2 or It 12';;;~ , 
1-~t 

C~={z= 1+~t; It I2 ';;;2- m + I
}. (C13f) 

1-~t 

The cyclicity of C ~ can be shown either with the help of 
the log and exp functions (T=/= 3) or by hand (T = 3). In all 
cases, the order of the cosets C ~I C ';' is pm - I . 

We thus have the following list of characters of rank m 
on CT = Zk ® C ~/C';' (cu and g generate Zk and C ~/C';', 
respectively) : 

rank 0, 1](z) = 1; 

rank 1, 

1](z = wjh) = X (/jlk) , l.;;;l.;;;k - 1; 

We thus split the integral (01) in four pieces: 

rank m;;.2, 

1](z = wjgnh) = X(ljlk)x(bnlpm-I), 

l.;;;l.;;;k, l.;;;b.;;;pm - I, p(b; 

where h belongs to C ';'. 

APPENDIX D: DEGENERACIES OF THE COMPACT 
HARMONIC OSCILLATOR SPECTRUM (T=t:) 

In this appendix, we indicate how the integral (6.6) may 
be computed, by considering the cases p=/=2 T = E. The de
generacy of a character 1] on the circle CE is given by 

d(1]) = (1 +p-I)-I r dx r dt 
JQp JQp It(l-Et 2)1!/2 

Xfc(t)X(2Etx2)1]* (1 + Jet). (01) 
1- Jet 

We recall that, for an 1] character of rank m, 

1] (1 + Jet) = {1](l) = 1, 
1 - Jet 1]( - 1), 

for 

for 

It Ip.;;;p-m, 

It Ip;;.p-m, 

and that the phase factor IE (t) (see Table I) can be recast in 
the form 

It Ip < 1, 

It Ip = 1, 

It Ip > 1. 

(1 + p-l)d(1]) = f dx i dt It Ip-1I2Tp-I(2t)X(2Etx2) 
It Ip<p- m 

+ f dx r dt It Ip-ITp- I (2t)X(2Etx2)1]* ( 1 + Jet) 
Jp-m+ '<ltlp<P-' 1 - Jet 

+ f dx i dt X(2£tx2)1]* (1 + Jet) 
Itl p= I 1 - Jet 

+ f dx i dt It Ip-312Tp-I(2Et)X(2£tx2)1]* (1 + Jet) 
Itlp>p 1 - Jet 

= II + 12 + 13 + 14 , 

1. Evaluation of 11 11 = r dt..!.(l+p-I) 
Some care is needed in evaluating II since the x and t 

integration cannot be interchanged. The following shortcut 
leads, however, to the correct answer. Writing 

Jltlp<p-m 2 

X {<5(t) + 2 _1-
1
- sgnE t}. 

l+p Itlp 

Regularizing the second term in Eq. (04), we write 

one has 
II(S)=i dt..!.(l+p-I) 

It Ip<p- m 2 

II = r dtf dx dy x< - 2t(y2 - EX2). (03) 
Jltlp<p-m 

X {<5(t) + 2 1 sgn£ t} 
l+p-Iltl~ 

(02) 

(04) 

The Gaussian integral on the extension Qp ( Je) gives 
[Eqs. (A37) and (A40)] 

=..!. (1 +p-I) + (l_p-I)( _ps-I)m 1 
2 1 + pS-1 
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and taking the limit S-+ 1 we obtain finally 

I = '{I -I (_ )m(1_ -I)} = {1,formeven, (D5a) 
I 2 + p + p p-I for m odd. 

(D5b) 

2. Evaluation of 12 

Interchanging the x and t integrations and performing 
the Gaussian integral gives 

12 = i dt It Ip-''Tp- ' (2t)'Tp(2et)11* ( 1 + ~t). 
p-m+'<ltlp<r' I-~t 

(D6) 

The identity 'Tp- I (2t)'Tp(2Et) =sgn£t= (_1)0rdt [Eq. 
(A31 ) ] allows us to rewrite Eq. (D6) in the form 

12 = II (-I)kpki _kdt11*(I+~t). (D7) 
k= I Itlp=p 1 - ~t 

From the discussion of Sec. IV, it is clear that an 11 character 
of rank m, which essentially truncates its argument mod pm , 
only depends on the digits to, ... ,tm _ k _ I of 

t = pk (to + t tP + ... ). 
Hence 

= p-m L 11*(C + ~s) 
(c,s) mod pm 
Islp = p- k 

c= I + ... 

=p-m { L 7]* - L 7]*]. (DS) 
(c,s) mod pm (c,s) mod pm 

Islp<p - k Islp<p - k - , 
c=I+··· c=I+'" 

The first sum runs over C; (mod pm) = C;IC';, which is a 
(nontrivial) subgroup of C!/C;' for all k in the interval 
1 <.k<.m - 1. Hence it vanishes since summing the values of 
a character over a nontrivial subgroup gives zero. 

The second sum in Eq. (DS) runs over C; + I/C;'. By 
the same argument it will vanish unless k = m - 1. Thus 

i dt * (1 + ~t) - - m 0 (D9) 11 - - P k,m - I , 
Itlp=p-k 1 - ~t 

and finally 

12 = ( _ )m-Ipm-I( _ p-m) = ( _ )mlp. (DlO) 

For m = 0 or 1, this term is, of course, absent. 

3. Evaluation 13 

The Gaussian integral on x yields 

I - i dt * ( 1 + ~t) 3 - 7] . 
Itlp=1 I-~t 

(Dll) 

According to the factorization given by Eq. (4.35) we write, 
for t = to + t I 'p + ... 
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1 + ~t I + ~u 1 + ~t ' 
1 - ~t 1 - ~u 1 - ~t' , 

where (1 +~u)/(1-~u) belongs to Zp+I (Iulp = 1) 

and the first digit Uo of u equals to, while (1 + ~t ') I (1 - ~ 
t ') belongs to C! ( It' Ip <.p - I ). Changing variables, 

u + t' 
t=---'--

1 + Eut' 

and using Eq. (A42) (dt = dt') leads to (m;;' 1) 

13 = p i l 

11* (1 + ~u) r dt' 11* ( 1 + ~t ' ) . 
uo = I 1 - ~u Jlt'lp"P' 1 - ~t' 

(DI2) 

By the same argument as in subsection 2, the integral over t ' 
vanishes except for a character of rank 1, for which its value 
is lip. Thus 

(DI3) 

Note that the sum over Uo runs over all elements of the group 
Zp+ I except {± n. Hence 

1 
13= --(11*(1)+11*(-I»om,1 

p 

1 
= --(1 +11*( -1»Om,I' 

p 

For m = 0, there is no 13 term. 

4. Evaluation of 14 

Once again, the Gaussian integral gives 

14=i dtltlp-211*(I+~t), 
Itlp>p I-~t 

(DI4) 

(DIS) 

Under the change of variables t' = lIEt, the character 11* 
becomes 

11* ( 1 + lI~t') = 11*( _ 1)7]* ( 1 + ~t') . 
I-lI~t' I-~t' 

Hence, since dt' = dt lit 1

2
, 

14 = 7]* ( - 1) r dt' 11* ( 1 + ~t ' ) . 
Jlt'lp<p-' I-~t' 

This integral was calculated in subsection 3, giving the final 
result 

m;;.2, 

m= 1, 

m=O. 
Adding the four contributions to the degeneracy d ( 11) 

of an 11 character gives, at last, 

d _ {I, if 11 is an even rank character, 
(rl> - 0, if 11 is an odd rank character. 

Similar calculations give the other entries in Tables II 
and III. 
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APPENDIX E: COMPUTATION OF WAVE FUNCTIONS 

This Appendix deals with the computation of a class of 
wave functions tfT/ (x) for p>5, T = pa, when 7J is an even 
character of odd rank, 2v + 1. Equation (6.14) can be re
written as 

1 T-I(2t( 1 + Tt 2» 
t/1 (x) = t/1-1(0)1 dt-'p'-------

'I 'I 2Qp \t(1-Tt 2)\!/2 

xx( (1 + Tt
2
) X2)7J*( 1 + fit). 

2t 1 -..[ii 
(El ) 

We split this integral in two parts: namely, \t \p';;; 1 and 
\ t \p > 1 (which correspond to the two sheets of the group C,. 
[Eq. (4.29) n. For \t \p > 1, we change variables t--- t / = 11 
Tt. This brings us back in the region \ t / \p .;;; 1. Recalling that 

7J*( 1 + lIfit ') = 7J*( _ 1)7J*( 1 + fit'), 
1 - 11 fit / 1 - fit' 

we obtain, with v = 2t /( 1 + Tt 2) (dv = dt if \t \p';;; 1), 

(E2) 

For definiteness we take the generator u of C ~ (see Table II) 
as u =! + O(p), with 'PT(U) = 1, where 'PT is the additive 
parameter on C ~ defined by Eq. (6.17). Hence 

7J*([ ~ ~ ~ r/2) = x( - b~~~~) ) . (E3) 

To simplify further note that, for fixed x, all factors in 
Eq. (E2) depend on a finite number of digits ofv. Moreover, 
for a given value of ord v, if a factor in Eq. (E2) depends on 
more digits of v than the others, the sum over the last of these 
digits always gives O. This yields 

for k = ord x>v, 

t/1'l (x) = t/1;; 1(0) f dV\V\p-1/2Tp-l(V) 
J!V!p<P- h+ 1 

( 
- b'PT(V») Xx 2 ; 2p v 

for - v.;;;k<v, 

t/1'l (x) = t/1;; 1(0) L!p=p- ,-k dV\V\p-1I2Tp-I(V) 

XX(:2) x( - ~;L(V»); 
for k< - v, t/1'l(x) = O. 

The first integral is 

t/1'l(x) = t/1;; 1(0)2p-v= t/1'l(0), 

which gives Eq. (6.15a). 

(E4a) 

(E4b) 

(E4c) 

(E5) 

For the integral Eq. (E4b) we change variables (re
member that - b is a square!), 

v =pv~X2/ - by, 

and, using the identity 
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(E6) 

'PT(av) = a'PTO' (v), 

we obtain 

tf'l (x) =tf;;I(O)p-(V+k)12 f dy 
J!y!p= I 

(E7) 

xx(;(~~) Tp- {pv~ ~2b y) . (ES) 

The function G(y) is given by 

G(y) =p-k~ - bx2 0'Pr(y) +y-I), (E9) 

with 

T' = Tp2v( - x2/b). (ElO) 

These two equations immediately imply Eq. (6.21). The in
tegral Eq. (ES) is a sum over the residues modulo pV- k 

prime to p since, from Eq. (E9), \y\p = 1 implies 
\G(y)\p';;;1. Thus 

t/1'l (x) = t/1;; I(O)p(k - 3v)/2 p'i- I x (Gv(~~) 
y=1 p 
p(y 

(Ell) 

Ifv - k = 1, Eq. (Ell) is a Gauss sum modp, which, to the 
best of our knowledge, cannot be expressed in closed form. 18 

This gives Eq. (6.15b). If v - k =1= 1, we can apply Odoni's 
method 17 of evaluating the usual Gauss sum mod pn (n > 1). 
The heart of this method is to break up the sum over yin Eq. 
(Ell) as a double sum over u and w, 

y=u+prw, l.;;;u<pr, p(u, l.;;;w.;;;pv-k-r, 
(EI2) 

and then to expand the function G(y) around u, 

w2 

G(u + prw) = G(u) + prwG'(u) + p2r_ G "(u) + .... 
2 

(E13) 

One finds 

G/(u)= 12 1 
1 - T'U - u2' 

with \G/(u)\p';;;l, (E14) 

and 

G"(u) = 2T'U +~, with \G"(u)\p = 1. 
(1 - T/U2 )2 u3 

(E15) 

To proceed let us take v - k even (>4) and Eq. (EI2) 
with r = (v - k)/2. In this case the factor Tp- I is equal to 1 
and Eq. (Ell) becomes 

t/1'l (x) = t/1;; 1 (O)p<k - 3v)12 

XP'-l (~) p' (WG/(U»). L X v-k L X r 
u=l p w=1 P 

(EI6) 

p(u 

The inner sum vanishes except when G' (U) = 0 (mod pr ). 
This occurs only when u equals y* mod pr , with G / (y*) = 0, 
i.e., y*2 = 1/( 1 + T'), and this immediately leads to Eq. 
( 6.15c). 

When v - k is odd, one takes r = (v - k + 1) /2 and 
proceeds along similar lines. 
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Dirac operators with a contact interaction supported by a sphere are studied restricting 
attention to the operators that are rotationally and space-reflection symmetric. The partial 
wave operators are constructed using the self-adjoint extension theory, a particular attention 
being paid to those among them that can be interpreted as <5-function shells of scalar and 
vector nature. The class of interactions for which the sphere becomes impenetrable is specified 
and spectral properties of the obtained Hamiltonians are discussed. 

I. INTRODUCTION 

Dirac Hamiltonians with external potentials have at
tracted a lot of attention recently. 1.2 Of course, they require a 
fixed inertial frame and represent an approximative descrip
tion of the true relativistic two-particle dynamics only, but 
nevertheless they can provide us with various useful and 
physically interesting models. Unfortunately, the number of 
situations when a Dirac-operator model is exactly solvable is 
very low compared to the nonrelativistic quantum mechan
ics.3 

In the nonrelativistic case, many new solvable models 
have appeared recently as a result of extensive investigation 
of point and contact interaction phenomena--cf. the mono
graph4 for summary and further references. One of these 
models concerns the three-dimensional Schr6dinger opera
tor with the interaction formally given by the <5-shell poten
tial: 

go(r - R), R = const, (1.1 ) 

cf. Refs. 5-12 and Refs. 13-15 for some generalizations. The 
aim of the present paper is to investigate the Dirac operator 
with this sort of interaction, and to add, thereby, a new item 
to the short list of exactly solvable problems of relativistic 
quantum mechanics. We are going to construct all rotation
ally and space reflection invariant contact interactions sup
ported by the sphere, and to specify those among them that 
correspond to a mixture of electrostatic and Lorentz scalar 
o-shell potentials with coupling constants of gv and gs' re
spectively: 

( 1.2) 

In contrast to the SchrOdinger case, such a shell can confine 
a particle within it at finite values of the coupling constants 
provided its scalar component is strong enough: We will 
show that it happens if 

(1.3 ) 

Other properties of the corresponding Dirac operators, in 
particular their spectra, will also be discussed. In a sequel to 
this paper, we are going to discuss Dirac operators with a o
shell plus Coulomb potential, the nonrelativistic limit, and 
the approximation of the o-shell interaction by short-range 
potentials. 

II. PARTIAL WAVE DECOMPOSITION 

Our construction starts from the Dirac Hamiltonian on 
the Hilbert space JY' = L 2 (R3

) ® (;4 defined by 

H D: HDf/;= -iaVf/;+f3mf/; (2.1) 

with the domain 

D(HD ) =HI.2(R3) ®(;4. 

The Dirac matrices are taken as 

For the definition of other quantities related to the Dirac 
equation (spherical spinors, etc.), we follow the convention 
of Ref. 16. The operator HD is self-adjoint and COO (R3

) ® (;4 
is its core. Moreover, COO (R3 

'\ {O}) ® ~ is also a core of H D 

as can be seen from its density in D(H D) in the H 1.2 norm. It 
illustrates the known fact that there is no nontrivial point 
interaction for a three-dimensional Dirac operator. 17 

Our construction of the o-shell interaction proceeds in a 
usual way: One restricts the starting operator to a set offunc
tions with supports disjoint with the support of the interac
tion, and constructs self-adjoint extensions of the obtained 
operator. Since, in our case, the support is the sphere 
SR = {xER3: Ixi = R}, where R is a given positive number, 
we are interested in the operator 

HI: = HD IC 0' (R3 '\SR) ® (;4. (2.2) 

For technical reasons, it is useful to consider also its restric
tion 

(2.3) 

Since Ho = HI' as one can check in the above-mentioned 
way, the two operators have identical families of self-adjoint 
extensions. 

The operators (2.2) and (2.3) have infinite deficiency 
indices and, hence, a vast family of extensions. In this paper, 
we restrict our attention to those extensions that are rota
tionally invariant; it will give us a possibility to reduce the 
problem to the analysis of ordinary differential operators. It 
does not mean, however, that other self-adjoint extensions 
are not physically attractive. On the contrary, one should 
expect the existence of interesting extensions that are rota
tionally noninvariant and, at the same time, specified by 10-
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cal boundary conditions. These problems will be discussed 
elsewhere. In addition to the rotational symmetry require
ment, we shall consider only reflection-symmetric exten
sions, i.e., our group of symmetry will be SU(2) ® Z2. We 
use the Hermitian operator of space reflection 
(U(P) t/!)(x) = /3¢( - x). The anti-Hermitian choice of 
iU(P) leads to the same Eqs. (2.4), and, therefore, to the 
same results. 

These requirements mean that there is a single-valued 
unitary representation U of SU (2) ® Z2 such that an arbi
trary self-adjoint extension H of Ho from the considered 
class fulfills 

U(R)HU(R)-I = H (2.4) 

for any RESU(2) ®Z2. One can decompose the state Hilbert 
space into orthogonal sum of subs paces referring to the total 
angular momentumj, its third component IL, and the parity 
(-l) / as 

00 j+l12 j 

cW' = Ell Ell Ell cW'./, 
j~1I2/~j-1I21'-~-j 11-' 

(2.Sa) 

with 

cW' - { . In _ (f(r)fljll-' (0»). 
jll-' - ~. t/!( ) - \g(r)fljl,1-' (0) , 

f,gEL 2(lR+,r dr)} , (2.Sb) 

where fljll'- are the spherical spinors l6 and I' = F+ 1/2 for 
I = j ± 1/2. It follows from (2.4) that H commutes with all 
functions of the operators U(R), in particular, with the pro
jection corresponding to the representation of SU (2) ® Z2 
with a givenj, IL and parity. Hence, we have the decomposi
tion 

00 j+1I2 j 

H = . Ell .EIl Ell. Hjll-' 
1~1I2/~1-1121-'~ -1 

(2.6) 

where the "component operators" Hjll-' are self-adjoint with 
the domains D(Hjll-' ) = D(H) ncW'jll-' . 

In each subspace cW'jll-' one can separate the radial part 
of the operator Hjll-'. To this aim, we introduce the isomor
phisms 

A. 2 2 
~/I'-: cW'jll-' -CW' = L (lR+) ® C 

by 

( 
rf(r) ) 

(~/I-' t/!)(r) = (_ l)j -1- 112rg(r) , (2.7) 

where f,g are related to t/! as in (2. Sb). One can easily check 
the inclusion 

00 j+1I2 j 

HoC Ell Ell Ell HJ/~) (2.8) 
j~ 1/2 I~j- 112 I-' ~ -j 

A. 

wheretheoperatorsHJ/~) are equal to UjI;..IHJ?)~/I'-' the last 
named operator being defined by 

H (?): = (m; - d /dr + KjI/r) 
1 d/dr+KjI/r;-m 

(2.9a) 

on D(HJ?» = CO'«O,R) U (R,oo» ® C2 with 

(2.9b) 
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(we note that there the quantities with carets refer to the 
A. 

two-component space cW'). Now we want to prove that a 
decomposition analogous to (2.8) holds for any rotation
invariant self-adjoint operators on cW'. 

Proposition 2.1: For a self-adjoint operator H in cW', the 
equality (2.4) holds for all RESU(2) ® Z2 iff 

(2.10) 

A A. 

where Hjl is a self-adjoint operator in cW'independent of IL' 
Proof: The sufficient condition is trivial. The require

ment (2.4) implies the decomposition (2.6), and one defines 
naturally ~/I'- = ~/I-'Hjll-' UjI;.. \ so it is only necessary to 
check its independence of IL. 

A A 

Let us show first that D(HjlI'- ) = D(Hw ). The opera-
I A 

tor UjI;.. maps D(Hjll-') onto D(Hjll'-) and the vector 

(
r-Vfljll-' ) 

U(R) (-1)j-I-1I2r -lgfl
jl

,1-' 

= ~ g(!> (R (r-Iffljll-" ) 
I-"~_j 1'-1-' ) (_l)j-I-1I2r -lgfljl'll' 

belongs to D(H) for any (~)ED(Hjlll) and RESU(2) ac
cording to (2.4). Since cW'jllll.Jf'jlll' for w:l IL', each term on 
the rhs must belong to the corresponding D(Hw ). For any 
given IL,IL', one always finds R such that g 1!~ (R) :I 0 due to 
the Burnside theorem. 18 Then, applying ~11l" we find that 

~ED(Hjlll' ) 
for all IL' = - j, ... J. The index IL = - j, ... J can be chosen 
arbitrarily so the equality of the domains is obtained. 

Consider, now, a vector ¢ED(H) referring to fixedj,l, 
i.e., 

with 

~ ~jll'- ) A A 
t/!jlll == EDjl ==D(Hjlll ) 

jl'll 

for IL = - j, ... J. Denoting 

A (.1\ (H j~~) (f,g») 
~11l\g} = Hj~!)(f,g) , 

we can calculate easily 

U(R )HU(R) -It/! 

j 

= L L g1!!(R)g~!)(R -I) 
1-'= -j v.a-

( 

-IHO){/" ) r jlv Vjla,gjl'a )fljlll 
X ( 1)j-I-1I2 -IHA 

(2)( /" )r\ . 
- r jlv Jjla,gjl'a Ujl'll 

Since this should equal to Ht/!, we get the relation 

L 9 ~{) (R) g ~~) (R - I ) H jlv ;Pjla = Hjlll ;Pjlll 
v,a 

valid for any ;Pjlp EDjl' P = - j, ... J. MUltiplying it by 
g ~t) (R -I) and summing over IL, we obtain 
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A '" A '" L !fl ~t) (R -\) [ Hjlp t/JjiU - Hjlu t/Jjlu 1 = ° 
u 

for each RESU(2). Using the Burnside theorem again, we 
get 

A '" .......... '" 

Hjlp t/Jjlu = Hjlu t/Jjlu 

for all p,O' = - j, ... J. • 
It follows now easily from the proved assertion and the 

decomposition (2.8) that in order to construct all rotational
ly and space-reflection invariant 8-shell interactions for the 
operator (2.1), one has to construct all self-adjoint exten-

A A 

sions HjI of H J?) in each partial wave subspace and insert 
them into theformula (2.10). 

III. SELF-ADJOINT EXTENSIONS OF THE RADIAL 
OPERATORS 

We have reduced the problem to analysis of ordinary 
differential operators corresponding to the formal expres
sion 

where v = 1+ 112, v' = I' + 112, and the cylindrical func
tion Zv stands for J v or H ~ I). The first choice yields a solu
tion that is square integrable in (O,R) but not in (R,oo), 
while the reverse is true for the second case. Extending the 
square integrable solutions by zero in the other interval, we 
get d = 2. 

One could use this explicit form of deficiency vectors for 
construction of the self-adjoint extensions via the von Neu
mann formulas, but this is not very practical. Instead, we are 
going to characterize the extensions by suitable boundary 
conditions. Since H Die (; (R3

" {o}) ® fC4 is essentially self
adjoint, there are no nontrivial boundary values at 0 and 00. 

Proposition 3.1: There is a complete set of four indepen
dent boundary values on D(H J?)'), namely, 

(recall that t/J is a two-component vector). 
Proof: Consider t/J = (~)ED(H JIO)'). The functions J,g 

are absolutely continuous inside (O,R) and (R,oo) and 
square integrable on R+ with 1'tPeL 2(R+) ® (;2. Then, for 
instance,J' is square integrable in a left neighborhood of R 
and 

so limr_R_!(r) exists and in the same way one checks the 
existence of the other three limits. Since we have 4 = 2d lin
early independent boundary values, they form a complete 
set l9 for H(O). • 

jI A A 

Self-adjoint extensions of H J?) are restrictions of H JIO)* 
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l' = (0, 
1, 

-1) d (m, ° dr + X jllr , 

XjI/r) , 
-m 

(3.1) 

which can be handled by standard methods (e.g., that of Ref. 
19, Chap. XIII), because the coefficient of the derivative is a 
<;.,<>nstant and nonsingular matrix. The adJ9int operator 
H J?)' to (2.9) actsaJ q) on thedomainD(H J?)') consist
ing of the functions ~ which are absolutely continuous in 
( O,R) and (R, 00 ) wi th 1'~. Since l' is real, the deficiency 
indices are equal and self-adjoint extensions of the operator 
( 2.9) exist. 

The deficiency indices fulfill d <.4, because they corre
spond to solutions of a two-component first-order differen
tial equation in the intervals (O,R) and (R,oo). In order to 
find them explicitly, consider the equation 

(1' - i)qy = 0, (3.2) 

whose solutions are obtained easily by analytic continuation 
of the well-known stationary solutions of the free radial 
Dirac equation to imaginary values of energy: 

(3.3 ) 

I 
A 

to a subspace of D(HJ?)') specified by a symmetric set of 
two linearly independent boundary conditions. We define 
the boundary form 

F(t/J,qy;r): = t/J+ (r)1'o(jJ(r), 

where ~ = (~:o I). Integration by parts yield for any 
qy,t/!ED(Hj\O)') the equality 

f t/J+ 1'qy dt - f (1't/J) + qy dt = F( t/J,qy;s) - F( t/J,qy;r) 

provided R is not contained in the interval (r,s). Since the 
integrals on the lhs converge in any subinterval of R+, one 
can establish existence of the limits of F( t/J,qy; .) at the points 
O,R_, R+, 00 similarly as in Proposition 3.1. Furthermore, 

lim F( t/J,qy;r) = lim F( t/J,qy;r) = 0, 
r-+O+ r- 00 

for any qy,t/!ED(HJ?)') since, otherwise, one could define an 
additional independent boundary value in contradiction to 
Proposition 3.1. Hence we get 

A (0)' A (0)' _. . (t/J,Hjl qy) - (HjI t/J,qy) -F(t/J,qy,R_) -F(t/J,qy,R+), 
(3.4) 

for any qy,t/!ED(H J?).) and we have to choose those bound
ary conditions for which the rhs of (3.4) vanishes. 

A Theo~m 3.2: Any self-ad~int extension HjI of H j\O) in 
JY act ~ Hjl t/J = rt/J for t/!ED(HjI ) where l' is given by (3.1) 
andD(HjI) consists of the functions tPeL 2 (R+) ® (;2, which 
are absolutely continuous inside (O,R) and (R,oo), 
-rtPeL 2(R+) ® (;2, and satisfy the following boundary condi
tions: 
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(3.Sa) 

where ae [0, 1T) and A is a real 2 X 2 matrix with det A = 1, or 

(CI
, C2)r/J(R_) +(0, O)r/J(R+) =0, 

0, ° d l , d2 

(3.Sb) 

where C I ,c2,dl ,d2 are real and both matrices are nonzero. 
Conver~ly, any J>perator of this form is a self-adjoint exten
tion of H (1°) in JY. 

Proof It remains to check that (3.5) are all symmetric 
pairs of linearly independent boundary conditions. Accord
ing to proposition 3.1, the general form of such boundary 
conditions is 

(3.6) 

where C,D are 2 X 2 matrices such that the 2 X 4 matrix 
(C,D) has rank 2. The symmetry conditions according to 
(3.4) read 

(3.7) 

for any cp,r/JED(HJ?)*) satisfying (3.6). We distinguish the 
following three cases. 

(i) C is nonsingular, then (3.6) can be written as 
r/J(R _) = Br/J(R +) and substitution into (3.7) gives 

r/J(R+) + (B +'ToB - 'To)cp(R+) = 0. 

Since this equation should hold for any r/J(R+), cp(R+), we 
get 

B +'ToB = 'TO' (3.8) 

So, Idet B 1= 1, and B is nonsingular. A simple algebra 
shows that (3.8) is equivalent to (3.Sa) withB = exp(ia)A. 

(ii) D is nonsingular, then (3.6) can be written as 
r/J(R +) = Br/J(R _ ), where B is nonsingular due to (3.7), so 
this case reduces to the previous one. 

(iii) Both C,D are of rank 1 but (C,D) has rank 2. Mul
tiplying (3.6) by a suitable nonsingular matrix, we can write 
it as 

(3.9) 

where at least one of the numbers CI ,C2 is nonzero. Since DI is 
again a rank-l matrix, one can write it as 

_ (A.d l , A.d2) DI -
d l , d2 

with at least one of the numbers d l ,d2 nonzero (the other 
possibility when only the first row is nonzero is excluded 
because the combined 2 X 4 matrix should be of rank 2). It is 
easy to see that (3.9) isin that case equivalent to (3.Sb) or to 

(3.Sb') 

i.e., that the boundary conditions decouple in this case. The 
coefficients CI ,C2,dl ,d2 might be still complex. The condition 
(3.Sb'), however, means that t!l.e two-dimensional complex 
vector r/J(R _) is for any r/JED(HjI ) orthogonal to (~; ), i.e., 

r/J(R_) = a_(r/J)(C2 
) 

-CI 
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and the corresponding expression holds for r/J(R +) in terms 
of d l ,d2• Substituting it to the expression (3.7) and realizing 
that a± (r/J),a± (f/J) may be arbitrary, we get Imclc2 

= 1m dl d2 = 0. Thus CI ,C2 and d l ,d2 must have the same 
complex phases and can be chosen real. • 

Remark 3. 3: In addition to the stated symmetry require
ments, one may want the constructed Hamiltonians to be 
time-reversal invariant. The corresponding antiunitary op
erator T can be defined as in the free-particle case l6 

Tr/J=(U2' O)Kr/J, ° U 2 

where K means the complex conjugation. After the partial-
wave decomposition, we see that H is time-reversal invariant 
iff D(/tl ) is invariant with respect to the complex conjuga
tion for all},I. Thejust proved theorem shows that this is the 
case when Hjl are specified by the boundary conditions 
(3.Sb) or by (3.Sa) with a = 0. 

IV. b SHELLS 

As we have mentioned in the Introduction, we are inter
ested primarily in the potentials (1.2), i.e., a combination of 
the scalar external field gs 8 (r - R) and the vector field de
scribed in the given reference frame by (gu8(r - R)~) with 
real coupling constants. In the radial Hamiltonians HjI' this 
interaction corresponds to the formal potential 

(gu+g" ° )8(r-R) (4.1) 
0, gu -gs 

with gu,gs independent of},!. More generally, one can con
sider the potential 

G8(r-R), (4.2) 

where G is a 2 X 2 matrix. Our aim is now to specify the self
adjoint extensions Hjl that can be associated with the formal 
Dirac operator with the potential (4.2). Suppose that r/J sat
isfies the equation 

['T+ G8(r-R)]r/J = Er/J 

and the limits r/J(R ± ) exist. Integrating over (R - E, 

R + E) and taking the limit E-+O+, we get 

provided we have chosen the relation 

i
R + E 1 

8(r-R)r/J(r)dr=-(r/J(R+) +r/J(R_» (4.4) 
R-E 2 

as a definition of the lhs. Of course, only those matrices G are 
acceptable for which the boundary condition (4.3) is com
patible with (3.5). As one expects, thefollowing assertion is 
true. 

Proposition 4.1: Boundary conditions (4.3) define a self
adjoint extension of H j~O) iff G + = G. 

Proof: The matrix (1 - 'ToG /2,1 + 'ToG /2) has rank 2 
since the sum of the submatrices is nonsingular. It remains to 
check that (4.3) implies (3.7) iffG + = G. We start with the 
necessary condition and distinguish four cases denoting 
B= !'ToG. 

(i) 1 - B is nonsingular, then, (4.3) is equivalent to 
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t/J(R +) = (1 - B) -I (1 + B) t/J(R _); substituting it into 
(3.7), we get, after a simple algebra, G + = G. 

(ii) 1 + B is nonsingular, then, the same procedure with 
the interchange G-. - G can be used. 

(iii) 1 - B = ° or 1 + B = 0; in that case, 
G= +21'o#G+, but the condition (4.3) reads 
t/J(R =F ) = 0, wh,i1e t/J(R ± ) is arbitrary. Hence the Ihs of 
(3.7) equals +t/J(R± )+1'cIP(R± ) so these boundary con
ditions cannot define a self-adjoint extension. 

(iv) Both 1 + Band 1 - B have rank 1. As in the proof 
of the Theorem 3.2, one can find a nonsingular matrix V that 
converts them into nonzero matrices of the following form: 

(0, 0) 
V(1-B) = d d; 

I' 2 

one can express V and VB from there. Furthermore, V is 
nonsingular, so one can calculate Band 

Since we can choose V so that the numbers C I ,c2,dl ,d2 are 
real, G is real symmetric, and, therefore, Hermitian. 

On the contrary, assume G + = G and let us prove that 
(4.3) defines a self-adjoint extension. For the cases (i) and 
(ii), we have done it already; the case (iii) does not occur. It 
remains to complete the proof for the case (iv). Any Hermi
tian G is of the form 

G= (~' b), 
b, c 

with a,c real. It gives 

1 + B = (1 - b /2, 
a12, 

-c/2 ) 
1 + bl2 ' 

1_B=(I+b/2, cl2 ) 
- a12, 1 - b 12 . 

Since det( 1 + B) = det( 1 - B) = 0, b must be real and 
b 2 = 4 + ac. For any a,b,c satisfying this restriction, one can 
choose C I ,c2,dl ,d2 so that G is expressed in the form (4.5), 
e.g., by taking C I = d l = 1 for a#O and C1 = ° or d l = ° for 
a=Q • 

Let us return now to the physically interesting case 
( 4.1). The corresponding matrix G is Hermitian and the 
boundary conditions (4.3) read 

(
1, (lgv - gs )/2)t/J(R+) 
- (gv + gs )/2, 

(
1, 

- (gv + gs )/2, 
(gs - gv )/2)t/J(R ) = 0. 
1 -

(4.6) 

It is clear that they can be cast into the form (3.5a) 
iff tv - is + 4#0; otherwise they belong to the type (3.5b). 
Remark 3.3 shows the corresponding operators, as well as 
the more general Hamiltonians referring to the 8-shell inter
action (4.2) with real G, are time-reversal invariant. The 
interactions (4.2) d,£ not cover, of course, the class of all self
adjoint extensions Hj/ described by Theorem 3.2; a possible 
interpretation of the remaining ones is discussed in the Ap
pendix. 
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V. CONFINEMENT 

In some cases, the contact interaction on the sphere may 
separate the two spatial regions fully, i.e., the particle under 
consideration is either confined in the ball BR = {xER3:lxl 
<R} or lives outside BRand cannot enter it. In other words, 
the sphere S R is impenetrable for the particles. 

Let us denote 7t'R = {t/JE7t': supp t/JCBR}; we are in
terested in the situation when 7t'R is invariant under 
exp( - iHt) for all tER or equivalently ERHCHER, where 
E R is the projection onto 7t'R in 7t' 

(ERt/J)(x) = 0(R -Ixl)t/J(x). 

In the spherically symmetric case, it is further equivalent to 
A A A 

ERD(Hj /) CD(Hjl)' 

for allj,l, where ER is the projection onto L 2(0,R) ® (;2 in 
K. Combining the last requirements with Theorem 3.2, we 
arrive at the following conclusion. 

Proposition 5.1: Let Hbe a rotationally and space-reflec
tion symmetric Dirac operator with contact interaction on 
the sphere S R' then S R is impenetrable for the particles iff 

A 

the corresponding partial-wave operators Hjl are defined by 
the boundary conditions (3.5b) for allj,l. 

As an example, consider again the physically interesting 
case of the interaction (4.1) corresponding to the boundary 
conditions (4.6). The observation made at the end of the 
previous section shows that the sphere S R is impenetrable in 
this case iff 

(5.1 ) 

Notice that presence of the scalar component is essential 
here, 

Igsl = (tv + 4)1/2>2. 

In particular, a purely scalar 8 shell confines the particles iff 
gs = ± 2. We remark also that the relation (5.1) has been 
found recently (on a heuristic level) as the impenetrability 
condition for a 8-shaped separable potential in one-dimen
sional Dirac operator.20 

VI. SPECTRAL PROPERTIES 

A. Point spectrum 

In order to solve the}igenvalue problem Hj/ t/J = At/J, one 
has to find t/J = (~)ED(Hj/ ) so that the equations 

-g' + (xlr)g+ m/=AJ, (6.1a) 

f' + (xlr)/ - mg=Ag, (6.1b) 

are fulfilled in (O,R) and (R, 00 ) together with the appropri
ate boundary conditions coupling the solutions at the point 
R; for simplicity, we write x=xjl' 

Proposition 6.1: ,lor any of the boundary conditions 
(3.5), the operator Hj/ has at most two eigenvalues (with 
account of multiplicity) in [ - m,m]. 

Proof One has only to modify slightly the argument 
leading to Corollary 1 to Proposition 8.19 in Ref. 21. Denote 
by A 1,A2 two extensions Hj /, where the first corresponds to 
the free Dirac Hamiltonian, and suppose there are more than 
two eigenvalues of A2 in [ - m,m]. Since A2 is a self-adjoint 
extension of an operator with deficiency indices (2,2), there 
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has to exist a nonzero vector t/JE Ran EA2 ([ - m,m] ) 
..,...-----

nD( HJ?». We have 

IIA 2¢11 2 = i A 2d( ¢,E i2)¢) <m2 11¢11 2
, 

where we have denoted by {E Y)} the spectral decomposi
tions of Aj • At the same time, the spectrum of A I is contained 
in ( - 00, - m] U [m, (0) and the end points ± m are not 
its eigenvalues so 

IIA I¢1I
2 

= 1- oo.-m]U[m.oo) A 2d(¢,Ei
l
)¢); 

> m2 11¢1I 2
, 

~ 

but A I ¢ = A 2¢ since t/JED( H j~O» so we arrive at a contra-
diction. • 

The points A = ± m can be eigenvalues of Hjl for par
ticular boundary conditions. For instance, consider 
..1.= -m and I=j-!, i.e., X= -(1+1). Equations 
(6.1) then have the following square integrable solutions: 

fer) =ar-", g(r) = [2ma/(l-2x)]r l -", 

for re(O,R), 

with v = I + !, v' = I' + !, and I' = j + ! for I = j ± !. Ac
cording to Proposition 6.1, it has at most two solutions, or 
even less if some of the points A = ± m is an eigenvalue. 

Similarly, one can proceed for 1..1. I> m. There are no 
nonzero square integrable solutions in (R,oo) in this case 
and, therefore, HjI referring to the boundary conditions 
(3.5a) has no eigenvalues of that type. On the other hand, 
the boundary conditions (3.5b) yield the eigenvalue equa
tion 

clJv{(..1. 2 - m2) 1/2R) + c2( - l)j-l+ 112 

X [(A 2 - m2) 1/2/(1l + m) ]JA(..1. 2 - m2) 1/2R) = ° 
(6.3 ) 

It is clear that it has for any real C I ,C2 two infinite sequences 
of solutions accumulating at A = ± 00 only. 

B. Continuous spectrum 

The spectrum of the free Dirac operator is known22 to be 
purely (and absolutely) continuous and equal to 
( - 00, - m] U [m,oo). Weare going to show that the same 
is true for the continuous spectrum of the operators with the 
o-shell interaction. A 

The resolvents of the self-adjoint extensions Hjl with 
fixedj,1 differ mutually by a finite-rank operator (this fact 
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fer) = 0, g(r) = hr", for re(R,oo). 

Substituting them into the boundary conditions (3.5), one 
can find the cases when A = - m is an eigenvalue. In partic
ular, for the boundary conditions (4.6), this is true if 

t, -g;-4+ [8mR/(l-2x)](gv -gs) =0. 

Similarly one can handle the remaining cases. 
Let us turn now to eigenvalues ..1.E( - m,m) for fixed 

boundary conditions (3.5), which we shall write for simpli
city in the form (3.6), 

C¢(R_) + D¢(R+) = 0. 

It is clear from (6.1) that the functionsJ,g are continuously 
differentiable to any order in (O,R) and (R, 00 ). Expressing 
gfrom (6.1b) and substituting into (6.1a), we get the Bessel 
equation whose solutions in (O,R) and (R,oo) are of the 
form (3.3) with i + m replaced by A + m. Substituting them 
into the boundary conditions, we get the following eigenval
ue equation: 

det{Gp (-)(..1.),Dq:' (+)(..1.» = 0, (6.2a) 

where 

(6.2b) 

(6.2c) 

j 
follows immediately from the Krein resolvent formula4

) and 
have, therefore, the same continuous spectrum 

A A A (D) 
ac(HjI) = a ess (HjI) = a ess (HjI ) 

= ( - 00, - m] U [m,oo), 

for all j,l, where H JID) denotes the partJ..al-wave "compo
nent" of H D' The essential spectrum of H JF) can be easily 
computed just solving Eqs. (6.1) in R+ for each 
..1.E( - 00, - m] U [m, 00 ) and taking a suitable sequence of 
cutoff functions. Moreover, the spectrum of H JF) is abso
lutely continuous for all j,/; this follows immediately from 
the partial-wave decomposition of H D , which has an abso
lutely continuous spectrum. It remains in such a way to 
check that the singular continuous spectrum 

asc (Hjl) = 0, 

for allj,/ and all self-adjoint extensions HjI. To this purpose, 
we use once more the Krein resolvent formula that yields the 
following relation for the resolvent of Hjl : 

(Hjl-Z)-I = (Hj~D) -Z)-I 

k 

+ I Il~~~ (z) Igm (z» (gn (z) I, (6.4) 
m.n= 1 

where k<2 is the deficiency index of the maximal common 
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part of Hjl and H j~D), the matrix,u (j1) (z) represents a solu
tion to the equation 

[,uUI)(z)]';;-n l = [,uUI)(ZO)]';;-n l
- (z-zo)(gm(z),gn(ZO»' 

(6.5) 

and the vectors gm (z) solve 

gm (z) = gm (zo) + (z - zo)(H Jt) - z) -Igm (zo) (6.6) 

being, therefore, analytic in p(H Jt». 
Let us consider the matrix element 

(,p,(Hj~D) -Z)-It/J) 

=(.7U- I A..7(H -Z)-I.7- I.7U- I.I,) 
jli' '1" D Jli' 'I' 

= ("" F(p) dp + z L"" G(p) dp, 
Jo p2 + m2 _ Z2 0 p2 + m2 - r 

(6.7) 

where ZEC\R, ,p,tId,,u = - j, ... J, and.7: £' -+£' is the 
Fourier transformation to the momentum representation. If 
,p = (~),t/J = (~) withf,g,u,vEL 2(R+) nL I (R+,r dr), then 

F(p) = p f(p) [( - l)j-l+ lIZpV(p) + mu(p)] 

+p g(p)[( _1)j-I+1I2pU (p) -mv(p)], 
( 6.8a) 

G(p) =p[ f(p)u(p) + g(p)v(p»). (6.8b) 

where 

f(p) = L"" rI/Zj(r)JI+ 112 (pr)dr, (6.9a) 

(6.9b) 

and similarly for U, V. Under our assumptions, ]; g, u, 
VEe I (R + ). Then also F, GEe I (R +) and for XE ( - 00, 

- m) U (m,oo), 

I· i"" F(p) d 
1m 2 2 -2:P 
z-x 0 P + m -z-

Imz<O 

= 9 ("" F(p) dp 
Jo p2 + m2 _ X2 

( 6.10) 

± i(1T/2)(x2 _ m 2 )-1/2F 

X«x2 _ m2 )1/2) sgn(x), 

where the principal value of integral is a finite continuous 
function of x and ± correspond to sgn 1m z. The proof of 
the last formula is based on the first-order Taylor expansion 
of F around the point p = [(Re Z)2 - m2

] 1/2 in the interval 
[!(x2 _ m 2) 1/2,2(x2 _ m 2) 1/2]. Similar calculations were 
used, e.g., in Ref. 23. The formula (6.10) holds also with F 
replaced by G. 

For Zo = i, gn (zo) belong to the deficiency subspaces 
and are proportional to the corresponding functions (3.3) in 
intervals (O,R) and (R,oo). Consequently, functions (6.9) 
corresponding to gn (zo) are holomorphic in {pEC: Re p > 0, 
Ilmpl < (1 + m2 )1/2}. The edge-of-wedge theorem then 
shows via Eqs. (6.6)-(6.10) that (gm (z),gn (zo» can be ho
lomorphically continued from the upper half-plane on an 
open set containing (- 00, - m) U (m, 00 ). The same is 
true for the matrix elements (6.5) and det[,uul) (Z)]-I 
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whose continuation, therefore, has at most a discrete set of 
zeros. Hence ,u UI) (z) can be meromorphically continued 
from the upper half-plane on an open set containing 
(- 00, - m)U(m,oo). 

Let us now take an interval (a,b) C ( - 00, - m] 
U [m,oo), which does not contain a singular point of the 
continued matrix function,uUI) . Theformulas (6.4 )-( 6.10) 
show that 

(6.11 ) 

can be continuously (even holomorphically) continued 
from the upper half-plane into (a,b) for all 
,pEe 0' (R+) ® C2

. Then, the known criterion24 shows that 
(a~b) nasc (Hjl ) = 0. Since the po!!:s of continued matrix 
,u (J/) are isolated, it follows that a sc (HjI) = 0. Summarizing 
the above results we get the following theorem. 

Theorem 6.2: For any of the boundary conditions (3.5), 
the operator Hjl has at most two eigenvalues (with the ac
count of multiplicities) in[ - m,m]. For (3.5a), there are 
no eigenvalues in ( - 00, - m) U (m, 00 ) while, for (3.5b), 
there are two infinite sequences of eigenvalues accumulating 
only at A = ± 00. Furthermore, one has 

ac (Hjl ) = a ess (Hjl ) = aac (Hjl ) = ( - 00, - m] U [m,oo) 

and a sc (Hjl ) = 0. 
Note added in proof: The results of Sec. VI can be ob

tained alternatively, without using resolvents, by the method 
of Behncke. 25 We are grateful to Professor Behncke for 
bringing this paper to our attention. 

APPENDIX: ASYMMETRIC I)-SHELLS 

The o-shells do not exhaust the class of extensions cov
ered by Theorem 3.2. Though it might not be physically in
teresting, we are going to demonstrate that most of the re
maining extensions correspond to "asymmetric" o-shells 
with (4.2) replaced by GOa (r - R), where Gisagaina2X2 
matrix and oa is defined by 

iR_+E
E 
0a(r-R)t/J(r)dr=at/J(R+) + (1-a)t/J(R_), 

(AI) 

for t/JED(Hj~O)'), where a is a complex number. Condition 
(4.3) is now replaced by 

(1-aB)t/J(R+) - (1 +bB)t/J(R_) =0 (A2) 

where we have denoted B = ToG and b = I-a. Let us de
note further H JIG.a ) the restriction of H j~O)* to the subset of its 
domain specified by the boundary conditions (A2). 
A Proposition AI: Hj~G.a) is a self-adjoint extension of 
Hj~O) iff 

G-G+ = (1-2Rea)G+ToG. (A3) 
Proof: The relation (A2) represents two linearly inde

pendent boundary conditions since rank (I - aB, I + bB) 
= rank ( 1 - aB,B) = rank( I,B) = 2. It remains to check 

that it is symmetric iff (A3) is valid. We distinguish again 
several cases. 

(i) l-aB is nonsingular. Then t/J(R+) 
= (I - aB) - I (I + bB) t/J(R _) so the requirement gives 
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'To- (1 +bB+)(1-ciB+)-I'To(1-aB)-I(1 +bB) =0 
(A4) 

multiplying this relation by ( 1 - aB +) and (I - aB) from 
the left and right, respectively, we arrive after a short calcu
lation at the relation (A3). 

(ii) An analogous argument can be used if 1 + bB is 
nonsingular. 

(iii) Suppose that rank ( 1 - aB) = rank ( 1 + bB) = 1. 
Then there is a nonsingular V such that 

V(1 + bB) = (~:' ~2), V(1- aB) = (O~ d
l
, 0_ dJ. 

(A5) 

By a suitable choice of V, we can have one of the following 
possibilities: 

(a) C I = d l = 1, 
(b) C I = d2 = 1, d l = 0, 
(c) c2 = d l = 1, C I = O. 
One can calculate the matrices VB and V from here ob

taining, in particular, det V = a( 1 - a) (c2d l - c l d2 ). Since 
it is nonzero, one has a#O, 1 and c2 #d2 in the case (a). 
Furthermore, one can calculate 

1 (Cldl, (1 - a)c2d l + aCld2) 
G = - 'ToB = det V (1 - a)c ld2 + aC2dl, c2d2 . 

(A6) 
A 

The operator HJ?a) is self-adjoint iff (A2) is equivalent to 
(3.5). Thus one has to check that matrix (A6) fulfills the 
condition (A3) iff all the coefficients CI,C2,dl ,d2 are real. For 
each of the possibilities (a)-(c) this can be done by a 
straightforward algebra. • 

The operators ii j~ G.a) with a E (0,1) cover almost all ex
tensions given by Theorem 3.2. 

Proposition A2: The set of the self-adjoint operators 
iiJ?a) as well as its subset corresponding to a E(~l) coin
cides with the set of self-adjoint extensions Hj/ from 
Theorem 3.2 with the exception of those given by the bound
ary conditions (3.5b) with CI = d l ,C2 = d2• 

Proof: First, we check that the condition (A2) with de
t(1 - aB) #0 is equivalent to (3.5a). Using (A4), one can 
check that 1 + bB is also nonsingular, and, therefore, (A2) 
is equivalent to tP(R_) =AltP(R+) for a nonsingular AI' 
Since the (A2) defines self-adjoint operator by definition, it 
must hold Al = eia A for some a, A. Conversely, consider 
(3.5a) withsomeA I = eia A. Since A I isnonsingular anddet 
is a continuous function, det (a 1 + bA I) # 0 for all I a I small 
enough. We choose such an a and set B 
= (1 - A I )(al + bAI) -I. Then, 1 + bB = (al + bA1)-1 

andA I = (1 + bB) -1(1 - aB), so we arrive back at (A2). 
It is clear that there are many pairs of a,B corresponding to a 
givenA 1· 
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Next, one has to check that (A2) with det( 1 - aB) = 0 
is equivalent to (3.5b) with C1 #dl or c2#d2 • As in the pre
vious proof, there is a nonsingular V such that the relation 
(A5) holds. From here, one can calculate VB and V, and 
alsodet V = a(a - I )(c1d2 - c2d l ). The last relation shows 
that it cannot hold for C1 = d l and C2 = d2• Conversely, con
sider (3.5b) with c1d2 - c2d l #0 [i.e., just those conditions 
(3.5b) that cannot be rewritten with c1 = d l , c2 = d2 ]. 

Choosing a # 0, 1 and 

V_(ac l , 

- (a - l)d l , 

we can define 

B= V-1(C1, C2) 
dl , d2 

aC2 ) 

(a - l)d2 ' 

and G = - 'ToB so we arrive back at (A5) and (3.5b) im
~es(A2). • 

Finally, let us remark that the remaining extensions of 
Theorem 3.2 can be described as "asymmetric" 5 shells with 
the parameter a being a 2 X 2 matrix (which must multiply G 
from the right in all formulas). 
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The characterization of coherent states as the quantum states that split into two uncorrelated 
beams is considered. The characterization leads to the study of coherent states at finite 
temperature-thermal coherent states (TCS's). These TCS's are defined within the formalism 
of thermo field dynamics (TFD). TFD allows a generalization of the uncertainty relation that 
accounts for both thermal and quantum fluctuations. The TCS is shown to be a minimal state 
for the generalized uncertainty relation. 

I. INTRODUCTION 

Coherent states were introduced in physics by Schro
dinger1 in 1926 in connection with the simple harmonic mo
tion of a particle in quantum mechanics. Schrodinger 
showed that if the particle is in what we now call a coherent 
state (CS) then its motion simulates most closely the motion 
of the corresponding (i.e., with the same harmonic oscillator 
Hamiltonian) classical particle. Further, it turned out that 
the CS is a minimal uncertainty state, i.e., the particle that is 
in a CS has its dispersion in momentum multiplied by its 
dispersion in its coordinates equal to 1 (Ii = 1), which is its 
minimal possible value. 

In more recent times, CS's are used extensively in stud
ies of quantum optics.2.3 It is in this connection that the state 
acquired its name: coherent state (CS). 3 Here too when the 
quantum radiation field is in a CS it simulates most closely 
the classical radiation. Thus the quantum field that is pro
duced by a classical current (i.e., a current whose value is a 
prescribed function of space and time) is in a CS. 3 The CS 
proved useful in the study of interacting bosons4 and CS was 
considered for potentials other than the harmonic oscilla
tor,5 and in field theory one now studies a fermionic CS.6

•
7 

Particularly illuminating characterization of the CS was 
unveiled by Aharonov et al. (AFLP).8 These authors 
showed that the CS possesses yet another (though related) 
classical property. We discuss this at length in Sec. II. There 
we show that a modification to AFLP formulas (that must 
be instated when finite systems are considered) allows us to 
connect this work with the study of Emch and Hegerfeldt 
(EH).9 We discuss this connection in Sec. III. The work of 
EH extended the idea of a CS to the thermal coherent state 
(TCS), i.e., to states possessing some features of the CS at 
finite temperature. This topic, the TCS, is our main concern 
in this paper and we study the TCS via the language and 
technique that was developed for the formulation of thermal 
physics: the so-called thermo field dynamics (TFD).1O·11 
We contend that the TFD formalism is a convenient one for 
the study ofthe TCS. The equilibrium TFD was shown 12 to 
be equivalent to the C *-algebra approach to statistical phys-

ics13; it was in the language of the latter that the TCS was 
defined by EH. 

We show that TFD allows a natural extension of the 
formalism of the CS to finite temperatures and leads to a new 
version of the TCS, as was first proposed by Barnett and 
Knight (BK).14.15 In Sec. IV we review the main results of 
TFD that are relevant to us. On physical grounds we expect 
that as the temperature is raised from zero the product of the 
dispersion in the momentum and coordinates should rise 
because of thermal fluctuations. We show in Sec. V that 
TFD provides a relation between quantum and thermal fluc
tuations called the generalized uncertainty relation (G UR), 
from which an uncertainty inequality including thermal ef
fects is derived. In Sec. VI we study the TCS ofTFD given by 
BK,14 putting an emphasis on the GUR. When the disper
sion product in the TCS is evaluated in the GUR, the mini
mal value is attained. There the characteristic function of the 
TCS is also calculated and we compare the TCS ofTFD with 
that of EHs. Section VII is devoted to remarks and conclu
sions. 

II. SPLIT SOURCE-CHARACTERIZATION OF 
COHERENT STATE 

In this section we shall review the analysis of Ref. 8 
(AFLP). We shall introduce a modification to their formu
las, which will be useful to us later on. AFLP consider the 
problem of splitting a beam from a source A into two chan
nels, Band C. The source A defines a state [their Eq. (12)], 

1 tfo A ) = fA (a ~ ) 10) A . (2.1 ) 

Here 10) A is the "no quanta" state of the sourceA. Note that 
a ~ is the creation operator for a quantum of the source while 
fA is some function to be determined. The beam of A is split 
into two beams, or modes, Band C, which are orthogonal; 
for example, they move in different directions. We now 
search for the case in which the split beam is exactly a prod
uct wavefunction. In this case the state of the split beam is 
given by 

Itfo)2 =fB(a1)fc(aUI0)Bc' (2.2) 
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Now the "no quanta" mode for the channels Band C, which 
are mutually orthogonal, may be written as 

10)Bc = 10)B ® 10)c (2.3) 

[their Eq. (9)]. At this point AFLP proceed to relate the 
above-mentioned vacua, as they appear in Eqs. (2.2) and 
(2.3) above, by [their Eq. (17)] 

10) A = 10) B ® 10) c· (2.4) 

It is our contention that this is too narrow. The more general 
equation is 

(2.5) 

Here 10) R is the vacuum orthogonal to 10) A and, with it, 
spans the vector space of the rhs ofEq. (2.5). We hasten to 
add that this modification of the equation does not affect the 
argument or results of Ref. 8 becasue this orthogonal state 
was taken to be unexcited in AFLP study. To see that this 
state should be in the equation we note that both sides of the 
equation pertain to the same space and since the rhs involves 
two orthogonal states-so should the lhs. (Although this is 
not strictly that simple for infinite spaces.) We now proceed 
with the proof of Ref. 8, which, as was stated above, is unaf
fected by the above modification. Nonetheless, it is useful for 
us to go through with that part of the argument and add the 
properties of this orthogonal state as it will play a more 
prominent role later. 

With AFLp8 we now wish to identify the quantum state 
that possesses the property of being split into a product 
wavefunction. The splitting itself is expressed [Eq. (13) of 
AFLP]: 

a~ = ,ua1 + vaL (2.6) 

which describes the case of each quantum of the source A 
splitting with amplitudes ,u and v to the channels Band C, 
respectively. The creation operator to the orthogonal (albeit 
empty) state is 

ak = - ,u*a1 + v*a~ 
with 

(2.7) 

(2.8) 

The operator equation that is to be solved is the very 
same as the one considered by AFLP, i.e., [their Eq. (14)], 

(2.9) 

because the orthogonal state is vacuum, i.e., fR (ak ) = 1. 
The solution of (2.9) is discussed in Ref. 8, where it is shown 
to be 

FA (a~ ) = exp(aa~ ), 

FB (a1) = exp(a,ua1), 

Fc(a~) =exp(ava~), 

where 

F; (z) = /; (z)//; (0), 

(2.1Oa) 

(2. lOb) 

(2.1Oc) 

(2.11 ) 

for i = A, R, B, and C. In (2.11) and hereafter,J(O) stands 
for the coefficient of the zeroth power of at in the expansion 
off(at ), and we simply say thatf(O) is obtained by setting 
at = 0 inf( at). Equations (2.10) imply thatthe unique nor
malized quantum state that can be split as stipulated is the 
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Glauber coherent state, la), which is an eigenfunction of the 
annihilation operator a with eigenvalue a: 

la) = exp( -laI2/2)exp(aat ) 10). (2.12) 

Now if the wavefunction of the source A is given by some 
complex a, viz., I t/t A) = la) A' then the orthogonal state is 
given by a R = 0; while the other two channels are specified 
byaB = ,ua, a c = va. This completes our review of the re
sults of Ref. 8 with the formal modification as a result of the 
orthogonal state. 

The important of the role of the orthogonal state can 
now be seen as follows. Consider two independent sources A 
and R-the combined wavefunction is the product 

It/tA )1t/tR) =fA (a~ )fR (ak) IO)A ® 10) R. (2.13) 

Here we have taken the two modes to be orthogonal. We now 
ask a more general question than the one considered above: 
What are the quantum states A and R that can be split into 
two different channels Band C such that the latter are also a 
product wavefunction, i.e., 

(2.14 ) 

Physically this would mean that the splitting be such that it 
could not be delineated from a case where the two beams 
were simply two independent sources. In this more general 
case than the one considered in AFLP, we have to solve the 
operator equation 

fA (,ua1 + va~ )fR ( - v*a1 + ,u*a~) = fB (a1 )fc (a~). 
(2.15 ) 

The technique of tackling this equation parallels that 
used in solving Eq. (2.9) above. We note that we have, from 
Eq. (2.15), 

fA (O)fR (0) = fB (O)fdO), (2.16) 

with none of the/; (0) = o. See the remark just below (2.11). 
Thus we may divide Eq. (2.15) to obtain the equation for the 
normalized functions (of operators) 

FA (,ua1 +va~)FR( -v*a1 +,u·a~) =FB(a1)Fc (aU, 
(2.17) 

with F; (0) = 1 for i = A, R, B, and C. Setting in tum a1 = 0 
and a~ = 0, respectively, we obtain 

F A- I (,ua1)F A- I (va~ )FA (,ua1 + va~) 
= F R I ( - v*a1 + ,u*a~ )FR (,u*a~ )FR ( - v*a1). 

(2.18 ) 

We discuss the solution ofthis equation in a separate publi
cation. We now wish to consider a particular case where 

FA (a~) = exp(aa~), (2.19) 

i.e., when the normalized wavefunction of the A channel is a 
coherent state, thus the A wavefunction is given by 

It/tA) =exp( -laI2/2)exp(aa~)10)A. (2.20) 

It is seen directly (e.g., by substitution) that in this case we 
have (with arbitrary a') 

FR (a1) = exp(a'a1), (2.21 ) 

i.e., the normalized orthogonal state is also a coherent state, 

It/tR) = exp( - la'1 2/2)exp(a'ak) 10) R' (2.22) 
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and from Eq. (2.17) it then follows that 

with 

ItPB) =exp( -laBI2/2)exp(aBat)10)B' 

ItPe> = exp( -lacI2/2)exp(aca~) 10)c, 

a B =J.la - v*a', 

a c = va - f-L*a', 

and thus 

laB I
2 + lac l2 = lal2 + la'1 2. 

III. CENTER OF MASS OF TWO PARTICLES 

(2.23a) 

(2.23b) 

(2.24a) 

(2.24b) 

(2.25) 

In this section we shall establish a relation between the 
results of Ref. 8 (AFLP) as summarized above and some 
results of Emch and Hegerfeldt (EH).9 EH consider two 
independent particles, which we label Band e, whose com
bined wavefunction is a product [cf. their discussion below 
Eq. (2.4) in Ref. 9]. We shall write the single particle wave
functions in field theoretical notation, e.g., the wavefunction 
of particle B is 

ItPB) =IB(at)IO)B· (3.1) 

This we can always do because of the completeness, in this 
case, of the harmonic oscillator wavefunctions. In (3.1) 

at = (1!{l) [.p:;;QB - i(PBI.p:;;)]; AB = mB(J)B' 
(3.2) 

with Ii = I, and Q and P, respectively, the coordinate and 
momentum operators for the particle B. Note that mB and 
(J) B are, respectively, the mass and frequency of the B oscilla
tor in terms of which we expand ItPB). HerelB is the wave
function for the B particle in this notation. Hence the two 
particles wavefunction is given by 

ItPB)ltPe> =IB (at)/cCaU 10)B ® 10)c· (3.3) 

It is understood that the Band e modes are orthogonal. EH 
impose an additional constraint: they consider the case 
where the center of mass of the two particles is in a pure state, 
and moreover it is a coherent state. Clearly under these con
ditions, where the center of mass, which we call A, is in a 
pure state [so is the relative coordinate (R)]. Thus EH con
sider 

IB(at)lc(a~)IO)B ® 10)c 

(3.4 ) 

We note in passing that this equation is quite similar in 
appearance to the one considered by AFLP. We shall return 
to this point below. In (3.4) EH stipulate that the center of 
mass is in a coherent state, 

IA (a~) = [exp( - laI 2 )/2) ]exp(aa~) (3.5) 

for some a. Since theA mode describes the center of mass we 
have, via (3.2), relations between a~ with a1 on one hand 
and at with at on the other. These relations follow from 

mAPR = mBPC - mCPB' QR = Qc - QB' 

PA = PB + Pc, mAQA = mBQB + mcQc' (3.6) 
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It is convenient to define 

f-Li = m;lmA· (3.7) 

Converting the relations among the Q's and P's with 
(3.7) to those among the at's and a's we obtain 

a~ = ~[f-LB~AAIAB + ~ABIAA ]at 

+ ![f-LB~AAIAB - ~ABIAA JaB 

+ Hf-Lc~AAIAc + ~AcIAA]4 
+ Hf-Lc~A AI Ac - ~Acl A A ] ac , 

a1 = - H ~ARIAB + f-Lc~ABIAR ]at 

-![~ -f-Lc~]aB 

+H~ARIAc +f-LB~AcIAR ]a~ 

+! [~ARIAc - f-LB~AcIAR lac. 

(3.8a) 

(3.8b) 

This is seen to be a Bogoliubov transformation, i.e., a linear 
mixing of at's and a's. A more detailed analysis of the EH 
paper would require this to be discussed. However, the es
sence of our point can be brought in when the simpler case 
holds-i.e., whena~ anda1 depend only on at and4. This 
implies [recall (3.2)] 

(3.9) 

With (3.9) we are led to 

at =fji;a~ -Fca1, (3.lOa) 

a~ =Fca~ +fji;a1. (3.lOb) 

Substituting this into (3.4) leads to the operator equation: 

IB (fji;a~ - Fca1 )lc(Fca~ + fji;a1) 

(3.11 ) 

with/A (a~) given by (3.5). We can solve this equation using 
the technique developed in Ref. 8 and reviewed in the pre
vious section. The essential point is that we may treat the 
operator as an independent complex variable. The argument 
is briefly as follows. First we note that none of the functions 
can vanish anywhere (except at infinity). Then we consider 
Fj (aJ) = J; (aJ)IJ; (0). In terms of these normalized (at the 
origin) F's the equation is 

FB(fji;a~ -Fca1)Fc(Fca~ +fji;a1) 

= exp(aa~ )FR (a1 ), (3.12) 

where we substituted for FA (a ~) its known value, 
exp(aa~ ). A solution to this equation is allJ; (aJ) 10) U = B, 
e, and R) are coherent states, i.e., 

FB (at) = exp(aBat), 

Fc(at) = exp(acat), (3.13) 

FR (a1) = exp(aRa1), 

with 

a=fji;aB + Fcac , (3.14a) 

a R = - FcaB + fji; a c . (3.14b) 

[In a separate publication the properties of functions that 
factorize in two distinct ways (here, Band e are factorized 

Mann etal. 2885 



                                                                                                                                    

as well as A and R) are considered in detail. There we show 
that (3.13) is, in fact, the only solution.] 

We now compare the results of Refs. 8 and 9 as follows: 
The basic equations that characterize the coherent state are 
the same. AFLP consider the case where the orthogonal 
state is empty [i.e.,fR (a1 ) = 1] while EH stipulate!R (a1 ) 
via (3.4). In both cases the conclusions are that all the states 
are coherent states (CS's). [We may consider!R (a1) = 1 
as CS with a R = 0.] We summarize the results as stating 
that if the system can be described as a product of two wave
functions in two different ways and if one of the states is a 
coherent state then-all are. We see that, as was stressed 
originally by AFLP, coherent states (CS's) are character
ized by their possession of the classical property of allowing 
the split states to have only "local properties." For example, 
the states Band C do not have global correlations as a result 
of their origin from A: Measurements of Band C separately 
determine these states completely. The consideration ofEH, 
though similar, led them to consider thermal coherent states 
(TCS's). These we shall consider in Sec. VI, within the theo
ry of thermo field dynamics (TFD), after a brief introduc
tion to TFD that is given in the next section, and derive an 
important relation in Sec. V. 

IV. THERMO FIELD DYNAMICS 

In this section we list some formulas and results from 
thermo field dynamics (TFD) 10,11 that we shall use later. 

TFD is a formulation of thermal physics that was initi
ated by one of the authors (H. U.). Our discussion will be 
confined to equilibrium only so most of the results listed 
below can be found in Refs. 10 and 11. 

TFD gives the expectation value of an arbitrary dynami
cal quantity, an operator A, as an expectation value in a ther
mal vacuum, 

Ii = (O(,8)IA 10(/1». (4.1 ) 

Here 10(,8» is the thermal vacuum state characterized by 
the inverse temperature {3 and the Hamiltonian of the prob
lem. In this way the various thermal vacua are, for a fixed 
Hamiltonian, characterized by various possible values of {3, 
much like the ground states of a magnetic system are charac
terized by the various possible orientations for the magneti
zation. The price for this concise "extension of zero tempera
ture field theory to encompass thermal degrees of 
freedom" 10 is that we have to work in an expanded space of 
states. Thus to every state In) of the original Hilbert space 
!It" we now associate lii)&, where Jf' is the "tildian" 
space. To every physical operator A acting in !It" we associate 
a tildian operator A in Jf'. The operations of associating A to 
A, i.e., to its tilde conjugate, are spelled out in Refs. 10 and 
11. Thus we consider operators that act in !It" ® Jf'. An 
important role is played by operators that are "self-tildian," 
i.e., that remain invariant under the tilde conjugation oper
ation. Such an operator is the one that carries the vacuum 
(ground) statefrom{3 ..... oo (i.e., T=O) tofinite{3, 

10({3» = U({3) 10( 00 ». (4.2) 

This operator, for free bosons, is given bylO.11 
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U({3) = exp( - iGB ), 

GB = iO(,8) [atiit - iia]. 

(4.3) 

(4.4) 

(Here we confine ourselves to one mode only-for nota
tional simplicity.) In these formulas ii(iit) is the annihila
tion (creation) operator for the mode in question for the 
tilde particle. The operator U({3) is unitary, self-tildian, and 
acts in the combined space 

A _ 

!It" = !It" ® !It". 

The angle 0({3) is given by 

cosh 0(,8) = c(,8) = [1 - exp( - {3w)] -1/2, 

sinh 0(,8) =s({3) = [exp({3w) _1]-1/2, 

from which we have 

C({3)2 - S({3)2 = 1. 

• 

(4.5) 

(4.6a) 

(4.6b) 

(4.7) 

Here w is the energy of the mode with Ii = 1. The operators 
(a,at ,ii,iit ) are related to other operators (g-,g-t ,tit) as fol
lows: 

g-== U({3)aU({3)-1 

= c({3)a - s(,8)ii t, 

tt == U({3)ii t U({3)-1 

= - s(,8)a + c({3)ii t, 

g-t ==U({3)at U(,8)-1 

= c({3)at - s({3)ii, 

t== U({3)ii U({3) -I 

= - s({3)at + c(,8)ii. 

( 4.8a) 

(4.8b) 

(4.8c) 

(4.8d) 

(4.9a) 

(4.9b) 

( 4.9c) 

(4.9d) 

Equations (4.8b), (4.8d), (4.9b), and (4.9d) are called the 
thermal Bogoliubov transformation. It is obvious from (4.2) 
and (4.7) that 

g- 10({3» = t 10({3» = 0. (4.10) 

The arguments and (4.2), (4.3), (4.8a), (4.8c), (4.9a), 
and (4. 9c) are formal in quantum field theory because there 
infinite degrees of freedom are involved and the operator U 
does not exist. Even in such a case, Eqs. (4.8b), (4.8d), 
(4.9b), (4.9d), and (4.10) are still true and, as a matter of 
fact, these were the starting points in construction of the 
TFD formulation. 10 

The dynamical law in TFD is described by the total 
Hamiltonian ii,1O 

(4.11 ) 

where H is the ordinary Hamiltonian and iI is obtained from 
it from replacing (a,at ) with (ii,ii t) together with complex 
conjugations of c numbers. 

V. RELATION BETWEEN QUANTUM AND THERMAL 
FLUCTUATIONS 

At zero temperature the commutation relation for the 
momentum P and the coordinate Q leads to the uncertainty 
relation 

(5.1 ) 
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We explicitly preserve Ii for clarity in this section. This in
equality is saturated, i.e., attains its lowest value, li2/4, when 
the quantities are evaluated in a CS. 

In this section we derive a relation among the fluctu
ations and correlations of momenta (P'p) and coordinates 
(Q,Q)-both the dynamical (nontildian) and thermal (til
dian) operators-and the corresponding zero-temperature 
operators. This relation reduces to the uncertainty relation 
(S.l) as the temperature is reduced to zero ({3 ..... 00). We 
term this relation the generalized uncertainty relation 
(GUR).17 The GUR can be put into an inequality of a 
simpler form by imposing some limitations on the state vec
tors. In this sense, the GUR inequality is not as general as 
that implied by the ordinary uncertainty relation. Nonethe
less, it does apply to a wide class of thermal states that in
cludes all equilibrium states. We will also see that the GUR 
inequality characterizes TCS's introduced in the next sec
tion as states for which the GUR is saturated. 

The GUR has been derived and discussed in a separate 
paper. I? Here its derivation is sketched only briefly below. 

The momenta and coordinate operators are related to 
the oscillator operators by [cf. (3.2)] 

P= i(~A 121i)(at - a), Q = UlilU )(at + a); 
(S.2a) 

P= -i(~A/21i)(at -a), Q= UlilU )(at +a); 
(5.2b) 

where 

[Q,P] = iii, 
[Q'p] = - iii. 

(S.3a) 

(5.3b) 

These equations can be inverted to give a, a, at, and at in 
terms of P, P, Q, and Q, respectively. We get from (4.8) and 
(4.9) 

UQU- I =cQ+sQ, UPU- I =cP+sP, 

UQU- I =cQ +sQ, UPU- I = cP+sP. 

(S.4a) 

(S.4b) 

The momentum operators at finite {3 could in general in
volve a different A, e.g., 

(S.5) 

whereA ':;6A in general, with corresponding relations for the 
other operators. The relations between the 5 operators (i.e., 
those at finite {3) and the zero temperature ones are 

P= (~AIA')(CPs +sPs )' Q= (~A'IA )(cQs +sQs)' 
(S.6a) 

p= (~AIA ')(cPs +sPs )' Q= (~A 'IA )(cQs +sQs)' 
(S.6b) 

with the commutation relations 

[Qs' Pg] = iii, 

[Qs' Pg] = - iii. 

Let us now define 

6.P=P- (P) 

(S.7a) 

(5.7b) 

(5.8) 

with the corresponding definitions for 6.Q, 6.P, 6.Q and 6.P s' 
6.Qs' 6.Ps' and 6.Qs . Now by direct substitution of (S.6) 
with (4.7) one gets the following equality: 
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H«6.P)2)«6.Q)2) + «6.P)2)«6.Q)2) 

- 2(6.P 6.P) (6.Q 6.Q) ] 

= H «6.Ps )2) «6.Qs )2) 

+ «6.Ps )2)( (6.Qs )2) 

- 2(6.Ps 6.Ps)(6.Qs6.Qs)]· (S.9) 

In (S.8) and (S.9) the expectation value is taken with the 
arbitrary thermal state IT). The factor! is introduced for 
convenience-we want the averaged, tildian-nontildian 
symmetrized, expression. Equation (5.9) is the most general 
form of the GUR. I ? 

To obtain our final inequality we restrict the considered 
states IT) to those that are subject to the following two con
ditions: (i) IT) isa productofst andg- t acting on 10({3), so 
that 

IT) = ITs) ® IT~); (S.lO) 

(ii) I T) is tildian invariant, 

IT)- = IT), (TI- = (TI· (5.11 ) 

The thermal vacuum 10({3» is the simplest example that 
satisfies all of these conditions. Because of (ii), since the tilde 
conjugation of the matrix elements implies its complex con
jugation, we obtain 

(P)=(P), (P2) = (P 2) (S.12) 

and so on. With (5.10) we have 

(6.Ps 6.Ps ) = (6.Ps ) (6.Ps ) = 0, etc. (S.13 ) 

With substitutions of (5.12) and (S.13) into (S.9), (S.9) 
now reads simply as 

«6.P)2) «6.Q)2) - (6.P 6.P )(6.Q 6.Q) 

= «6.Ps)2)«6.Qs )2»li2/4. (5.14 ) 

In deriving the last inequality in (S.14), we used the fact that 
the calculations of «6.Ps )2) «6.Qs )2) are identical with 
those of «6.P)2) «6.Q)2) at zero temperature. Equation 
(S.14) is the GURinequality. It is (i) and (ii) on IT) that 
make this GUR inequality less general than the uncertainty 
relation (S.l). As it was pointed out above, 10({3» satisfies 
(i) and (ii). At the zero-temperature limit, (6.P 6.P) and 
(6.Q 6.Q) in (5.14) factorize as 

(6.P 6.P) = (6.P) (6.P) = 0 (S.lS) 

so that (5.14) simply reduces to (S.l). 
The importance of (5.14) [or (S. 9 ), in general] lies in 

the fact that since the total fluctuation and the quantum 
fluctuation are given by ( (6.P) 2) ( ( Q) 2) and 
«6.Ps )2) «6.Qs )2), respectively, the pure thermal fluctu
ation appears to be (6.P 6.P) (6.Q 6.Q). 

As it will be shown in the following section, the GUR 
inequality will in effect be used to extend the usual CS to the 
TCS. 

VI. THERMAL COHERENT STATE AND ITS 
CHARACTERISTIC FUNCTION 

Extending the Glauber CS in (2.12) to finite tempera
ture, Barnett and Knight introduced the thermal coherent 
state by the relation l 4--16 
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s la(p» = a(m la(p». (6.1 ) 

There are two natural candidates for this state 

la;) == U(p)D(a,a) IO( 00» = D(a,s) IO(P», (6.2) 

Ila;/3» ==D(a,a) U(P) IO( 00 ». (6.3) 

Here U is found in (4.3) and the displacement operator is 
defined by 

D(a,a)==exp[aat -a*a+aiit -a*ii]. (6.4) 

With (4.2) and (4.8) the first definition (6.2) leadstoeigen
values a, a that are independent of p, 

s la;p) = ala;/3), 

t la;p) = ala;p). 

The second definition (6.3) can be written as 

Ila;p» = D(ac - a*s,s) IO(m) 

( 6.5a) 

(6.5b) 

(6.6) 

and, therefore, can be expressed in terms of the first defini
tion 

Ila;p» = lac - a*s;p). (6.7) 

Thus the second definition leads to p-dependent eigenval
ues, 

s lIap» = [ac(m - a*s(m] Ila;p», 

Ha;p» = [ac(p) - a*s(m] Ila;p». 

( 6.8a) 

( 6.8b) 

Since we know the relationship (6.7) between these two 
definitions, we concentrate ourselves on the first definition 
without sacrificing the generality-see the remark below Eq. 
(6.13) and in the Appendix. 

Let us require that the TCS is a state with the minimum 
uncertainty in the GUR inequality (5.14). Then we immedi
ately find that (6.2) satisfies this requirement. It is easy to 
show that the state (6.2) satisfies the conditions (i) and (ii) 
with a constraint 

a=a*, (6.9) 

which is due to (ii). 

Now we evaluate the characteristic function (CF) of 
the TCS, 

(CF) a == (a;p lexp{ - i(qQ + pP + qQ + pP)}la;p), 
( 6.10) 

where the capital letters represent the operators given by 
(5.2) while the small letters stand for c numbers. Direct 
calculation (see the Appendix) gives us 

(CF)a = exp[ - (8/4) {...l (p2 + p2) + (q2 + q2)/...l} 

+ A (J.pp + qq/J.) - iR] (6.11) 

with fz = 1 and 

8 = coth(pw/2), 

A = !cosech(pw/2), 

R=q(Q)a +p(P)a +q(Q)a +p(P)a' 

where 

(Q)a == (a;p I Q la;/3) 

(6.12a) 

(6.12b) 

(6.12c) 

= (l/~)[ (a* + a)c(m + (a + a*)s(m]' 
( 6.13a) 
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(P)a = i(~J. /2)[ (a* - a)c(p) + (a - a*)s(m ]. 
(6.13b) 

[Remember (6.9).] The corresponding values for the tilde 
operators are obtained upon exchanging c(m with - scm 
and vice versa. It is obvious from (6.10) that (6.13) are the 
expectation values of Q, P, and their tilde conjugates. 

We can make the same analysis by using the TCS of the 
second type [( 6.3) and (6.8)], for which the expectation 
values will be denoted by the double bracket ( ( ... ) ) a' Thus 
we calculate « CF) ) a' The result can be put in the form of 
( 6.11 ). The values of 8 and A remain the same as those in 
(6.12a) and (6.12b). However, the expectation values 
« Q » a' «P» u' and their tilde conjugates become inde
pendent of p-see (A9) in the Appendix. It is seen that the 
two definitions are simply related. We prefer to use the first 
definition (6.2). We note that the TCS (6.2) saturates the 
GURinequality (5.14). 

The CF leads to the dispersion 

«.:lP)2) a «.:lQ)2) a = 8 2/4, (6.14) 

(.:lP.:lP)a(.:lQ.:lQ)u =A2. (6.15) 

In the limit of zero temperature, the thermal (tildian) de
grees of freedom decouple from the dynamical (nontildian) 
ones: 

8 2/4--+ 1/4, 
A--+O, as P--+ 00. 

In the limit of high temperature we obtain 

(6.16a) 
( 6.16b) 

lim(82/4A2) = 1. (6.17) 
f3~O 

For arbitrary p, in accordance with (5.14), we have 

8 2/4 - A2 = 1/4. (6.18) 

Note that the rhs of (6.18) is temperature independent while 
8 and A depend on p. 

We now consider the TCS as defined by Emch and He
gerfeldt9 (EH) from a TFD viewpoint. EH define a state via 
its CF. Their definition of the CF for the TCS did not consid
er the tilde operators. Further, having (Q ) and (P ), but not 
(Q) and (P ), only partially defines a and a in (6.4). We will 
not provide an in-depth comparison between EH and the 
TCS of TFD. However, we would like to mention that the 
concept of the TCS in TFD is somewhat more stringent than 
EH's. To illustrate this we shall discuss briefly, within our 
formalism of one of their results. Given a product state of 
two particles, and their center of mass is known to be in a 
TCS. We seek solution to the operator equation (here the 
operators are temperature dependent) 

fA (a1 )fR (a~ ) IO(PA» A ® IO(PR» R 

=fB(al)fc(4)IO(PB»B ® IO(Pc»c' ( 6.19) 

Here the two (independent) particles are labeled by Band C 
while the center of mass coordinates are denoted by A, and R 
are the relative coordinates. In writing (6.19) we used the 
information that if the particles state is a product (because 
they are independent) and A is known to be in a TCS, then 
the lhs of (6.19) is also a product. Further, we shall assume 
here (we prove it in a separate publication) that only a pure 
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state (in TFD all states are pure states) solves this equation. 
What we wish to prove is that the relation (6.19) implies the 
equality of all four temperatures. [We assume 
lUA = lUB = lUe = lUR--differences in lU involve a Bogoliu
bov transformation that complicates the discussion-see 
( 3.9) in Sec. III.] This proof is a particular case of the EH 
theorem [their Eq. (3.55)]. In giving this proof here we 
illustrate the use of the thermal transformation operator 
U({3) (4.3). The proof is now simple: Since A represents the 
center of mass and R the relative coordinates we have from 
(3.10) with (3.9) that [Jli = m/(mB + me); i = H,C] 

IO({3B»B ® IO({3e»e 

=exp[O({3B)(a1a1-aBaB) 

+ O({3e )(a~a~ - aeae )] 10( 00 » B ® 10( 00» e, 
(6.20) 

(6.21 ) 

Equation (6.21) is the usual relation when the actual ground 
state is not altered. Substituting for a1, a1, etc., in terms of 
a~, a~, etc. [cf. (3.10) in Sec. III], we obtain directly (we 
display only the creation operators-similar terms are pres
ent with annihilation operators) for the rhs of (6.20), 

exp[ O({3 B ){j.tBa~a~ + Jlea1a1 

- ~Jle!lB (a~a1 + a~ a1 )} + O({3e ) {j.tea1a1 

+!lBa~a~ +~!le!lB(a~a1 +a~a1)}]. (6.22) 

This evidently reduces to a product of two thermal transfor
mations iff {3 B = (3e and then obviously all the temperatures 
are equal. The demonstration of the above is, we believe, 
more transparent with TCS explicitly written rather than 
being implied via the CF. That the TCS in TFD is more 
stringent than TCS in EH formalism can also be seen by 
using the CF. In TFD there appear also tildian operators and 
the compatibility equations [Eqs. (3.47) ofEH] have to be 
extended to include A, (6.12b), which can then be satisfied 
only at equal temperatures. 

VII. SUMMARY AND CONCLUSIONS 

This paper contains studies of two distinct but related 
aspects of coherent states (CS's). The first involves zero 
temperature CS's. Here, historically, the quality of the CS as 
a minimal uncertainty state was emphasized. 1 In this paper, 
however, we review the particular characteristic of the CS 
that was discovered by Aharonov et al. (AFLP). 8 There the 
emphasis is on the particular ("classical") property of CS, 
which allows it to be split into two independent states with 
no mutual correlation. It was pointed out that, at least in a 
finite volume, this split is in fact due to the CS wavefunction 
being factorizable in (at least) two different ways. We point
ed out that this very property is the basis of the Emch and 
Hegerfeldt (EH) study9 that pertains to CS. To illuminate 
the connection between these two works,8,9 which was not 
stressed hitherto, the study of EH was rephrased in the lan
guage of field theory, and that of AFLP was corrected 
(when finite volume is considered) for a missing empty 
state. Both these modifications are somewhat forced to allow 
the connection between these works to be exhibited. The 
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second topic considered in this paper is the extension of the 
study to finite temperatures. EH, in their formulation of the 
problem, were led to what they termed the thermal coherent 
state (TCS). 

In this connection the theory of thermo field dynamics 
(TFD) 10 was shown to be a natural vehicle for the presenta
tion and interpretation of the TCS. The TFD both the ther
mal ("tildian") and dynamical ("nontildian") degrees of 
freedom are treated on equal footing. Furthermore, TFD 
provides us with a simple relation between quantum and 
thermal fluctuations. In TFD fluctuations resulting from 
thermal or quantum origin are handled on an equivalent ba
sis; we used this to show that TFD has a natural extension of 
the uncertainty relation at zero temperature. Recall that the 
latter puts a lower limit on the product of fluctuations in two 
noncommuting dynamical quantities. (We consider only P 
and Q in this paper). Now, basing ourselves on TFD, we 
have formulated the corresponding inequality for finite tem
peratures, which we termed the generalized uncertainty re
lation (GUR).17 Then it turns out that the TCS by Barnett 
and Knight,14,15 which is naturally introduced in TFD, is 
characterized as the state for which the GUR inequality is 
saturated. The characteristic function of the TCS was shown 
to be related to the one proposed by EH. The difference be
tween the two is that the TCS of TFD contains information 
relating to the thermal degrees of freedom. 

In a capsule: This paper establishes the relation between 
the work of AFLP and EH; the TCS ofEH is generalized and 
is formulated within TFD; TFD is used to deduce an in
equality for product of fluctuating noncommuting dynami
cal quantities, which generalizes the uncertainty relation to 
finite temperatures, and the TCS is shown to saturate this 
inequality. 

In conclusion: The use ofTFD that handles thermal and 
dynamical fluctuations on equal footing was shown to be 
almost indispensable for the study of thermal coherent 
states. In view of the wide use of coherent states it is hoped 
that thermal coherent states will prove useful. 
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APPENDIX: THE CHARACTERISTIC FUNCTIONS FOR 
THE TWO THERMAL COHERENT STATES 

The three basic equations that we require are 

D(y,a)D(a,a) = exp{2iIm(ya* + 1'a*)} 

XD(a,a)D(y,a), (Al) 

ut ({3)D( y,a) U({3) = D( yc - ji*s,t), (A2) 

(O(oo)ID(y,a)IO(oo» =exp[ - (lyI2+ 11'1 2)12]. (A3) 

Here D(a,a) is given by (6.4); c and s by (4.6); and 1m 
means imaginary part. The Weyl function, 
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exp[ -iqQ-ipP-iqQ-iPP] =D(r,a), (A4) 

r=p@2-iq/fly, r= - [P~r/2 +iq/fly]. 
(AS) 

To get (AS) we used (5.2). 
We wish to evaluate the two expressions: 

(CF) a = (O( 00 ) ID t(a,a) ut({1) 

XD(r,a)U({1)D(a,a)IO(oo), (A6) 

« CF» a = (O( 00) I Ut({1)D t(a,a) 

XD(r,a)D(a,a)U(p)IO(oo), (A7) 

where the first and second expressions are our choices for the 
TCS in (6.2) and (6.3), respectively. Using the basicformu
las (A1)-(A3) yields 

(CF)a =exp[ -H(c2+s2)(lrI2+ IrI2)} 
- cs{rr + r*r*} 

+ 2i Im{(rc - r*s)a* + (rc - r*s)a*}]. 
(A8) 

Using (A4)-(A6), (5.5) and (5.6) give (6.11). The 
( (CF) ) a is obtained from ( CF) a by replacing a and a with 
ac - a*s and ac - a*s, respectively. The difference be
tween the two cases is the dependence of the expectation 
values on a and P (through c and s). For the first case (Q ) 
and (P) are given by (6.13) whereas the expectation values 
for the second case are 

«Q»a = (a* + a)/~U; «P»a = i(a* - a)~A./2. 
(A9) 
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In both cases the values of the tilde operators can be deduced 
from the above upon replacing a++£i* and an overall sign for 
the (P)'s. 
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The interelectronic Coulomb interaction between two electrons is expressed in terms of the 
o( 4,2) generators of each electron. The formulation allows an expansion in terms of scaled 
hydrogenic (also called Sturmian) states of each electron with respect to a common center if 
the total orbital angular momentum is different from zero. The formulation is exact in the limit 
where a dimensionless parameter goes to infinity. Numerical evaluation of matrix elements of 
the interelectronic potential between hydrogenic configurations illustrates the convergence 
with respect to this parameter. 

I. INTRODUCTION 

The purpose of this paper is to express the Coulomb 
potential between two electrons in terms of scaled hydro
genic states of each electron with respect to a common center 
[see Eqs. (9) and (to)]. 

It is well known I that the Lie algebra 0 ( 4,2) is realized 
by the following 15 monoelectronic generators: 

l=r!\p, a=~rpz-p(r'p) -~r, 

b = ~rpz - p(r'p) + ~r, g = rp, 

tl = !(rpz - r), tz = r'p - i = rpr' 

t3 = !(rpz + r). 

As usual, r corresponds to the position of a particle with 
respect to a center and p corresponds to its impulsion. These 
generators are Hermitic with respect to the so-called lIr 
scalar produce defined by 

(elf) == J d3rn)e*(r)/(r). 

The interelectronic Coulomb potential Vbetween two elec
trons can easily be expressed in terms of the generators cor
responding to each electron: 

V== 1I1r' - rl = 1I1b' - a' - b + al = lilA - BI, (1) 

where 

A==a - a', B==b - b'. 

II. EXPRESSION IN TERMS OF SCALED HYDROGENIC 
STATES 

Introducing the operator 

Tz==tz + t 2 
one obtains 

[ Tz, A] = iB, [ Tz, B] = iA. 

It follows that 

expU[3Tz)A z exp( - i[3Tz)l coshz([3) 

= (A - B)z + (1 - tanh ([3) )[ - (A - B)z 

+ A z - B Z + (1 - tanh ([3) )BZ]. (2) 

One therefore expects that the interelectronic interaction 
could be written as 

v = lim V([3), (3 ) 
{3- 00 

V([3) == cosh ([3) expU[3Tz)( lilA I) exp( - i[3Tz). (4) 

It remains to define lilA I more precisely. This can be done 
by considering the unitary irreducible representation (UIR) 
of o( 4,2) associated with the present realization. 

A UIR of 0 ( 4,2) is obtained I ifthe 15 generators intro
duced above act on the scaled hydrogenic states I (n,l,m) ) 
defined in terms of the usual hydrogenic states In,l,m) by 

I (n,l,m» ==n exp(i log(n )tz)1 n,l,m). (5) 

The action of each of the 15 0 ( 4,2) generators on these states 
can be found in Ref. 1. The space of the UIR is spanned by all 
the I (n,l,m) ). These states are orthonormal with respect to 
the lIr scalar product: 

«nJ.,IJ.,mJ.) I (nk,lk, mk» = omm 011 on.n . 
J k jk Jk 

Spin is never taken into account in this paper and the lIr 
scalar product is always used. The addition of spin degree of 
freedom, together with the antisymmetrization procedure, 
can be made without difficulty. Decisive progress in the 
study of two electron atoms has been madez.3 by considering 
the eigenstates of the square of the difference of the Runge
Lenz vectors of each electron. The operators a and a' intro
duced in Sec. I can be obtained from these Runge-Lenz vec
tors via a scaling transformation. I Therefore, the results ob
tained in Refs. 2 and 3 can directly be translated to the 
present situation and are now briefly outlined. Using the 
relations I 

U(l±a)j.!(l +a)k] =0, 

[~(l ± a)j,!(l ± a)k] = i€jkd(l ± a)/, 

<!(l ± a»ZI (n,l,m» = «nz - 1 )/4)1 (n,l,m», 

it can be shown that the eigenvectors of the operator A 2 are 

I (n,n',JI,Jz,L,M» 

== L I (n,/,n',1 ' ,L,M) ) 
I. I' 

X [(21 + 1 )(21' + 1 )(2JI + 1 )(2Jz + 1)] I/Z 

{

!(n - 1) 

X ( - 1)1' !(n ~ 1) 

!(n' - 1) 

!(n' - 1) 

I' 
(6) 
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The quantum numbers L, Min Eq. (6) are associated with 
the total orbital angular momentum and its projection over 
some axis. In Eq. (6) the bracketed coefficients are 9 - j 
symbols4 and the two electron states on the rhs are defined in 
terms of one electron state by means of the SU ( 2) Clebsch
Gordan coefficients: 

l(n,l,n',l',L,M»=. L l(n,l,m»I(n',l',m'» 
m.m' 

X (/,m;I',m'IL,M). 

For J I = J2, the vectors defined in Eq. (6) are eigenvectors 
of the total parity operator P with the eigenvalue 1T equal to 
( - 1) L. In order to obtain eigenstates of the parity P for any 
J I and J2 values one has to consider the change of basis: 

l(n,n',(JIJ2),L, ± ,M» =. (1/2) 1/2[ I (n,n',JI ,J2,L,M» 

± I (n,n',J2,JI ,L,M»]. 

Then, using symmetries properties of the 9j coefficients one 
obtains 

l(n,n',(JIJ2),L 1T,M» 

=.) I (n,l,n' ,I' ,L,M) ) 
tt 
X[(2/+ 1)(21' + 1)(2J] + 1)(2J2 + 1)]1/2 

{

!(n - 1) !(n' - 1) 

X(-1)" !(n-
I 

1) !(n'-l) 
I' 

xC(l + I', 1T, J I - J2 ), 

where C is defined by 

C(l + I', 1T, J I - J2 ) 

{
I, if J I - J2 = 0, 

=.81T(_1)'+I'X 21/2, if J
I
-J

2
#0, 

(7) 

and 8 is a Kronecker symbol. The two electron states 
l(n,n',(JIJ2 ),L 1T,M» for all possible values of 
n,n' ,JI >J2,L, 1T,M provide a complete orthonormal basis and 
satisfy the eigenvalue equation 

A 21(n,n',(JIJ2 ),L 1T,M» 

= [2(JI(JI + 1) +J2(J2 + 1» -L(L + 1)] 

X l(n,n',(JIJ2 ),L 1T,M». (8) 

An examination of relation (8) shows that A 2 can have zero 
as an eigenvalue only for the case L = O. The maximum val
ue of L for J I , J2 fixed is indeed J I + J2 since it follows from 
the occurrence of the 9j symbol in Eq. (7). Then the eigen
value is minimum, equal to (JI - J2) 2 + J I + J2, and can be 
zero only for J I = J2 = O. However, the caseJI = J2 = 0 can 
only be realized if L = O. Thus A 2 has an inverse in the sub
space where L is different from zero. Therefore, one obtains 
the following expression for the interelectronic potential V 
acting in a two-electron space of fixed total parity, fixed total 
orbital angular momentum L #0, and fixed total projection 
M: 

V L ,,-0, M,1T = lim V L "-0, M,1T({3), (9) 
fJ-oo 
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VL "-0, M,1T({3) 

=.cosh({3) L L [2(JI (JI + 1) 
n. n' J»J2 

+ J2(J2 + 1» - L(L + 1)] -1/2 

X exp (i{3T2 ) I(n,n', (JIJ2 ),L 1T,M» 

X «n,n',(JIJ2 ),L 1T,M)1 exp( - i{3T2 ). (to) 

Equation (to) has two basic advantages. First, it expresses 
the interelectronic interaction in terms of properly normali
zable stationary states corresponding to two independent 
(i.e., noninteracting) particles. These stationary states cor
respond to the model case, where two particles of charge 
- nand - n', respectively, move without repulsive interac

tion in the field of the same positive charge equal to exp ({3). 
Second, Eq. (to) involves only discrete summation and 
avoids the problem of handling the continuum explicitly. 
This is of particular interest when dealing with autoionizing 
atomic states. 

The summations over nand n' in Eq. (to) go to infinity 
by step of unity. The range of variation for J I , J2 (J I >J2 ) is 
then determined by triangular conditions implicit in the 9j 
coefficients. If the order of summation is reversed, i.e., if 
summation over nand n' is performed first with the range of 
variation depending on J I , J2, it is seen that V({3) acts as a 
multiple of the identity operator in the subspaces spanned by 
the exp(i{3T2 ) I (n,n',JI ,J2,L,M» vectors for fixed values of 
theeigenvaluesofA 2 [seeEq. (2)]. 

III. MATRIX ELEMENTS BETWEEN HYDROGENIC 
CONFIGURATIONS 

In order to illustrate the convergence of V({3) [Eq. 
(to)] with respect to the parameter {3, a convenient proce
dure is to consider the matrix elements of Vbetween hydro
genic configurations. These matrix elements can be ex
pressed in terms of the so-called Slater integrals.4 

Approximate o( 4,2) expressions for these matrix elements 
have been proposed in Ref. 5. Recalling that the 1/r scalar 
product is used throughout this work, one has to consider 
the following M-independent matrix elements: 

XL(a,b,c,d) =. (na,la,nb,lb,L,M lr'rV Ine,le,nd,ld,L,M) 

= (_ 1)lb+ld+L 

X [(2Ia + 1 )(21b + 1 )(2/e + 1 )(21d + 1)] 1/2 

XL {L Ib la} (Ie k la) (Id k Ib) 
k k Ie Id 0 0 0 0 0 0 

X R (k,ab,cd). (11 ) 

The 6j and 3j symbols originate from angular integration and 
the Slater integral R is defined in terms of radial hydrogenic 
wavefunctions by 

R(k,ab,cd) 

=frdrfr'2 dr'( (rOk )Rn ,(r) 
(r»k+1 Q' Q 

X Rn""b (r')Rn"lc (r)Rnd,l)r') 

These radial integrals can be evaluated analytically and 
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some numerical values have been tabulated.6 Using Eq. (5), 
together with the relations 

exp(iOt2 )rexp( - iOt2 ) = exp(8)r, 

rl (n,/,m» 

= - H (n + /)(n - 1 - 1)] 1/2 

xl (n - I,l,m» + nl (n,l,m» 

- H (n -I) (n + 1 + I)] 1/21 (n + I,I,m», 

(12) 

(13) 

I 

(14) 

where the first two delta symbols are Kronecker symbols 
and the latter, with upper index - la - 1, denotes SU ( 1,1 ) 
representation functions 7-9 as defined in Ref. 10, one finally 
obtains 

XL(p,a,b,c,d) == (na,la,nb,lb,L,M Irr' V(p) Ine,lcond,ld,L,M) 

= (- l)lb+
1d[(2/a + 1)(2/b + 1)(2/e + 1)(2/d + 1)]1/2(nend )-1 

X cosh (13) L [f(n,na./3a )f(n',nb,pb) + nJ(n,na,Pa) + nJ(n',nb,pb) + nanb] 
n,n' 

(15) 

where 

f(n,na,Pa) ==(n - na cosh(Pa »/sinh(pa), 

F(n,n',la,lb,le,ld,L)== L [2(JI(JI + 1) +J2(J2+ 1)-L(L+ 1)]-1/2 
J,>J, 

{
~(n - 1) 

X (2JI + I )(2J2 + 1) !(n - 1) 

la 

etc. for the indices b, c, d. 

In the derivation of Eq. (15) use has been made of a 
three-term recursion relation satisfied by the SU ( 1,1 ) repre
sentation functions JO 

28~,,1' (p)f(J-t,J-t',/3) 

= [( r - J-t' + 1)( - J-t' - r)] 1/28~, _ 1,1' (13) 

+ [( r + J-t' + 1 )(J-t' - r)] 1/28~, + 1,1' (13)· 

The phase convention implicit in this relation is compatible 
with the one implicit in Eq. (13). 

x 
O. 24 '------..~~___'____~~-----'--~~~L_.o._~ 

0.00 0.05 0.10 O. 15 

FIG, I. The direct matrix element [Eqs. (15) and (16) I as a function of 
X = 1 - tanh ([3). The straight line goes through the two points with the 
largest [3 values (see text). The asterisk corresponds to the exact Coulombic 
value. 
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!(n' - 1) 

!(n' - 1) 

Ib 

!(n'-I) 

!(n'-I) 

Id 

Numerical applications have been made for two matrix 
elements XL (p,a,b,c,d) corresponding to the lowest hydro
genic configurations with L = 1: 

na = ne = 1, la = Ie = 0 nb = nd = 2, Ib = Id = 1, 
(16) 

na = nd = 1, la = Id = 0, nb = ne = 2, Ib = Ie = 1. 
(17) 

The first matrix element will be called direct and the second 
will be called exchange. It should be noted that the number 
of values for n, n' which must be taken effectively into ac
count in Eq. (15) increases very rapidly withp. The reason 

FIG. 2. Same as in Fig. I, but for the exchange matrix element [Eqs. (15) 
and (17) I (see text). 
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is that the classical domain for SU ( 1,1) representation func
tions 8 [see Eq. (14)] increases exponentially with f3.10 In 
practical calculations the convergence with respect to the 
summation over n, n' has been tested by using the unitarity 
condition 

00 

L 18~"p (f3) 12 = 1. 
p' ~ - r 

The exact Coulombic values deduced from Eq. (11) and 
Ref. 6 are 0.2427984 ... and 0.01707057 ... , respectively. 
For f3 = 2 one obtains 0.2500, 0.0179, respectively. It is 
more instructive to consider the f3 dependence. The above 
direct and exchange matrix elements [Eqs. (15)-(17)] 
have been reported as a function of X = 1 - tanh(f3) in 
Figs. 1 and 2, respectively. It is seen in Fig. 1 that an almost 
linear dependence is rapidly obtained as X decreases. The 
straight line in Fig. 1 goes through the two points of smallest 
X values corresponding tof3 = 2 and 1.9. A linear extrapola
tion yields the value 0.2428. It is seen in Fig. 2 that the f3 
dependence is not so simple for the exchange case. A linear 
extrapolation from the two points corresponding to the 
greatest values of f3 (f3 = 3,2.8) yields the value 0.0171. A 
graphical or more sophisticated extrapolation procedure 
would further improve the agreement. It should be noted 
that an accurate calculation for f3 = 3 becomes difficult and 
time consuming since n values up to 150 have been involved. 
As used here the above method is certainly not the best for 
computing the matrix elements defined by Eq. (11): The 
above calculations only illustrate the behavior with respect 
to f3. Numerical studies corresponding to the case of finite f3 
values may be helpful as a model for three-body problems; 
however, they become difficult as f3 increases. 
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IV. CONCLUSION 

The interest of the present formulation is mainly that it 
provides a continuous set of potentials V(f3) which can be 
expanded in terms of properly normalizable states [Eq. 
( 10) ]. If restricted to subspaces of L =1= 0, this set converges 
toward the Coulomb potential as f3 goes to infinity. These 
potentials can be expressed in terms of 0 ( 4,2) X 0 ( 4,2) gen
erators corresponding to the noninvariance algebra of two 
noninteracting electrons in the field of the same positive 
charge. This provides a new starting point for a better under
standing of approximate symmetries in atomic structures. It 
should be of particular interest for the study of diexcited 
states of two-electron atomic systems. 
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Gravitational analogs of the Aharonov-Bohm effect 
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A quantum scalar particle is considered in the following background gravitational fields due to 
(a) a tubular matter source with axial interior magnetic field and vanishing exterior magnetic 
field; (b) slowly moving mass currents (weak approximation); and (c) a spinning cosmic 
string. It is shown that in the flat space-time around these sources, the energy spectrum and 
wave function of the particle depend on the amount of matter and magnetic field (tubular 
matter source case), on the velocity of the moving mass currents, and on the angular 
momentum in the spinning cosmic string case. These represent gravitational analogs of the 
Aharonov-Bohm effect in electrodynamics and are due to global (topological) features of the 
background space-times under consideration. 

I. INTRODUCTION 

In classical electromagnetism, a charged particle is in
fluenced only by the electric and magnetic fields at the loca
tion of the particle. At the quantum level the behavior of a 
charged particle is modified by the action of an external mag
netic field 1 confined to a region from which the charged par
ticle is excluded. This nonlocal (global) phenomenon of the 
enclosed magnetic flux on the charged particle is the well
known Aharonov-Bohm effect,l which can be understood 
as a manifestation of gauge theories. As a consequence ofthis 
phenomenon the field strength underdescribes electromag
netism in situations where global aspects (nontrivial topol
ogy) are present, and an intrinsic and complete description 
of electrodynamics in a space-time region is given2 only in 
terms of a nonintegrable phase factor 

evaluated over all trajectories lying in a space-time region of 
nontrivial topology accessible to the quantum system. So, 
there is a linking between the description of the theory in 
terms of the phase factor and the topological feature of the 
background space-time. 

In a metric theory of gravitation, a gravitational field is 
frequently related to a nonvanishing Riemann curvature 
tensor. The gravitational analog of the well-known electro
magnetic Aharonov-Bohm effect is the following: particles 
constrained to move in a region where the Riemann curva
ture tensor vanishes may exhibit a gravitational effect arising 
from a region of nonzero curvature from which they are 
excluded, or, in a more general sense, particles constrained 
to move in a region where the Riemann curvature does not 
vanish but does not depend on certain parameters such as 
velocity (in the example of a weak gravitational field arising 
from moving mass currents) may exhibit a gravitational ef
fect associated with this parameter. In the case of bound 
states of a quantum system interacting with a gravitational 

aj Pennanent address: Departamento de Fisica, Centro de Ciencias Exatas e 
da Natureza, Universidade Federal da Parafba, Cidade Universitilria, 
58000 Joao Pessoa, Pb-Brazil. 

field the analog of the Aharonov-Bohm effect is the follow
ing: the energy spectrum of a quantum particle living in a 
region where the Riemann curvature tensor vanishes suffers 
an alteration that arises from the region of nonzero curva
ture from which it is excluded, or the energy spectrum as 
well as the wave function can depend on a parameter that 
does not contribute to the curvature in the region where the 
particle lives. 

Effects analogous to the electromagnetic Aharonov
Bohm exist in classical theories like the Sagnac effect in gen
eral relativity3 which consists of a phase shift between two 
beams of light traversing in opposite directions the same 
path around a rotating mass distribution. In the gravitation
al case numerous analogies at the classical level have been 
discussed,4 as well in the case of gravitational interaction on 
a quantum mechanical system. 5 

In this paper we study the influence of external gravita
tional fields on the bound states of a quantum scalar particle. 
We consider the influence of the external gravitational field 
due to a tubular matter source with an axial interior magnet
ic field and vanishing exterior magnetic field corresponding 
to a particular model given by Safko and Witten,6 which is a 
solution of the combined Einstein-Maxwell field with cylin
drical symmetry. Also, we will consider the gravitational 
field associated with slowly moving mass currents 7 and to a 
spinning cosmic string.8

•
9 

All of the effects presented in this paper are oftopologi
cal origin; therefore we can use the phase factor mentioned 
before, with an appropriate connection, in order to under
stand these effects. In the cases under consideration, because 
of the nontrivial topology of the underlying space-time man
ifolds, which introduces a discontinuity in the connection, it 
is not necessarily true that the phase factors corresponding 
to a curve encircling the sources, in the different cases, are 
equal to the identity. 

In the Safko-Witten model6 the space-time is locally flat 
and the Riemann curvature tensor vanishes everywhere out
side the tube of matter, but we have a gravitational effect on 
the particle that lives in this flat region which comes from the 
region where the curvature does not vanish. 

In the moving mass current case there is no influence of 
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the velocity on the Riemann curvature tensor in the weak 
field approximation, but we have a gravitational effect asso
ciated with the velocity of matter on a particle moving out
side the tube of matter. The space-time surrounding the spin
ning cosmic string is locally flat everywhere; it is conical 
with a twist in the time direction. In this case there is a de
pendence of the energy and of the wave function on the angu
lar momentum, as well as on the mass density of the string. 

For moving mass currents the gravitational effect is tak
en in the weak field approximation and for the spinning cos
mic string when J2 -0. It is interesting to observe that in all 
the cases a local influence of the space-time curvatures is 
absent, and all the effects come out from global (topologi
cal) properties of the space-times associated with the sources 
under consideration. So, the attributes of the source-mass, 
angular momentum, etc.-are coded in the global properties 
of the locally flat variables. 

Let us consider a scalar quantum particle imbedded in a 
classical background gravitational field. Its behavior is de
scribed by the covariant Klein-Gordon equation 

[(l/~ -g)al'(~ -gg"vav ) +M2]¢=0, (1.1) 

where M is the mass of the particle and fz = c = 1 units are 
chosen. All space-times that will be considered here are time 
independent, so the time dependence of the wave function 
that solves Eq. (1.1) may be separated as e - iE' and one is 
led to a stationary problem at fixed energy E. Moreover, 
rotational invariance and invariance along the z axis of the 
metrics allow us to separate the ffJ and z dependences. In view 
of these we choose the solutions ofEq. (1.1), ¢(t,P,ffJ,z), in 
the form 

¢(t,P,ffJ,z) = exp ( - iEt + i/ffJ + ikz)R (p), (1.2) 

where E, I, and k are constants. 

II. SCALAR PARTICLE IN THE GRAVITATIONAL FIELD 
OF A TUBULAR MATTER SOURCE WITH INTERIOR 
AXIAL MAGNETIC FIELD 

We will consider a solution of the combined Einstein
Maxwell field with cylindrical symmetry, corresponding to a 
tubular matter source with axial interior magnetic field and 
vanishing exterior magnetic field.6 The exterior space-time 
corresponding to this configuration of fields is locally flat 
with nontrivial topology. It is conical with deficit angle 
21Te - (3 , where /3 is a quantity related to the interior magnet
ic field and the mass of the tube. The line element corre
sponding to this case is given by6 

ds2 = e2(3 (dt 2 _ dp2) _ p2 dffJ 2 - dr, (2.1) 

where 

and depends on the intensity of the interior magnetic field 
through .;vi and on the mass. The quantities PI and P2 are 
the interior and exterior radius of the tube of matter and r is 
an arbitrary constant. 

It is easy to see, by using an appropriate changing of 
variables, that the space-time given by metric (2.1) is every-
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where locally flat. The cross section z = const is topological
ly equivalent to a cone. 

In the space-time corresponding to a tubular matter 
source with an axial interior magnetic field, the Klein-Gor
don equation [Eq. (1.1)] takes the form 

{a 
2 1 a a 1 2(3 
t-- p(p P)--2 e 

p p 
x [a~ + (a; _M2)p2]}¢=0. (2.2) 

Using the ansatz given by Eq. (1.2), Eq. (2.2) reduces to 

{p ap (p ap ) 

+ [E 2 _ e2(3 (k 2 + M2) ]p2 _ ee2(3}R(p) = O. (2.3) 
Equation (2.3) is a Bessel differential equation with the 

general solution given by 

Rvk (p) = C~l)Jlvl (Ap) + C~i)Nlvl (Ap), (2.4) 

whereA 2 = E2 _ e2(3 (k 2 + M 2),v = 1ef3 ,C ~l)andC~i) are 
normalization constants, and J I vi (Ap) and N I vi (Ap) are 
Bessel functions ofthe first and second kind, respectively. 

We assume that the scalar quantum particle is restricted 
to move in a region outside the tubular matter source bound
ed by the cylindrical surfaces p = a and p = b, where 
b> a >P2 (external radius of the tube). The boundary condi
tions 

R(a) = R(b) = 0 (2.5) 

determine the energy levels of the particle in the stationary 
state between the cylindrical surfaces p = a and p = b. This 
condition yields the following equation for the energy spec
trum of the particle: 

J lvl (Aa)N lvl (Ab) - J lvl (Ab)N lvl (Aa) = O. (2.6) 

Using Hankel's asymptotic expansion 10 when v is fixed, 
Aa~ 1, and Ab~ 1, we get 

(2.7) 

(2.8) 

and similar expressions for J lvl (Ab) and N lvl (Ab) with b 
interchanged for a. Putting Eqs. (2.7) and (2.8) in the con
dition given by Eq. (2.6), we get 

A2_(n1T/(b_a»2+ (4f2e2(3-1)/4ab, (2.9) 

where we used the fact that v = 1ef3. Remembering that 
..1 2 = E2 _ e2{3(k 2 + M2), we get from Eq. (2.9) that 

E=ef3 
12 [4ab(n1T)2 - (b _ a)2]e- 2(3 

M 2+k 2+_+ , 
ab 4ab(b - a)2 

(2.10) 

where we have taken only the positive sign. 
From Eq. (2.10) we see that when b -+ a (particle mov

ing on the cylindrical surface), E -+ 00, so that to get the limit 
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E -+ const, we have to introduce an attractive potential in the 
cylindrical hollow (a <P < b) to compensate for the increas
ing of the energy of the radial modes in this limit. Doing this 
we get 

E=ePE(O), (2.11) 

where 

E(O) = ~M2 + k 2 + Fla2 • 

From Eq. (2.11) we see that the energy spectrum de
pendson the factoreP (as well as the wave function) relative 
to the Minkowski case. But outside the tubular matter 
source the space-time is locally flat; the Riemann curvature 
tensor vanishes everywhere. So, the fact that this space-time 
is locally flat but not globally (it is conical with deficit angle 
2rre - (3) deforms the energy spectrum proportionally to ep, 
which is the same factor that affects the height of the centri
fugal barrier. This is a gravitational analog of the electro
magnetic bound state Aharonov-Bohm effect in which the 
energy eigenvalues depend upon the magnetic flux inside the 
solenoid, which is inaccessible to the charged particle. 

The previous result can be extended to the cosmic string 
solution II as well as to the poine particle solution in 
(2 + 1 )-dimensional gravity. It is sufficient to identify for
mally e - {3 with a = 1 - 4J-l (where J-l is the mass density of 
the string) and make an appropriate changing of variables to 
put the metric corresponding to the previous case in the cos
mic string form. So, doing this we get for the energy of the 
scalar particle moving on a cylindrical surface P = a, in the 
space-time of a cosmic string, the expression 

(2.12) 

which gives us the dependence of the energy spectrum on 
a = 1 - 4J-l. 

If one restricts to the cross section z = const of the cos
mic string solution we get the point particle solution. For 
this case the energy spectrum is given by 

e 
E= M2+~, 

aa 

where now a = 1 - 4m, where m is the mass of the particle. 
The particle is restricted to moves on the circle P = a. 

III. SCALAR PARTICLE IN THE GRAVITATIONAL FIELD 
OF MOVING MASS CURRENTS 

As a source of gravitational field, we consider a cylindri
cal distribution of matter with uniform density along the z 
axis, which moves slowly with velocity V(V2_0) in the z 
direction. The z extension of matter is taken to be much 
larger than the other lengths of the distribution. The line 
element corresponding to this distribution of matter is given, 
in weak field approximation, by 7 

ds2 = (1 - <I»dt 2 - (1 + <I>)(dp2 + p2 drp 2 + dr) 

+ 4v<I>dtdz, (3.1) 

where <I> represents the Newtonian potential produced by 
the distribution of matter. Since the gravitational field is suf
ficiently weak, we can write the metric tensor corresponding 
to the line element given by Eq. (3.1) as 
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g,.,v = 'TJ,.,v + h,.,v, (3.2) 

where'TJ,.,v = 'TJ'"'v = diag( 1, - 1, - 1, - 1) and h,.,v is given 
by the obvious identifications. In this case the Riemann ten
sor is 

R ap{3v = !(hav,p{3 + h,.,{3,av - h,.,v,a{3 - ha{3,,.,v)' (3.3) 

We can see from Eq. (3.3) that the curvature outside the 
distribution of matter does not depend on its velocity in the 
considered linear approximation. This means that for the 
weak gravitational field associated with slowly moving mass 
current, the local effects of curvature associated with the 
velocity of the distribution of matter are absent outside it. 

Assume that the massive scalar quantum particle is re
stricted to move in a region outside the distribution of matter 
and bounded by the cylindrical surfaces P = PI and P = P2 
(P2 >PI > radius of the distribution of matter). 

In the space-time corresponding to moving mass cur
rents, the Klein-Gordon equation [Eq. (1.1)] takes the 
form 

[(1 +2<1»J~- (llp)Jp(pJp ) - (l/p2)J~ 

-4v<I>J,Jz -J; +M2(1 + <1>)]",=0. (3.4) 

Using ",(t,p,rp,z) in the form given by Eq. (1.2), Eq. 
(3.4) reads 

{p Jp (p Jp ) + [(1 + 2<1»E 2 + 4v<l>kE - k 2 

_M2(1 + <I»]p2_12}R(p) =0. (3.5) 

The boundary conditions R(PI) = R(P2) = 0 deter
mine the energy levels of the particles in the stationary states. 
As we can see from Eq. (3.5) these energy levels depend on 
the mass distribution and its velocity. To obtain the energy 
spectrum explicitly we will consider a narrow hollow for 
which PI and P2 are close together so that the Newtonian 
potential can be considered as constant and equal to <1>1 
(Newtonian potential over the cylindrical surface P = PI)' 
So, in this case Eq. (3.5) turns to a Bessel differential equa
tion with the general solution given by 

Rlk (p) = Cil)JI/I (Ap) + Cif)NI/I (Ap), (3.6) 

where Cil) and Cif) are normalization constants, Jill (Ap) 
and NI/I (Ap) are Bessel functions of the first and. second 
kind, respectively, and 

A2= (1 +2<1>I)E2+4v<l>IEk~M2(l +<1>1) _k 2. 

The boundary conditions R (PI) = R (P2) = 0 yield the fol
lowing equation for the energy spectrum of the particle: 

Jill (API)NI/I (AP2) - Jill (Ap2)NI/I (API) = O. (3.7) 

To get the energy spectrum we consider API> 1 and 
AP2> 1, and use the asymptotic expressions for the Bessel 
functions. From Hankel's asymptotic expansion 10 we obtain 
in the linear approximation 

Elk = E if) - E if) <I> I + M2<1>I/2E if) - 2v<l>lk, (3.8) 

where 

E (O)
Ik -

M2 + k 2 + ~ + 4pIP2(nrr)2 - (P2 ~PI)2 , 
PIP2 4p1P2(P2 - PI) 

with n an integer that appears in the expression for A and 
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comes out from Hankel's asymptotic expansion and Eq. 
(3.7). 

As we can see from the expression for E }2) in the limit
ing case P I = P2 the energy of the radial modes becomes infi
nitely large and the considered particle turns to a relativistic 
quantum one restricted to move on the cylindrical surface 
P = PI. So, we can do our calculations in this case but it is 
necessary to introduce into the cylindrical hollow a potential 
that compensates for the increase of the energy of the radial 
modes as P2 tends to PI. By doing this we obtain the same 
expression for Elk [Eq. (3.8)] where now 

E }2) = ~ M 2 + k 2 + 12/ pi . 

In Eq. (3.8) the last term gives the influence of the ve
locity of the matter distribution on the energy spectrum of 
the particle. Observe the fact that the velocity of the moving 
mass deforms the energy spectrum in relation to the static 
case. Through the region of motion of the scalar particle, in 
the linear approximation, the Riemann curvature tensor 
does not depend on the velocity of the matter (in fact, it 
vanishes), but the energy of the particle as well as its wave 
function are influenced by this velocity. This alteration of 
the energy spectrum by a parameter (velocity) that does not 
affect the local curvature (in linear approximation) of the 
region of motion of the particle, represents a gravitational 
analog of the Aharonov-Bohm effect for bounds states in 
electrodynamics. 

IV. SCALAR PARTICLE IN THE GRAVITATIONAL FIELD 
OF A SPINNING COSMIC STRING 

The metric for a spinning cosmic string is a simple gen
eralizationS of the spinning particle solution found by Oeser 
et al.9 In ordinary cylindrical coordinates (0<'P<21T) it 
reads 

dr = (dt + 4J d'P)2 - dp2 - a2p2 d'P 2 - dz'2, (4.1) 

where a = 1 - 4ft, ft is the mass per unit length, J is the 
angular momentum of the string, and G is chosen equal to 1. 

The Klein-Gordon equation in the field of a spinning 
cosmic string reads 

[a:- ~ ap(pap) 

__ 1_ (4J a _ a )2 _ a 2 + M 2].I' = o. (4.2) 22 t rp z If' 
ap 

With tf;(t,p,'P,z) given in the form ofEq. (1.2), we get, from 
Eq. (4.2), 

[pap(pap) + (E2_k 2 _M2)p2 

_ ( 4J~ + / Y]R(P) = o. (4.3) 

This is a Bessel equation whose solution is given by 

Rlk (p) = C}~)JI/+4JEl/a (Ap) + C}l)NI/+4JEl/a (Ap), 
(4.4) 

where A 2 = E2 _ k 2 _ M2. 
Assuming that the particle is restricted to move between 

the cylindrical surfaces P = PI and P = P2' the boundary 
conditions R(PI) = R(P2) = 0 yield 
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JI/+4JEl/a (API)NI/+4JEl/a (AP2) 

- JI/+4JEl/a (AP2)NI/+4JEl/a (API) = O. (4.5) 

As in the previous cases we consider Ap I ~ 1, AP2 ~ 1, 
and use Hankel's asymptotic expansion II for the Bessel func
tions, obtaining in the case J 2 - 0 and for a narrow hollow 

Elk = 4JI / P IfJp2 + E }2) 

where 

E}2) 

(4.6) 

From the expression for E }2) we can see that it tends to 
infinity whenp2 tends tOPI. So in the casepi = P2 we have a 
relativistic quantum rotator. To obtain a finite result for the 
energy we have to add a compensating term (potential) 
when we consider a particle restricted to move on the cylin
drical surface P = PI. With this procedure we obtain the 
expression given by Eq. (4.6), where 

E}2) = ~M2 + k 2 + 12/pia2 

which corresponds to the energy of the relativistic motion of 
a particle of mass M on the cylindrical surface P = PI. 

From Eq. (4.6) we see that the energy levels depend on 
the angular momentum of the string, which is a quantity 
localized along the string. The space-time of the spinning 
string is flat outside it. This is like the Aharonov-Bohm ef
fect in electrodynamics. 

Ifwe take J = 0 in the above results we obtain the energy 
spectrum corresponding to the cosmic string I I case of Sec. 
II, as well as the results for the point particle solution,9 if, in 
addition to this, we take the cross section z = const. 

A similar result can be obtained with the infinite sole
noid potential if we translate the electromagnetic situation 
into a gravitational one. Thus we may make the analogy in 
weak field approximation e+-+m and A,.,+-+h,., = (hoi>!hoo ). 
So, using this translation, the space-time corresponding to 
the potential A = (O,O,<I>/p) is given by 

ds2 = dt 2 - dp2 - p2 d'P 2 - dz'2 + 2<1> d'P dt, (4.7) 

where <I> = magnetic flux/(21T/e). 

Equation (4.7) is formally the same as Eq. (4.1) in the 
limit J 2 _ 0 and for a = 1. Therefore, proceeding as in the 
spinning cosmic string case we get the energy levels of a 
scalar quantum particle restricted to move on the cylindrical 
surface P =PI' in the space-time given by Eq. (4.7). The 
result is 

Elk =4<1>I/pi+E}2>' (4.8) 

where 

Ei2) = ~M2 + k 2 + /2/pi. 

From Eq. (4.8) we see that the energy levels depend on the 
magnetic flux, but the particle moves in a region inaccessible 
to this flux. In fact, it moves in a region where the Riemann 
curvature tensor is zero everywhere, in the weak approxima
tion, but its energy levels are not the same as the ones in 
Minkowski space-time. They are affected by the inaccessible 
magnetic flux. This is the gravitational version of the Ahar-
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onov-Bohm effect in electrodynamics for the Aharonov
Bohm potential. 

V. FINAL REMARKS 

The effect of local influence of the gravitational field 
that arises from a tubular matter source with an interior 
magnetic field on the energy levels of a particle as well as on 
the wave function is absent. The same occurs in the case of 
moving mass currents in relation to the velocity. The veloc
ity deforms the energy spectrum only globally. Analogously 
we can say the same in relation to the influence of the angular 
momentum in the case of a spinning cosmic string. In fact, 
these dependences come out because the allowed values of 
the height of the centrifugal barrier depend on e - P, v<l>, and 
J in the cases of a tubular matter source with interior mag
netic field, moving mass currents, and spinning cosmic 
string, respectively. 

The fact that the attributes of the sources-like mass, 
angular momentum, etc.-are coded in the global properties 
of the locally flat variables evidenciate the importance of the 
topological structure of the space-time in the description of 
the physics of a given system. A tubular matter source with 
interior axial magnetic field, a long cylinder of moving mass 
currents, in the weak field approximation, and a spinning 
cosmic string produce an effect analogous to the one pro
duced by an infinite solenoid with magnetic flux inaccessible 
to the particle, on a charged particle. 

Therefore all the effects here discussed represent gravi
tational analogs of the Aharonov-Bohm effect for bound 
states in electrodynamics. 

We can understand all these effects in terms of the phase 
factors, as emphasized before, associated with a given con
nection corresponding to these space-times. In the Safko
Witten model6 we can see the effect as a Yang-Mill-type one 
due to the conical defect 21Te - P, which induces a discontin
uity in the connection. The situation is similar for scalar 
particles in the gravitational field due to moving mass cur
rents. In this case the topological effect can be understood 
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incorporating the velocity effects within the connection. The 
same analysis can be applied to the case of a scalar particle in 
the space-time of a spinning cosmic string and through the 
analogy e-m andAIl-hll = (hoi>!hoo ) to the case of a sca
lar particle in the space-time corresponding to an infinite 
solenoid potential. 
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This paper deals with the scattering theory for the one-dimensional discrete Schrodinger 
equation with a random potential having large support. The main result is that a fluctuation 
deep within the scattering region has a very small effect on the scattering of wave packets; the 
region of random potential is effectively opaque. 

I. INTRODUCTION 

This paper deals with the scattering theory for the one
dimensional discrete Schrodinger equation with a random 
potential having support in an interval oflength L. For each 
frequency k there are associated reflection and transmission 
coefficients rL (k) andtL (k). It is known 1-4 that when Lis 
large, then 1 t L (k) 12 is close to zero with high probability. A 
wave'packet is made from a superposition of waves of differ
ent frequencies. It is shown that the transmission of such a 
wave packet is also close to zero. Furthermore, it is shown 
that the phase of the reflected wave, which is determined by 
rL (k), is not affected by fluctuations deep within the medi
um. Thus for such problems the medium is effectively opa
que. 

It is important to note that the extension from fixed 
frequency to wave packets involves some subtlety. The rea
son is that for each fixed frequency only a very special solu
tion occurring with low probability will penetrate the ran
dom medium. However, as the frequency varies these 
solutions will be encountered at certain special frequencies. 
Thus if the wave packet were to be concentrated near these 
frequencies, the wave could propagate a long way in the me
dium. However, in the case of a random medium, a wave 
packet that is chosen independent of the medium will have a 
low probability of being concentrated at these frequencies. 

It is known from the work of Furstenberg5 that the Lya
punov exponent measuring the growth of solutions of ran
dom initial value problems is strictly positive. By using a 
result from the theory of moment Lyapunov exponents6 it is 
possible to obtain large deviation results on the growth of the 
solutions. These are used to obtain the bounds on the trans
mission of wave packets. 

A more detailed analysis of the relation between two 
different solutions gives the results on insensitivity of the 
reflected wave to fluctuations in the interior. This depends 
on the remarkable fact4 that two solutions with the same 
random function, but with different initial conditions be
comes asymptotically proportional (in some random direc
tion). The reason for this is that the area of the parallelo
gram spanned by the vectors is constant, so as the vectors 
grow in length they must also become parallel. 

II. SCATTERING 

This section contains a brief review of scattering theory 
for the one-dimensional discrete Schrodinger equation. Let 
h > 0 be a lattice spacing constant. (This parameter will be 

fixed in all that follows.) Write h Z for the set of integer 
multiples of this constant and h Z+ for the set of integer 
multiples ;;;.0. We shall take the Hilbert space to be the space 
of square-summable complex sequences indexed by one of 
these sets. Thusitiseither/2(Z) (two-sided case) or/ 2(Z+) 
(one-sided case). 

We consider a real function V defined on Z. (We are 
interested in the situation when V is a sample function of a 
shift-invariant random process.) Let L be an integer multi
ple of h. A function VL with bounded support is then defined, 
setting VL (x) = Vex) when 0 <x<L and VL (x) = 0 else
where. Define the forward and backward difference opera
tors D ± by 

D ± ¢(x) = [¢(x ± h) - ¢(x)]I ± h. (1) 

Then the central second-difference operator is 

D_D+¢(x) = D+D_¢(x) 

= [¢(x + h) - 2¢(x) + ¢(x - h)]lh 2. 

(2) 

The Schrodinger operator is defined by 

H¢(x) = - D_D+¢(x) + VL (x)¢(x), (3) 

where the second term is multiplication by the function VL • 

In the one-sided case the functions in the domain of Hare 
restricted to vanish at the origin. 

The Schrodinger wave equation is 

i duCt) = Hu(t). 
dt 

(4) 

In scattering theory we look for solutions that are far from 
the support of VL at large times. The way to find such solu
tions is to fix k with - 1T < kh < 1T and look for a solution for 

(5) 

satisfying scattering boundary conditions. When 0 < kh < 1T 

these solutions are 

tPk (x) = e - ikx + r L (k)eikx 

for x;;;.L and 

tPdx) = tL(k)e- ikx 

(6) 

(7) 

for x<O. [In the half-line case we replace this by tPk (0) = 0, 
which in effect says that tL (k) = 0.] Such a solution can 
always be found by starting with the solution at 0, integrat
ing forward, and then normalizing. It is easy to see that we 
musthaveE(k) = (2 - 2 cos(kh»)!h 2 = 4 sin2 (kh /2)/h 2. 
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The rL (k) is the reflection coefficient and tL (k) is the trans
mission coefficient. These coefficients satisfy 

IrL (k) 12 + ItL (k) 12 = 1, (8) 

which means, as we shall see, that the incoming wave is ei
ther reflected or transmitted. 

Now choose a complex function/and a closed subinter
val Iof (O,11"lh). 

Then 

u(t,x) = r e - iE(k), rfJdx)/(k) dk . 
J 211" 

(9) 

is the desired solution. 
Standard scattering theory [for example, the method of 

stationary phase] shows that solution (9) is asymptotically 
of the form 

u (t,x) - f(t,x) 

= r e - iE(k)'e - ikx/(k) dk 
J 211" 

(10) 

as t -+ - 00. Thus solution (9) represents a wave incoming 
from the right. Furthermore, solution (9) also satisfies 

u(t,x) -fR (t,x) + fT(t,X) (11) 

as t-+ 00. Here 

(12) 

and 

fT(t,X) = r e-iE(k)'e-ikxtdk)/(k) dk . (13) 
JI 211" 

Equations (12) and (13) represent, respectively, a reflected 
wave going out on the right and a transmitted wave going out 
on the left. Furthermore, 

(14) 

where the norm is the [2 norm defined in the usual way; for 
example, 

Ilf(t) 112 = L If(t,xWh = r If(k) 12 dk . (15) J 211" 

Consider an arbitrary solution tPk of the eigenvalue 
equation 

HtPk = E(k)tPk' 

We define the current as 

(16) 

J(x) = (1/2i)(~k (x)D+tPdx) - D+~k (X)tPk (x». 
(17) 

Since tPk is a solution of the eigenvalue equation this current 
is constant. If we evaluate the current for the eigenfunction 
rfJk satisfying the scattering boundary conditions (6) and 
(7) we see that 

[sin(kh )Ih ]( 1 - IrL (k) 12) = [sin(kh )Ih ] ItL (k) 1
2

, 

(18) 

that is, the reflection and transmission parts add up to 1 at 
each fixed frequency. 

The eigenvalue equation with the function V may be 
written in matrix form as 
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(
tPk (X») ( 1 
¢dx) = h(V(x) - E(k» 

(19) 

where the second component;P is the forward difference of tP. 
Note that all the matrices have determinant 1. We may re
write (19) as 

ydx) = M(x)ydx - h), (20) 

where the M(x) have determinant 1. We use Eq. (20) for 
x = h,2h,3h, ... ,L to obtain the final y(L) from the initial 
yeO). 

III. L YAPUNOV EXPONENTS 

We assume that the real function Vis a sample path of a 
stationary ergodic random process. The random variable 
Vex) should have some finite moment. As before, the func
tion VL in the Schrodinger equation is equal to V in the 
interval (O,L] and to zero elsewhere. 

It is known that if y k (0) is a vector that is independent 
of the random function V, then 

lim (1lx) E loge Ilydx) II) = Ak • (21 ) 
x_ 00 

This limit is called the Lyapunov exponent. Furthermore, it 
is known 7-9 that if the V processs is nondeterministic, then 
the exponent A k > O. On the other hand, it is not particularly 
easy to compute the exponent. \0 

From now on we make the assumption that the V(x) are 
independent. It is known4 that in this situation Ak is contin
uous in k, so we may assume that it is bounded away from 
zero for k in the interval 1. 

There is a closely related quantity involving moments. 
For p real, define the moment Lyapunov exponent gk (p) by 

(22) 
x_ 00 

This is a con vex function of p and g" (0) = A k (Refs. 11 and 
12). 

One consequence of A k > 0 and g" (0) = A k is that there 
is an interval of p < 0 such that g k (p) < O. Take a p in this 
interval. We change notation to q = - p and 
0< a < - gk (p). Since our main interest is scattering and 
not Lyapunov exponents, we merely summarize the facts we 
need in the form of a hypothesis on the moment Lyapunov 
exponent. 

Hypothesis 1: There exist q > 0 and a> 0 such that for all 
k in I and for all initial conditions y k (0) independent of the 
potential the inequality 

E«lly k (0) II Illy k (x) II)Q)';;;e - ax (23) 

is satisfied for sufficiently large x. 
Hypothesis 1 has been verified in the case at hand of 

independent random variables.6 It should be emphasized 
that Hypothesis 1 is about expectations for the solutions of 
the random differential equation for a fixed value of the pa
rameter k. Our main purpose is to show that this has implica
tions for the scattering problem, which involves the simulta
neous consideration of solutions of all the equations with k 
ranging over an interval. 
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It follows from Hypothesis 1 and Chebyshev's inequali
ty that 

Pr(IIYk (0) 1I/IIYk (x) II;"e -pX),e - (a - qp)X, (24) 

which is exponentially decreasing for sufficiently small 
(3)0. 

IV. TRANSMISSION 

In this section we are interested in the whole line case in 
which a wave arrives from the right and is transmitted to the 
left. We shall see that if there is a large interval of random 
medium, then the transmission is small. 

Take Yk (x) to be the solution corresponding to ¢k (x) 

with¢dx) =e- ikx forx,O.ThenIIYdO)1I =~1 +E(k) . 
Also, the initial condition at the origin is independent of the 
potential and rh (x) = tL (k)¢dx). It is easy to bound 
IlydL) II in terms of a multiple of 1IItL (k) I and obtain 

I tL (k) 12,4 [Ily k (0) 112 IllY k (L) 11 2]. (25) 

It is not necessarily true that the expectation of the rhs of 
inequality (25) is small for large L. However, if we note that 
It L (k W, 1, this bound and the probability estimate above 
give 

E( Itdk ) 12) ,e( - a - qP>L + 4e - 2pL,5e -PL (26) 

if we take (3 = al(2 + q). 
We see from Fubini's theorem that for normalized! with 

support in the interval I we have the following theorem. 
Theorem 1: Consider scattering through an interval of 

random medium oflength L. Under the moment hypothesis 
1 the expected portion of the wave that is transmitted is ex
ponentially small: 

E(llfT(t) 112) = E(iltL(kWlf(kW~:)'5e-pL. (27) 

From Chebyshev's inequality we conclude that the transmis
sion of a wave packet is improbable. One formulation is the 
following corollary. 

Corollary 1: Under the moment hypothesis 1 the proba
bility that a significant portion of the wave is transmitted is 
small: 

Pr( IlfT (I) 112;..e - yL) 

= pr(iltL (k) 121 !(k) 12 ~:;..e - yL ),5e - (13- y)L. 

(28) 

V. REFLECTION 

In this section we consider either the two-sided case or 
the one-sided case and are interested in the reflection of a 
wave coming in from the right. The goal is to show that the 
reflection is not significantly affected by the potential deep 
within the interval of random medium. 

We want to study the reflection from random media 
defined by two random potentials VL and VL . We consider 
an additional parameter L ' with 0< L ' ,L and require that 
the two potentials coincide for L - L ' < x,L. 

We may construct such potentials as follows. Let Vbe 
another process with the same distribution as V. Define 
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VL(x) = V(x) for O<x,L-L' and Vdx) = V(x) for 
L - L' <x'L. Set VL (x) = ° elsewhere. Then VL has the 
support (O,L] and is independent of VL on (O,L - L'] and 
equal to VL on (L - L ',L]. 

We want to compare solutions of the two equations in
volving VL and VL • We start with initial conditions at x = ° 
that are independent of the potential and obtain the solutions 

¢k (x) = cdk)(e - ikx + rL (k)eikx) (29) 

and 

(30) 

for x;..L. 
Now we want to compare the two solutions. Define the 

relative current 

J(x) = (1I2i)(~dx)D+¢k(X) -D+~dx)¢k(X». (31) 

Then 

D_J(x) = (1I2i)(Vdx) - Vdx»~dx)¢k (x). (32) 

It follows that J(L) = J(L - L '). We may also compute 
directly that 

J(L) = - [sin(kh)/h ]cL (k)cL (k)(1 - r L (k)rL (k». 
(33) 

Consider again the solutions Yk (x) and Yk (x) whose 
first components are ¢k (x) and ¢k (x). Then 

2IJ(x) 1,IIYk (x)IIIIYk (x)lI. (34) 

Therefore, 

1
1 - r (k)r (k) 12 _ h 21j(L - L') 12 

L L - sin2(kh) ICL (k) 12lcd k ) 12 

h 211Yk (L - L') 11 211Yk (L - L') 112 
,--~~~--~~~------~ 

4 sin2(kh) ICL (k) 121cL (k) 12 
(35) 

Since we may bound the norm of the solution Y k at L in 
terms of the coefficient CL (k), we have 

1IIcL (k) 12,4(1 + E(k»/IIYk (L) 112 (36) 

and we obtain 

1
1 - r (k)r (k) 12, 4h 2(1 + E(k»2 

L L sin2 (kh) 

IIYk (L - L') 11 211Yk (L - L') 112 
X . (37) 

IIYk (L)1I21IYk (L)1I 2 

We may regard thevaluesatx = L - L' as initial condi
tions and apply the Lyapunov exponent argument on the 
interval [L - L ' ,L]. As before, we obtain the bounds 

(38) 

and similarly for Y k' The probability of one or the other 
event is bounded by the sum of the probabilities. Thus we 
have 

pr(11 _ r (k)r (k) 12;.. 4h 2(1 + E(k»)Z e - 4pL') 
L L sin2(kh) 

,2e-(a- qP>L'. (39) 

Therefore, 

E(II - rdk)rL (kW),4e- (a-qp)L' + Ce- 4pL ', (40) 
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where C(k) =4h2(1 +E(k»/sin2(kh). Since IrL (k)I"::l, 
we can take,8 = a/ ( 4 + q) and obtain the final bound 

E(lrL (k) - IrL (k) 12rdk) 1)..::(4 + C(k»e - PL'. (41) 

In the one-sided case, I r L (k) I = 1; this is the desired 
result. [In the two-sided case we can use the previous bound 
for ItL (k) 12 to bound the expectation of IrL (k) - rL (k) I·] 

All these bounds are for probabilities conditioned on the 
behavior of the potential in the interal (O,L - L ']. However, 
the bounds do not depend on the behavior, so we obtain the 
same bounds for the unconditioned probabilities. 

For simplicity we state the theorem in the one-sided 
case. As before, we consider normalized/with support in the 
interval I (bounded away from zero). 

Theorem 2: Consider a distribution of the V(x) for 
which the moment hypothesis 1 is satisfied. Consider 
0< L '..::L and two realizations VL and VL of the random 
potential with support (O,L] which coincide on (L-L ',L]. 
Consider the two random reflection coefficients rL (k) and 
rL (k) determined by the two scattering problems. Then for 
large L ' the scattering from the two potentials is almost the 
same in the sense that 

E(llfR (t) - fR (t) 112) 

= E (ilrL (k) - rdk) 12lf(kW ~: )..::ce- PL '. (42) 

The conclusion of this theorem may be summarized by 
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saying that when,8L ' is large the actual reflected scattering 
does not significantly depend on a layer deeper than L '. 

One obtains a bound on probabilities from Chebyshev's 
inequality in the usual way. 
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It is shown that a correspondence exists between the Weyl-ordered Hamiltonian and the mid
point prescription in the discrete path integral for fermions. It is then proven that the Feynman 
rules obtained from the discrete and continuous path integral are equivalent. 

I. INTRODUCTION 

The correspondence between classical and quantum 
functions of the dynamical variables is an old problem in 
quantum theory. On one hand (the canonical one) the ques
tion arises on how to order noncommuting operators. On the 
other hand (the functional one) it is the action in the path 
integral that presents ambiguities. 1,2 

A well-known result in the bosonic case3 is that the 
Weyl-ordered form of operators is equivalent to the mid
point prescription in the path integral provided that one uses 
(b Ib ) = Sdx b *b for the scalar product. In other words, 

(x2Iexp[ - ieHwo] Ix l ) 

= JdPexp{i€[P X2 ~XI -H(P' Xl ;X2 )]}, (1) 

where Hwo is derived from the classical Hamiltonian 
H(p,x) considered as a symmetrized function of the canoni
cal operators x and p. [Equation (1), as in the others that 
follow, is valid up to the order € included.] In our language 
the properly stated Weyl ordering acts on the products of the 
operators Q; by symmetrizing them, i.e., 

1 
(Qloo'QK)WO =K'! I Q;,oo'Q;K' (2) 

• perm 

so that we should specify the canonical coordinate operators 
to be symmetrized. (An operator Weyl ordered in one coor
dinate system may not be such after a canonical transforma
tion.) 

The rhs ofEq. (1) is the infinitesimal form of the phase 
space path integral written on the time lattice, where the 
Hamiltonian H is evaluated at the midpoint. The corre
sponding finite path integral is a product of infinitesimal 
ones integrated over the intermediate coordinates; as shown 
by Sato,4 in the limit of zero lattice spacing this reproduces 
the same Feynman rules as the continuous path integral. 
Since in the last decade the path integral has been used exten
sively as a tool for quantization, it would be useful to include 
the other half of the world, the fermions, in this picture; we 
do this in what follows. 

II. A REPRESENTATION FOR FERMIONS 

Let us now consider the quantum mechanics of fer
mions. We have operators obeying anticommutation rules: 

{qu','I'v} = {iii l',iIi v} = 0; 

{'I'I',iliv} = 8J:" /.l,V = l,oo.,N. 
(3) 

In order to establish a correspondence between the canonical 
and functional forms of the propagator, let us introduce the 
eigenvectors of '1'5: 

(1/11'1'1' = 1/11'(1/11, '1'1'11/1) = ( - l) NI1/I)1/I!', (4) 

with the completeness 

(5) 

-- <-We use left arrows as in Sj(z) dz = j(z)a laz, correspond-
ing to the right derivative, and we use the transposed relation 
(right arrows) for the left derivative; when unnecessary the 
arrows will be suppressed. The relationship (5) holds only if 
each component '1'1' represents one fermionic degree offree
dom: The linear space generated by 1 and 1/JI' has dimension 
2 indeed. The ¢'s are generators of a Grassmann algebra and 

J 
(- Jf--=--7 Jf--=--7 ¢ d1/l = - d1/l 1/1 = 1, d1/l = 0 (6) 

as usual. The following formulas hold: 

(1/111/1') =8(1/1 -1/1') = (¢' _1/I)N . .. (¢' -1/1) I, (7) 

(1/I1 ilil' = a!!' (1/11, iIi!'I¢> = (_l)NI¢) a!I" (8) 

For the eigenvectors of iii we have 

ilil'l¢) = I¢)¢!', (¢liIi!, = (-l)N¢!'(¢I· (4') 
As is readily seen Eqs. (4')6 are the conjugate of the corre
sponding ones for '1'. The same is true for the remaining 
equations; for instance, 

and 

J-:=t- f- ~ d1/l 1/1 = - 1/1 d1/l = 1. 

The connection between these bases is given by 

(¢11/I) = ci,,1/;", (¢I¢) = C-1el/;"If" 

(without loss of generality, C = 1). 

(6') 

(9) 
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III. WEYL ORDERING AND THE MIDPOINT RULE 

The Weyl ordering is now defined (Q denotes'" or \Ii) 
as 

1 
(QI' . 'QK)WO =-KI I (- l)u(perm)Q;,' . 'Q;K' (10) 

• penn 

The sign of the permutation is due to the statistics. 
A useful property of the Weyl ordering is 
(QIQ2' . 'QK) wo = !(QI(Q2' . 'QK) wo 

± (Q2' . 'QK)WOQI)' (11) 
valid for fermions and bosons, with the minus sign when QI 
and (Q2' .. QK ) wo are fermions. [The proof relies on the 
fact that thanks to the symmetry ofWeyl ordering, the non
vanishing (anti) commutators cancel. ] 

Now we can prove in general that to a Weyl-ordered 
fermionic Hamiltonian corresponds the midpoint prescrip
tion in the path integral, as sketched by several authors. 7 We 
proceed by induction. 

Any Hamiltonian is a polynomial in the fermionic vari-

ables, so it is sufficient to prove the theorem for a product of 
""s and \Ii's. For H = \Ii I' .. \Ii K, which is Weyl ordered, we 
have 

(tP2Iexp( - iEH) ItPI> 

= J (tP21 (1 - iEH) 1"¢>dN"¢("¢ltPI> 

= Jexp{iE[i¢1' tPf ~ tPi - H("¢) ]}d",¢. (12) 

It is easy to recognize the exponential of the action under the 
integral. Here the theorem holds: Since the Hamiltonian de
pends only on \Ii we have no ordering ambiguities and no 
midpoint at all. 

Now let us suppose the correspondence is valid for a 
Weyl-ordered operator (A) wo corresponding to the classi
cal function A (tP,¢) and consider B = tPA; we have 

B wo == ('" A) wo = ! ( '" A wo ± A wo '" ) , (13 ) 

having used Eq. (11). Finally, 

. ( I [-iE("'Awo±Awo"')]1 ) (tP2Iexp( - IEBwo) ItPI> == tP2 exp 2 tPI 

= Jexp{iE[i¢1' tPf ~ tPi _ (tPzA(¢,tPMP) ~A(¢'tPMP)tPI)]}dN¢ 

= Jexp{iE[i¢1' tPf~tPi -B(¢,tPMP)]}d N¢, with tPMP= tPI;tP2. (14) 

Now any product of ""s and \Ii's can be generated by iter
ation of ( 13), starting from A equal to a product of \Ii's; thus 
for a general Hamiltonian H we have 

(tP2Iexp( - iEHwoltPl> 

= Jd N¢exp{iE[i¢1' tPf~tPi -H(¢,tPMP)])' (15) 

Equation (15) proves our first statement. In Sec. IV we 
show how the corresponding finite form of the discrete path 
integral gives rise to the naive Feynman rules which we can 
obtain from the more usual continuous path integral: Since 
the former is well defined we may gain more insight of the 
latter. 

IV. EQUIVALENCE BETWEEN THE MIDPOINT AND 
CONTINUOUS PATH INTEGRALS 

Let us recall a few points about the quantization of fer
mions via path integrals. 

Given a Hamiltonian H = Ho + HI' where Ho = w¢tP, 
we have, for the action integral, 

(16) 

The fundamental object is the generator of the Green's func
tions (in the following we take N = 1) 
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= exp [ - ifdt HI( .~ , ."8_)]Zo(X,X), (17) 
lOX lOX 

where 

Zo(X,X) = J DtP D¢ exp[;f dt(i¢ip - w¢tP + XtP + ¢X)]. 

(18) 

The interaction Hamiltonian defines the vertices, while the 
derivatives of Zo give the free propagators: 

- , "8 ~ I (tP(t)tP(t ) >0 = -. -_-log Zo ., . 
IOX(t) IOX(t ) X.y=O 

(19) 

Eventually this machinery generates the usual Feynman 
rules of the perturbation expansion. 

To compute the propagators we complete the square in 
Zo to obtain 

Zo(X,X) = det[:t + iw]exp [ - J dt X(:t + iW) - IX]. 

(18') 

Finally, 

= O(t - t ')exp[ - iw(t - t ')], (20) 

where 
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is the Feynman propagator. 
Now we turn our attention to the discrete formalism. On 

the time lattice, where t = to + kE, the generator of the exact 
Green's functions takes the form 

xexp{\tJi¢(k) ¢(k) - ~(k - 1) 

- H(¢(k),¢(k» + 'j(k)¢(k) 

+ ¢(k)X(k) ]}d¢(O) <¢(O) 10). (21) 

Now <Ol¢) ex: 1 and <¢IO) ex: ¢ (see Ref. 6), so that in the 
exponential we can consider ¢(O) = 0 because of the pres
ence of the last factor; also, the integral over ¢(O) is nothing 
but the normalization of the vacuum state: (010) = 1. Thus 
we have 

[ 

T ..-+ 
Zla,(i',X) = lim exp - i 2. HI(-/-" a _)E] 

T- + "" k= I 1EaX 1EaX 
to ..... - 00 

and 

z~t('j,x) = lim detA 

with 

T_ +"" 
t...- - 00 

A (i,j) = [(1 + iEW)8ij - 8;,H 1 ]. 

The inverse of this matrix is the free propagator 

<¢(j + m)¢(j) )~t 

a a I = log Z lat ---
iEa'j(j + m) 0 iEaX(j) x,x=o 

=A- 1(j+m,j). 

After some algebra we obtain 

A-I (j + m, j) = {~'l + iEW) - (m + I), 

m<O, 

m>O, 

and in the limit E---O we have 

- {O <¢(j+m)¢(j»~t= '( . ) 
exp - lEwm , 

m<O, 

m>O. 

(22) 

(24) 

(25) 

(25') 

(26) 

We see that the "discrete" propagator (26) is equivalent to 
the "continuous" one (20) when mE = t - t' :;60. For 
t - t' = Owehave <¢(t)¢(t'»o = (d Idt - iw )fl.F (0) = ~, 
although it is not clear to what it corresponds on the time 
lattice formalism. Let us clarify this point. 
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Until now we have ignored the ambiguity in the form of 
the action integral on the time lattice. This means that we 
can evaluate the Hamiltonian in Eq. (21) at any point 
between ¢(k - 1) and ¢(k). Actually, no choice modifies 
the discrete free propagator (26); however, in order to have 
full equivalence between the discrete and continuous forma
lisms we must cure the t - t' = 0 disease. This is what the 
midpoint choice does; as a matter of fact, when we let 
¢(k)---¢MP(k) = [¢(k-l) + t,b(k)]l2 in the interaction 
Hamiltonian HI we have, for the equal-time propagator ac
tually appearing in the perturbation expansion, 

<¢MP(j)¢(j) )~t = ~(O + 1) = ~ = <¢(t)¢(t»o 

and so we have succeeded in achieving the aim. 

v. CONCLUSIONS 

In this paper we have shown how the Weyl-ordered 
form of a fermionic Hamiltonian corresponds to the mid
point discrete path integral and in turn the latter corre
sponds, in the perturbation scheme, to the naive Feynman 
rules of the continuous path integral. This result may serve, 
for instance, as a useful tool in the study of the behavior of 
the quantum theory under coordinate transformation. In 
fact, to this purpose the operator or discrete path integral 
formalisms are the most reliable ways to work,2 while the 
continuous path integral is the most direct approach. For 
instance, if an extra fermionic potential contribution is need
ed to make the Weyl Hamiltonian covariant, it must be add
ed to the continuous fermionic Lagrangian as well in order to 
obtain the covariant Feynman rules. 

In addition, we want to point out that the proof follows 
the same lines as in the bosonic case; this stresses the symme
try between bosons and fermions. 
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In this paper the ADM (Amowitt, Oeser, and Misner) reduction of Einstein's equations for 
three-dimensional "space-times" defined on manifolds of the form l:XR, where l: is a compact 
orientable surface, is discussed. When the genus g of l: is greater than unity it is shown how the 
Einstein constraint equations can be solved and certain coordinate conditions imposed so as to 
reduce the dynamics to that of a (time-dependent) Hamiltonian system defined on the 
12g - 12-dimensional cotangent bundle, T*, . .r(l:), ofthe Teichmiiller space, Y(l:), ofl:. The 
Hamiltonian is only implicitly defined (in terms of the solution of an associated Lichnerowicz 
equation), but its existence, uniqueness, and smoothness are established by standard analytical 
methods. Similar results are obtained for the case of genus g = 1, where, in fact, the 
Hamiltonian can be computed explicitly and Hamilton's equations integrated exactly (as was 
found previously by Martinec). The results are relevant to the problem of the reduction of the 
3 + I-dimensional Einstein equations (formulated on circle bundles over l:XR and with a 
spacelike Killing field tangent to the fibers of the chosen bundle) and to the recent discussion 
by Witten of the possible exact solvability of the "topological dynamics" associated with 
Einstein's equations in 2 + 1 dimensions. 

I. INTRODUCTION 
In a recent paper Witten has argued that the vacuum 

Einstein equations in 2 + 1 dimensions are an exactly solv
able system both classically and quantum mechanically. 1 

Locally of course this seems quite reasonable, since Ein
stein's equations in three dimensions imply that space-time 
is flat. Globally, however, there are "topological degrees of 
freedom" to consider and Witten's conclusion is far from 
obvious. 

One of the main steps in Witten's argument was to show 
that Einstein's equations in three dimensions can be viewed 
as the Euler-Lagrange equations determined by a Chern
Simons action for the "gauge group" ISO(2,1), i.e., for the 
Poincare group in three dimensions. Since the dynamics of 
Yang-Mills connections (for compact, semisimple gauge 
groups), based on a Chern-Simons action, had previously 
been shown to be exactly solvable,2 the corresponding result 
appeared to follow at once for Einstein's equations by analo
gy with the Yang-Mills case. 

There are, however, several significant differences 
between the Yang-Mills theory and the Einstein one. For 
the Chem-Simons, Yang-Mills theory (on a manifold of the 
form l: XR, where l: is a compact two-manifold) the "space 
of classical solutions" coincides with the space of flat con
nections modulo gauge transformations defined on l:. Work 
by Atiyah and Bott had shown the latter space to be a finite
dimensional compact, symplectic manifold.3 Witten pointed 
out that, in the temporal gauge, the evolution equations are 
trivial and thus that the solution of the full set offield equa
tions reduces to the solution of the initial value (or "con
straint") equations-a problem solved previously by the 
work of Atiyah and Bott. 

For the Einstein equations, however, the trivializing 

choice of "temporal gauge" is not permitted (at least classi
cally) since, among other things, it corresponds to setting 
the time components of the orthonormal frame fields to zero. 
This in turn implies the vanishing of the lapse and shift fields 
of the space-time metric and thus the failure of this "metric" 
to have Lorentz signature. A vanishing choice for the lapse 
and shift fields does indeed trivialize the dynamics, but only 
in the relatively trivial way of preventing one from evolving 
the initial data at all. 

The Einstein problem also differs from the Yang-Mills 
one in having a noncompact "gauge group" and a noncom
pact space of classical solutions. In particular, the analysis of 
Atiyah and Bott does not apply to this problem though, as 
Witten shows, the space of classical solutions can neverthe
less be identified. It is essentially the cotangent bundle, 
T*Y(l:), of the Teichmiiller space, Y(l:), associated to 
the compact two-manifold l:. 

Insofar as one is only interested in "labeling" the classi
cal solutions, rather than actually computing them, Witten's 
analysis would seem to be sufficient. But one could do essen
tially as much in 3 + 1 dimensions! The space of classical 
solutions in that case (for, say, vacuum space-times with 
compact Cauchy surfaces) is of course infinite dimensional, 
and not everywhere a manifold,4--7 but is nevertheless rea
sonably well understood (including the structure of its sin: 
gularities and the relationship of the singular points to the 
isometry groups of the corresponding classical solutions). 
Lacking a means to characterize the solutions of the evolu
tion equations, however, one would certainly not regard the 
four-dimensional Einstein equations as exactly solvable. 

Locally, on the other hand, the Einstein evolution equa
tions in three dimensions can indeed by solved explicitly by 
imposing, for example, Gaussian normal coordinate condi-
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tions (lapse equal to unity, shift equal to zero). This choice 
eliminates all the spatial derivatives in the evolution equa
tions and thus effectively reduces them to decoupled systems 
of ordinary differential equations along each normal geodes
ic. Certain particular solutions (including those obtained by 
taking quotients of Minkowski space by suitably chosen dis
crete subgroups of the Lorentz group) can in fact be globally 
foliated by Gaussian normal slicings. In general, however, 
one expects Gaussian normal coordinate systems to develop 
singularities unrelated to the natural boundaries of the 
space-times under study. In any case the solution of Ein
stein's equations through the use of Gaussian coordinates 
does not really realize Witten's objective to reduce these 
equations to a finite-dimensional Hamiltonian system de
fined on the cotangent bundle of Teichmiiller space. 

Our aim in this paper is to show that one can in fact 
reduce the Einstein equations to a Hamiltonian system on 
T * Y (~) but one that is, somewhat contrary to the spirit of 
Witten's discussion, both time-dependent and only implicity 
defined (except when the genus of ~ is less than 2). Our 
interest in this problem arose through its connection with 
the study of four-dimensional Einstein space-times defined 
on circle bundles over manifolds of the form ~ X R. If the 
four-dimensional metrics considered are required to have 
one spacelike Killing field (tangent to the fibers of the cho
sen circle bundle), then Einstein's equations can be project
ed (in the manner of Kaluza, Klein, and Jordan) to a set of 
field equations on the base manifold ~XR. In the simplest 
cases the projected field equations take the form of Einstein's 
equations coupled to a set of harmonic map equations. 8

-
lo If 

the harmonic map field is taken to be a constant map then its 
stress--energy tensor vanishes and the projected field equa
tions reduce to the pure vacuum Einstein equations on 
~XR. In any case one expects the Lorentzian metric on 
~XR to have only "topological degrees of freedom" and 
thus that the original system should be reducible to an un
constrained system involving only harmonic map fields and 
"Teichmiiller parameters." This has indeed been demon
strated for the special case ~::::: S 2 in Ref. 8 (and, for the 
Einstein-Maxwell equations over the same base, in Ref. 9). 
Of course there are no Teichmiiller parameters at all in this 
case and the associated "Witten problem" is vacuous. As a 
first step toward the study of the corresponding reduction 
problem for higher genus base manifolds we are thus led to 
consider the pure vacuum Einstein equations on ~ X R when 
the genus of ~ is greater than zero-in other words, to con
sider the same problem posed by Witten. 

In Sec. II A we recall the Arnowitt, Deser, and Misner 
(ADM) variational formulation of Einstein's equations in 
2 + 1 dimensions and apply standard techniques to solve the 
constraint equations for the cases in which the genus of ~ is 
greater than unity. In Sec. II B we discuss the reduced phase 
space and the construction (in principle) of the reduced 
Hamiltonian defined over it. Section II C describes the re
construction of the space-time metric from a solution of 
Hamilton's equations and Sec. II D treats the special case for 
which the genus of~ is one. In this case, the reduction can be 
carried out explicitly, as was discussed previously by Mar
tinec. II Section III contains some concluding remarks. 
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II. REDUCTION OF EINSTEIN'S EQUATIONS 

A. Variational formulation and solution of the constraint 
equations 

Let M = RX~, where ~ is a compact orientable two
manifold of genus g> 1. We may parametrize Lorentzian 
metrics on M, which have t = const, spacelike hypersurfaces 
diffeomorphic to ~, in the Arnowitt, Deser, and Misner 
(ADM) form I2,8,9 

d:l- = 3g dxf.L dxv f.LV 

= - N 2 dt 2 + gab (dxa + Na dt) (dxb + N b dt). 
(2.1) 

Here,u,vrangeover {O,I,2} wherexo = tis the "time" and a, 
b range over {1,2}. The space-time metric induces a Rieman
nian metric, 

dO" 2 = gab dxa dxb (2.2) 

on each t = const hypersurface. 
The ADM action for Einstein's equations takes the 

form 13,8,9 

1= r d3x{-TTabgab,t - NK - NaKa}, (2.3) 
JfX~ 

where f = [to,ttl is some interval in the time coordinate t 
and in which the Hamiltonian and momentum constraints 
{K,Ka } are given by 

K= (lIn) [1T"b1Tab _ (~)2] _.,pg(2)R, 
(2.4 ) 

Ka = - 2(2)Vb~' 

Here indices are raised and lowered with the two-metric gab' 
(2)g is the determinant of this metric, (2)R is its scalar curva
ture, and (2)Va represents covariant differentiation with re
spect to it. In the following it will be convenient to make a 
choice of units and then to treat the metric components and 
the coordinates as dimensionless quantities. Thus the phys
icalline element is really our line element (2.1) multiplied 
by a fixed positive constant of dimension (length)2. 

Since the genus of~ is greater than unity by assumption, 
any smooth Riemannian metric gab on ~ is globally confor
mal, with a unique smooth conformal factor, to a metric hab 
with scalar curvature equal to - 1. In other words, there 
exists a unique, smooth function A: ~ --+ R such that 

gab = e2Ahob ,t2)R(h) = - 1. (2.5) 

This is proven directly by solving the associated nonlinear 
elliptic equation for A in Ref. 14 and by appeal to results from 
Riemann surface theory in Ref. 15. Since the dimension of ~ 
is 2, hob has constant sectional curvature as well. 

The gravitational momentum 1T"b is a symmetric tensor 
density closely related to the second fundamental form of the 
embedded hypersurface with Cauchy data (gab' 1T"b). For 
any such hypersurface, let A be the unique function and hab 
be the unique constant curvature metric defined by Eq. 
(2.5). Also define 

(2.6) 

the mean curvature of the hypersurface. Then, as in Refs. 8 
and 9, one can uniquely decompose 1T"b into three L 2-orthog
onal summands, 
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1f'b = 1f'b IT + !'Tpgg"b 

+ e-2A.pg(2)vbya + (2) vayb _g"b(2) VcYC), 

(2.7) 

where 1f'b IT is "transverse and traceless," i.e., satisfies 

=0, 
(2.8) 

-"bIT = 0, gab 71 

and where ya is uniquely determined by solving the linear 
elliptic equation 

(2) Va (1f'b _ !'Tpgg"b) = (2) Va [e - 2A. pg«2) Vbya 

+ (2) Vayb _ ~b(2)Vc YC)]. 

(2.9) 

We now wish to impose the momentum constraint 
Ka = 0 as a restriction upon the choice of 1f'b and later to 
impose the Hamiltonian constraint to determine the allowed 
values of A (hence gab)' To decouple these two procedures, 
we shall need to impose the slicing condition that (~, 

gab' 1f'b) be a hypersurface of constant mean curvature, i.e., 
that (2) Va 'T = O. Computing (2) Vb 1f'b under this assumption 
one obtains [cf. Eq. (3.9) of Ref. 8] 

(2) Vb (h ){?!l [(2) Vb(h )(hac YC) + (2) Va (h) yb 

-!5~(2)Vc(h)Yc]}= -!'T.ae2A.?!l =0, (2.10) 

where (2)h is the determinant of hab and (2) Vb (h) and 
(2) Vb(h) = h ab(2) Va (h) represent covariant differentiation 
with respect to this metric. Equation (2.10) has the unique 
solution ya = 0 (since a compact surface of constant nega
tive curvature has no conformal Killing fields) and thus 
(2.7) reduces to 

1f'b = 1f'b IT + !'Tpg~b. (2.11) 

It is worth noting here that the mixed form of 1f'b TT, defined 
as usual by ~ TT = gac rrcb 

TT, is divergence-free relative to any 
metric conformal to gab' in particular relative to h ab . Thus 

(2.12 ) 

and therefore pab TT, defined by 

pab TT = h ac~ IT = e2A.~c~ IT = e2A.1f'b TT, (2.13 ) 

is symmetric (since it is proportional to 1f'b TT) and trans
verse and traceless with respect to hab . 

The Hamiltonian constraint, K = 0, may now be writ
ten8•9 

(2).:lhA = P l e
2A. - P2e -2A. + P3' 

where 
-1 2 PI-4'T , 

P2 = H hachbdpab ITpCd
IT 

1«2)h)], 

P3 = !(2)R(h) = -!, 

and where 

(2.14 ) 

(2.15 ) 

(2.16 ) 

the Laplacian of A relative to the metric hab' This follows 
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from combining Eqs. (2.4), (2.5), (2.11), and (2.13) with 
the conformal identity 

(2)R(g) = (2)R(e2A.h) = e-2A. [(2)R(h) - 2 (2).:lhA]. (2.17) 

A complete existence and uniqueness theorem for Eq. 
(2.14) was proved in Ref. 8 for the case in which ~ -ZS2 and 
(3)g~v was coupled to certain "harmonic map" fields. The 
same analysis works for the higher genus two-manifolds and, 
for genus g> 1, leads to the following results: (i) no solu
tions of Eq. (2.14) exist unless 'T 2 > 0 [this follows upon 
integration of (2.14) over ~ and using the fact that 'T = const 
by assumption]: (ii) if 'T 2 > 0 and (hab,pab IT) are smooth 
(i.e., COO), then a unique solution A always exists and A is 
smooth; and (iii) if 'T 2 > 0 and (hab , pab IT ) Ell, X H, _ I for 
s> 2 (where H, is the Sobolev space of square integrable 
fields with square integrable derivatives up through order s) 
then a unique solution A always exists and AEll, + I . 

To summarize the above results, one obtains the general 
solution of the constraint equations K = Ka = 0 on a 
spacelike hypersurface of constant mean curvature r:fO by 
carrying out the following steps: (1) choosing a Riemannian 
metrichab on ~ having(2)R(h) = - 1; (2) choosing an arbi-
trary transverse-traceless symmetric tensor density pab IT 

[i.e., one that satisfies habpab IT = 0, (2) Va (h )pab IT = 0, 

pab
IT 

=pba
IT

]; (3) solvingEq. (2.14) for its unique solution 
A; and (4) setting 

gab = e2A.h ab' 

1f'b = e - 2A.p ab TT + !r?!l h ab = 1f'b TT + !'Tpg~b. 
It is worth noting here that the conformal factor A, de

termined by Eq. (2.14), depends smoothly upon the data 
occurring in that equation [i.e., upon (hab,pab TT,'T)]. This 
follows as in Refs. 15 and 16 from the inverse function 
theorem and the observation that the linearization of Eq. 
(2.14) in A yields an isomorphism between Hs + 1 and Hs _ 1 • 

B. The reduced phase space and ADM Hamiltonian 

Let JI', for s> 2, denote the (Hilbert) manifold of H' 
Riemannian metrics on ~ and let JI'_ I denote the set of 
metrics in JI' that have scalar curvature equal to - 1. In 
Ref. 15, Fischer and Tromba show thatJl'_ I is an (infinite
dimensional) closed C 00 submanifold of Jls . Let JI denote 
the space of C 00 Riemannian metrics on ~ and JI _ I the C 00 

Riemannian metrics with scalar curvature equal to - 1. 
One can view JI and JI _ I as (dense) subsets of JI' and 
Jls_ 1 (respectively) or, upon introducing a suitable differ
entiable structure such as the ILH (inverse limit of Hilbert) 
structure discussed by Fischer and Tromba, regard JI and 
JI -I as differentiable manifolds in their own right. For sim
plicity, let us restrict our attention to the COO case. 

Now let!» denote the group of C co diffeomorphisms of 
~ and let !» 0 C!» denote the component of the identity. 
Since the equation (2) R (h) = - 1 is preserved by diffeomor
phisms (under pullback of metrics), the groups!» and !» 0 

both act on JI -I' Tromba and Fischer show that the quo
tient space, JI -II!» 0 is a smooth 6g - 6-dimensional mani
fold diffeomorphic to the Teichmiiller space Y (~) of~, 
which in turn is diffeomorphic to R6

g-
6

• 
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Earlier work by Earle, Eells, and Sampsonl7
,18 had in 

fact already shown that 1T:..A' _I-+..A' _I/~ 0 (where1Tis the 
natural projection onto the quotient) is a trivial principal 
fiber bundle and that one can construct a global smooth 
cross section of this bundle through the use of harmonic 
maps. In physics terminology, the existence of a global cross 
section of the bundle 1T: ..A' -I -+..A' -II ~ 0 corresponds to 
the existence of a globally valid choice of "gauge" for the 
diffeomorphism group ~ o. 

The main result we shall need from this analysis is the 
existence of a smooth 6g - 6-dimensional global cross sec
tion of 1T: ..A' -I -+..A' -II ~ 0' diffeomorphic to R 6

g - 6 [and 
hence to the Teichmiiller space Y(l:)]. Letting 
{q"la = 1,2, ... ,6g - 6} be a global coordinate system on 
Y(l:)::::R6

g-
6

, we can express any such cross section as a 
smooth 6g - 6 parameter family of C 00 metrics on l: with 
scalar curvature equal to - 1: 

{qa}-+hab(xc,q"), (2)R(h(qa» = - 1. (2.18) 

We can now supplement the temporal coordinate condi
tion of constant mean curvature slicing with the spatial coor
dinate condition that the conformal metric hab remain (dur
ing the course of time evolution) within the chosen global 
cross section of ..A' _I' Since the initial value equations and 
the equations defining the conformal projection are covar
iant with respect to diffeomorphisms of l:, there is clearly no 
loss of generality involved in assuming that hab lies initially 
on the chosen cross section. To ensure that as gab evolves the 
conformal metric hab remains within this cross section re
quires a particular choice of the shift vector field N a

, which 
is thereby implicitly determined. The lapse function N is also 
implicitly determined by the requirement that the evolution 
preserve the constant mean curvature slicing condition. We 
shall derive below the elliptic equations determining Nand 
N a, but for now shall simply assume that they have already 
been imposed. 

Let hab (xc,q<') be an arbitrary point of the chosen global 

cross section of..A' _I and let pab TT (XC) be an arbitrary sym
metric tensor density that is transverse and traceless with 
respect to hab (xc,qa). We define the "components" 

{Pa la = 1,2 ... ,6g - 6} of pab TT by 

Pa = r (pab TT (XC) ah~ (xc,t/») I . d 2x. (2.19) 
J1:. aq qa=qa I 

These components uniquely determine pab TT since the space 
oftransverse traceless tensor densities at hab (xc,q<') is in fact 
6g - 6-dimensional15,17 and since the tangent vectors 
(ahablaq") I q"=qa span a 6g - 6-dimensional space trans
versal to the orbits of ~ 0 through hab (xc,q<'), whereas an 
arbitrary vector tangent to the ~ 0 orbit [i.e., a tensor field of 
the form (.!f (2) x h) ab for some vector field (2)X a on l:] anni

hilates pab TT: 

1 {pab IT (.!f (2) x h) ab}d 2x 

= -21 {(2) Va (h)pabIThbc(2)Xc}d2x =0. (2.20) 

This same calculation shows that the p a's are independent of 
the particular cross section chosen to represent the Teich
muller space Y (l:) since, on the one hand, the integral 
expression in Eq. (2.19) is invariant with respect to diffeo
morphisms and, on the other, any two representatives of the 
same tangent vector to Y (l:) [corresponding to different 
choices of cross section through hab (XC)] would differ only 

by a field of the form (.!f (2)x h)ab' which annihilates pab IT. 

We may regard the Pa's as the components of an arbi
trary covector at the point {qa} of Y (l:). Thus the coordi
nates {(q",Pa)la= 1, ... ,6g-6} give a global chart on 
T*Y(l:)::::RI2

g-
12

, the cotangent bundle of the Teich
muller space of l:. From the results of the preceding section 
it is clear that points of T * Y (l:) uniquely label the ~ 0 

equivalence classes of solutions of the constraint equations 
on a hypersurface of constant mean curvature 1'#0. Any 
choice of {qa,Pa}ET*Y(l:) determines hab(xc,qa), then 

pab TT (XC); Eq. (2.14) then yields A, which, in tum, fixes gab 
and ~b. It is worth noting that l' occurs both in the equation 
for A and in the formula for ~b, and thus must be specified 
together with the point of T * Y (l:). 

To determine the dynamics induced on T*Y(l:) by 
Einstein's equations, we apply the ADM technique of reduc
tion of the action. Letting {gab' ~b}(xC,qa,Pa'1') represent 
an arbitrary solution of the constraint equations parame
trized by qa,Pa' and 1', we substitute this solution into the 
expression (2.3). The constraint terms now vanish leaving 

1* = 1 d3x{~bgab,t} = 1 d 3x{(e- 2J..pab
TT + J..- 1'Fi/ h ab). (e2J..hab ),t} 

fx1:. fx1:. 2 

= 1 d 3x{pab
TT 

ahab + ~ [1'e2J..Fi/] - e2J..hab ~ (J..- 1'Fi/ h ab)} 
fx1:. at at at 2 

=1 d3x{pabITahab dqa _ d1' e2J..Fi/ +~[1'~J..Fi/] -e2J..hab1'~(J..-Fi/ hab)} 
fxl: aqa dt dt at at 2 

= 1 dt {Pa dqa - d1' r d 2xFi} + r d 2x[ 1'Fi] I~, (2.21) 
f dt dt J1:. J1:. 

where the term involving (a lat)(~Fi/ h ab) has dropped 
out in the last step by virtue of the fact that (a I at) h ab is 
tangent to..A' _I' and thus has anL 2-orthogonal decomposi-
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j 

tion ofthe form l5,19 

ahab 'IT u> h -at = k ab + (..z. (2)x )ab' (2.22) 
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where k!J is transverse and traceless with respect to hab' 
This leads to an expression for (a I at) qFh h ab), which is 
traceless with respect to hab and thus vanishes when con
tracted with this metric, as in Eq. (2.21). 

To complete the determination of the reduced ADM 
action, we now fix the time coordinate uniquely by demand
ing that r = t and drop the boundary terms from the right
hand side ofEq. (2.21), since they make no contribution to 
the equations of motion. The resulting ADM action may 
thus be written 

i { dqa a } 
IADM = dt Pa - - H(q ,Pa,t) , 

of dt 
(2.23) 

where 

H(qa,Pa,t) = L d 2x.psg 

= L d 2x{e2A Fh}(qa,Pa,t) (2.24) 

is the area functional of the hypersurface r = t expressed in 
terms of the canonical variables and the time through the 
solution of the Hamiltonian constraint equation for A. Thus 
when the mean curvature is chosen to play the role of time 
the area functional becomes the corresponding Hamilto
nian. Since this Hamiltonian depends explicitly upon the 
time it fails to be conserved by the evolution. The dynamics 
on T * Y (~) is that of a time-dependent Hamiltonian sys
tem-the time dependence corresponding to the noncon
stancy of the area of the constant mean curvature hypersur
faces. 

The expression for H is, in fact, independent of the par
ticular choice of global cross section of J.( _I' which is used 
to define it and thus is intrinsically defined on T * Y (~) X R. 
Unfortunately, however, the explicit form of H seems diffi
cult to determine since it depends upon the solution of the 
nonlinear elliptic equation (2.14). The solution can be 
guessed whenever 

P2 = HhachbdpabTTpcdTT/«2)h)] 

is constant on ~, since A is also constant in that case. For an 
arbitrary choice of data, however, this condition is not satis
fied (except for the case of genus g = 1, which we have not 
considered yet) and therefore A is not constant on~. To see 
that P2 is not in general constant, one can appeal to the repre
sentation of transverse-traceless symmetric two-tensors in 
terms of holomorphic quadratic differentials, as discussed, 
for example, by Tromba and Fischer. )5,20 Thus the form of H 
and hence that of Hamilton's equations is only implicitly 
determined. 

C. Determination of the lapse and shift fields 

Using the definition (2.6) one can compute arlat by 
means of Hamilton's equations for gab and 1f'b. The result is 

ar _ (2)V (2)Va N + ~ tf:.1T":. 
at a «2)g) a b 

_ (2)V (2)vaN + ~[e-4Ah h pacTTpbd TT 
a «2)h) ab cd 

(2.25) 
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which can also be written as 

e2A ar = _(2)b, N+N{e-
2A 

[h h acTT 
bd

TT 

at h «2)h) ab cdP P 

+! e4A «2)h)r 2] } == _ (2)b,h N + Nq. (2.26) 

Since, according to the results of the previous section, the 
function q is strictly positive, this linear elliptic equation al
ways has a unique smooth solution for N. A straightforward 
application of the maximum principle shows that N will be 
strictly positive on ~ if and only if r(t) satisfies arlat> O. 
Thus our choice r = t always yields a unique, smooth, strict
ly positive solution for N. 

The determination of the shift field Na(a laxa) is com
plicated by the fact that it depends upon the particular 
choice of cross section of the bundle J.( _) -+J.( _)1 9J 0' 

which one has made. For any such choice, however, the tan
gent vector to a solution curve in J.( _) has a decomposition 
of the form (2.22), where the summand (2' (2) x h)ab' which 
is tangent to the orbit of the diffeomorphism group 9J 0 pass
ing through hab' is uniquely determined, in terms of k!J by 
the choice of cross section. Thus ahablat lies in the 6g - 6-
dimensional tangent space (transversal to the 9J 0 orbit), 
which is defined at hab by the chosen cross section. 

To avoid having to compute the time derivative of the 
conformal factor A it is convenient to evaluate the time deriv

ative of Fh h ab = .psg ~b instead of hab itself. Using the 
decomposition (2.22) on the one hand and the ADM evolu
tion equation for gab,t on the other, one finds that 

?Ii {h ach bdk"J + (2)Va(h)X b + (2)Vbxa - h ab (2)V
c 
(h)Xc} 

= 2N(1f'b _ ~b~) + Fh{(2)va(h)N b 

(2.27) 

where the reexpression of the terms involving N a in terms of 
hab' (2)Va (h) (instead of gab , (2) Va) follows from the identity 
(3.7) given in Ref. 8. 

As with hab.t itself the tangent vector (Fh h ab) ,t to the 
curve induced in the space of contravariant densities, 
{Fh h ab}, lies in a 6g - 6-dimensional subspace transver
sal to the 9J 0 orbit directions, which are, in tum, spanned by 
tensor densities of the form Fh«2) Va(h) yb + (2)Vb(h) ya 
- h ab (2) V c (h) Y1. Let Ph designate the L 2-orthogonal 

projection onto the complement of this 6g - 6-dimensional 
tangent space (i.e., such that 1- Phis the projection onto 
the tangent space to the cross section at hab ). Then the equa
tion determining the shift field can be written as 

Ph {Fh[(2) va(h)N b + (2) Vb(h)N a _ h ab (2) Vc (h)NC]} 

= -Ph{2N(1f'b_!g"b1T~)}, (2.28) 

which follows from applying Ph to Eq. (2.27), That a unique 
solution for N a always exists follows, on the one hand, from 
the fact that the conformal Killing operator on vector fields 
has trivial kernel for g> 1 and, on the other, from the fact 
that 2N( 1f'b - !g"b~ ), being traceless, has a decomposition, 

relative to hab' of the same type as that for (Fh h ab) ,r oc
curring on the left-hand side ofEq. (2.27). The transverse
traceless part of2N ( 1f'b - !g"b~) determines k !J, whereas 
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the remainder has precisely the form of the conformal Kill
ing operator applied to a vector field yaw IJxa). Equation 
(2.28) thus reduces to 

,FfJl{(2)Va(h) (X b _ yb _ Nb) + (2) Vb(h) 

X(X a- ya_Na) _h ab (2)Vc(h) 

X (XC - yc - N C)} = 0, (2.29) 

which has the unique solution Na = xa - ya. Equation 
(2.28) for Na(J IJxa) has the advantage of depending only 
upon the chosen cross section at hab (through Ph) and not 
upon the particular solution curve in question. 

We can summarize our results as follows. A solution 
curve of Hamilton's equations, {qa(t),Pa (t)}, with t = 1" de
termines, through the chosen cross section (2.18), a curve 
hab (xc,t) = hab(xc,qa(t» in the space of me tries with scalar 
curvature - 1 and, through the inverse of (2.19), a curve in 
the space of transverse-traceless tensor densities, 

ab TT ( C ab TT( C ) P x ,t) = P x ,qa(t),Pa (t) . The unique, smoothly 
varying solution ofEq. (2.14) for A then yields 

gab (XC,t) = (e2).hab ) (Xc,t) 

1T"b(XC,t) = (e- 2).pabTT + ~1"Fhh ab)(XC,t) (2.30) 

= (1T"b TT + !1".,prg~b)(xc,t). 
Finally, the constructions of the present section yield 
N(xa,t),Na(xb,t) and hence the space-time metric (2.1) in 
the chosen coordinate system. Though the resulting form of 
the metric depends, of course, upon the chosen cross section 
of JI _ I -+ JI _ / §lJ 0' any global smooth cross section would 
suffice as well as any other. The temporal coordinate condi
tion of setting t = 1" has, however, played a more crucial role 
in allowing one to decouple the Hamiltonian and momen
tum constraints. 

D. Reduction for the case of genus 9= 1 

If the genus of ~ is zero (i.e., if ~:::::S2) there are no 
solutions to the constraint equations for a hypersurface of 
constant mean curvature. This follows from the fact that 
transverse-traceless symmetric two-tensors vanish identical
lyon S 2 (since the Teichmiiller spacefor S 2 has zero dimen
sion) and thus that the functionp2' defined in Eq. (2.15) 
above, vanishes identically, whereas P3 is now positive (in 
fact P3 = 1 when hab is taken to be the canonical metric on 
the "unit" two-sphere). It follows at once that Eq. (2.14) 
has no solutions. 

Therefore the only case remaining is that for which 
g = 1 (i.e., ~::::: T2). Any Riemannian metric gab on T2 is 
globally conformal to a flat metric hab = e - 2), gab' One 
proves this by solving the linear elliptic equation, 

(2.31 ) 

for which the Gauss-Bonnet theorem provides the needed 
integrability condition.21 Since A is only determined up to an 
additive constant one can assume, without loss of generality, 
that a normalization condition such as 

L, Fh d 2x = (21T)2 (2.32) 

is satisfied by hab . 
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Decomposing 1T"b as in Eq. (2.7), one finds that 1'" is 
now only determined up to a conformal Killing field of gab 
(and hence of hab ). Since hab is flat, it follows by a straight
forward argument (upon taking the divergence of the con
formal Killing equation) that 1'" is in fact covariantly con
stant (hence Killing) with respect to hab . Such fields form a 
two-dimensional space that, however (since they are confor
mally Killing with respect to gab), does not disturb the 
uniqueness of the decomposition (2.7). 

Defining 1" as in Eq. (2.6) and setting 1" = const to de
couple the constraint equations one finds, as before, that the 
momentum constraint implies that 1'" must be purely a con
formal Killing field of gab and hence that 1T"b reduces to the 

form given in Eq. (2.11). DefiningpabTT, as in Eq. (2.13), 

one now finds that pab TT is an arbitrary traceless, symmetric 
tensor density on T2 that is covariantly constant relative to 
hab . This follows, for example, from analyzing the diver

gence condition on pab TT in charts for which hab is itself con
stant [e.g., charts based upon the closed geodesics of 

(T 2,hab )]. For fixed hab the space of pab TT,S is therefore two 
dimensional. 

Since P3 =! (2)R(h) = 0, the Hamiltonian constraint 
now becomes 

(2)ahA=Ple2).-P2e-2)., (2.33) 

where (since pab TT is covariantly constant) both PI and P2 are 
constant on ~. 

If either PI or P2 is zero, then a solution of Eq. (2.33) 
exists only if both PI and P2 are zero and, in this case, A is an 
arbitrary constant. Conversely, ifbothpl andp2 are nonzero, 
then one can guess a particular solution given by 

e4).=P2IPI=const>0. (2.34) 

By the argument given in the appendix of Ref. 8, this solu
tion is unique. In either case, it follows that A is constant and 
hence gab is flat and therefore that 1T"b is covariantly con
stant with respect to gab' 

The group §lJ ° acts on the space of flat metrics on T 2 

and, since the constraint equations are covariant with re
spect to §lJ 0' one can pass to a slice for this group action in 
which the flat metrics are represented by (spatially) con
stant metrics on T2. In this "gauge" 1T"b (since covariantly 
constant) is also constant on T2. More precisely, if {Xl ,X2} 
are periodic coordinates on T2 then one can represent an 
arbitrary point (gab' 1T"b ) within the slice by constant fields 
relative to the chosen coordinates (with, of course, gab and 
1T"b symmetric and with gab positive definite). The con
straint equations reduce, within the chosen slice, to the sin
gle, purely algebraic equation, 

1T"b1Tab - (n-::)2 = 0, (2.35) 

which, for each fixed gab' defines a cone in the three-dimen
sional momentum space of 1T"b 'So The solution set of the con
straint equations within the slice thus reduces to a manifold 
except at the points of conical singularity defined by 

(2.36) 

This is an example, in 2 + 1 dimensions, of the well-known 
conical singularities that arise in the solution set of the con-
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straint equations whenever the isometry group of the corre
sponding space-times changes discontinuously.4,5 Here any 
vacuum space-time with Cauchy data lying in Y has a glo
bally defined timelike Killing field whereas solutions deter
mined by data in the complement of Yare nonstationary. 
Every solution has a lax I and a lax2 as spacelike Killing 
fields but, since there is no possibility of breaking these sym
metries in 2 + 1 dimensions, there are no additional conical 
singularities associated with their occurrence. 

To sidestep the complications arising from the singular 
points of the constraint set, let us simply cut out the points 
belonging to the singular set Y and work on the complemen
tary manifold. Thus we demand that the mean curvature 7 

be nonzero and set 

gab = e2Ahab , rr"b = e - 2Apab TT + !7Fl!h ab, 

where 

(2.37) 

(2.38 ) 

and where hab and pab TT are arbitrary constant symmetric 
tensor fields (with hab positive definite) satisfying the alge
braic conditions 

h abTT - 0 abP -, (2.39) 

The last of these is equivalent to the normalization condition 
(2.32) introduced above, provided x' and x2 are periodic 
coordinates (defined modulo 21T) on T2. 

For definiteness, let us take the case for which 7> 0 and 
impose the temporal coordinate condition 

7 = exp [t I (21T) 2] . (2.40) 

Upon choosing an appropriate set of coordinates 
{qa} = {q' ,q2} for the two-dimensional "Teichmiiller 
space" of constant metrics with fixed volume elements and 
defining their conjugate momenta {Pa} = {P"P2} via Eq. 
(2.19), one obtains, as in Eq. (2.21), the reduced action 

{ (
2 bTT a

TT )1I2} 
1* - i dt dqa _ Pa Ph 

- of Pa dt «2)h) 

+ boundary term, (2.41 ) 

in which hab and p~ TT = hacpcb TT are understood to be ex
pressed in terms of the cononical variables qa and P a' The 
choice (2.40) for the time coordinate condition has, in this 
case, ensured a time-independent Hamiltonian function. A 
convenient choice of canonical variables has been given by 
Martinec, who proceeded to solve the evolution equations 
explicitly. II 

With our choice of temporal coordinate condition the 
unique solution ofEq. (2.25) turns out to be 

N = [1I(21T)27 ]. (2.42) 

The shift vector field N a (a I axa
) is only determined up to an 

arbitrary time-dependent linear combination of the two Kill
ing fields a lax' and a lax2

• The simplest choice is simply to 
take N a = O. 

III. CONCLUDING REMARKS 

The methods of this paper could be used to study several 
related problems such as the reduction of Einstein's equa-
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tions in the presence of a cosmological constant or suitable 
sources. One should be prepared for the possibility that the 
existence or uniqueness of the solution of the Hamiltonian 
constraint equation may fail, depending upon the sign of the 
chosen cosmological constant or the nature of the chosen 
sources. 

For the (finite-dimensional) Hamiltonian systems 
studied here one could also consider the problem of quanti
zation. However, as the explicit example of the genus g = 1 
case shows, one should not expect the Hamiltonian to be a 
polynomial in the momentum variables Va} and therefore 
one should not expect the associated "Schr6dinger equa
tion" (formulated with a suitable choice of operator order
ing in the coordinate representation) to be a conventional 
partial differential equation. The g = 1 case is tractable but 
already involves the square root of a certain Laplacian de
fined on the associated "Teichmiiller space." While one can 
reasonably identify the appropriate Hilbert space as square 
integrable C-valued functions over Teichmiiller space (as 
Witten has done), the possibility of actually solving the asso
ciated Schr6dinger equation in the higher genus cases seems 
currently rather remote. 
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The task of seeking a general static solution to the Einstein-Maxwell equations representing 
"semi-plane-symmetric" metrics yielded by plane-symmetric electromagnetic fields is reduced 
to solving a single ordinary differential equation. A special solution is given, showing that there 
does exist some electrovac metric that does not share some of the symmetries of the 
electromagnetic fields. 

I. INTRODUCTION 

Einstein-Maxwell fields in which the metrics gab and 
the corresponding electromagnetic fields Fab admit the same 
symmetries are well known. There also exist Einstein-Max
well fields in which Fab does not share some of the symme
tries of gab' I for instance, the general solution to Einstein
Maxwell equations representing plane-symmetric metrics 
yielded by the "semi-plane-symmetric" electromagnetic 
fields given by Li and Liang2 and Kuang et al. 3 It is interest
ing to ask whether the opposite case is possible, i.e., whether 
there exists an electrovac metric that does not share some of 
the symmetries of the electromagnetic field. The main pur
pose of this paper is to give an affirmative answer to this 
question by giving a static solution to Einstein-Maxwell 
equations in which the electromagnetic field Fab is plane
symmetric while the metric gab is only "semi-plane-symmet
ric," in the sense that there exists a coordinate system 
(t,x,y,z) such that !f'sP) Fab = 0 (i = 1,2,3 and !f' denotes 
the Lie derivative) with 

5(1) = !, 5(2) = ~, 5(3) =x(~)-y(!), 
and where gab can be written as 

dS 2 = E(t,z)( - dt 2 + dz2) + G(t,z)dx2 + H(t,z)djl, (1) 

where E(t,z) , G(t,Z) , and H(t,z) are arbitrary positive func
tions. Note that 5(1) and 5(2) are Killing vectors of metric 
(1) while 5(3) is not if G(t,z) =I=H(t,z) , although it is a sym
metry vector field of Fab . This is why we refer to such a 
metric as "semi-plane-symmetrical." Incidentally, metric 
( 1) is locally a special case of the cylindrically symmetric 
metrics [formula (20.1) of Ref. 1 with A = 0]. 

II. THE EQUATIONS 

Denote X
O = t, Xl = X, x 2 = y, and x3 = Z. It follows 

from Eq. (1) that ROl = R02 = RI2 = R13 = R 23 = 0; thus 
the Einstein equations require 

TOl = T02 = TJ2 = T13 = T23 = o. (2) 

Define the electric and magnetic fields E and B with respect 
to this coordinate system to be E I = FoI , E2 = Fo2' E3 = Fo3' 

BI = F32, B2 = F13, B3 = F21 . It then follows from Eq. (2) 
that 

EE2B3 = HE3B2' 

EEIB3 = GE3BI' 

EIE2 = - B IB2, 

HEIE3 = - EBIB3, 

GE2E3 = - EB2B3· 

(3) 

Equation (3) is a necessary condition imposed on Fab for 
yielding a "semi-plane-symmetric" metric. It is not difficult 
to show that there can be only two cases of Fab that satisfy 
requirement (3). 

(i) E) = E2 = BI = B2 = O. Calculation of *Fab *Fab 
(where *Fab =.Fab + lFab' Fab being the dual form of Fab ) 
shows that in this caseFab must be a non-null electromagnet
ic field. Restricting Fab to be source-free, one obtains from 
the source-free Maxwell equations that 

B~ = aL E~ = a~E2/GH, a l ,a2 constants. (4) 

This implies that E3 and B3 are independent of X and y, and 
hence Fab is plane-symmetric. 

(ii) E3 = B3 = O. It follows from the source-free Max
well equations that E I, E2, B I' and B2 are also independent of 
x and y, but, since !f' s(J)Fab =1=0 [5(3) =.x(a lay) 
- y( a lax) ], Fab is only "semi-plane-symmetric." Calcula

tion of * Fab * F ab shows that Fab can be either null or non
null, unlike the case of plane-symmetric metrics yielded by 
"semi-plane-symmetric" electromagnetic fields Fab , where 
Fab must be null. 2

,3 

The main focus of this paper involves only case (i). Ex
pressing the nonvanishing components of the Ricci tensor in 
terms of E, G, and H, one obtains from the Einstein equa
tions the following equations: 

kG + E'G' kif + E'H' G2 + G'2 
2EG + 2EH + 4G 2 

H+H" ----=0, 
2H 

(5) 
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c]2 - G ,2 G - G" H 2 - H,2 iI - H" 
---+----

4G 2 2G 4H2 2H 
EE" _E'2 -EE+E2 E + = 81Ta2-- (6) 

E2 GH' 

G-G" iI-H" 

2G 2H 

ip - G,2 H2 _ H,2 
4G 2 + 4H2 = 0, (7) 

G-G" iI-H" 
2G + 2H 

ip - G,2 

4G 2 

+ GH - G'H' = 81Ta2~ 
2GH GH' 

H 2_H,2 

4H2 

EG'+E'G E'H+EH' G' H' 
4EG + 4EH - -2G- - -2H-

GG' HH' 
+ 4G2 + 4H2 =0, 

(8) 

(9) 

where a2 = ai + a~ is a scalar characterizing the electro
magnetic field, and an overdot and a prime represent "a I at" 
and "a laz," respectively. We have not yet found any solu
tions to Eqs. (5 )-(9) when E, G, and H arefunctions of both 
z and t. However, if E, G, and H are restricted to be functions 
of z only (and hence the metric is static), these equations can 
be reduced to a single ordinary differential equation. This is 
shown in the next section and a special solution is given in 
Sec. IV. 

III. THE REDUCED ORDINARY DIFFERENTIAL 
EQUATION 

Since in the static case Eq. (9) is satisfied automatically, 
we have only four equations [(5)-(8)] left. Introduce two 
functions M(z) and N(z) such that 

H(z) = M(z)N(z), G(z) = M(z)N -I (z), (10) 

Eqs. (7) and (8) then yield, respectively, 

(N'IN)' + M'N'IMN = 0, (11) 

and 

(12) 

The general solution to Eq. (11) is 

N = C2 exp [ Clf dz[ /3M(z)] -I]. C I,C2 constants. 

(13 ) 

Since a # 0, otherwise there would be no electromagnetic 
field, it follows from Eq. (12) that 

E = - MM" 181Ta2, 

and hence Eqs. (5) and (6) become, respectively, 

M'M III 3M'2 M" N'2 
--+-------=0 
MM" 2M2 M 2N2 ' 

(14) 

3M" +N,2 _3M'2 (Mill)' =0. 
M 2N2 2M2 + M" 

(15) 

Substitution of ( 13) into Eq. (14) gives 

(
Mill)' = _ Ci _ CiM" 
M" 6M 2 6MM,2 

+ (M" )' _ 3M" 3M,2 
M' 2M + 2M2 ' 
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which, together with Eq. (15), yields 

(
M")' CiM" 3M"_ 
M' - 6MM,2 + 2M -0. 

(16) 

On the other hand, Eq. (14) can be rewritten as 

~[(~)' _ CiM" 3M"] =0. 
MM" M' 6MM,2 + 2M 

(17) 

Since M' # ° or E would vanish, Eqs. (16) and (17) are 
equivalent. Therefore we have only one equation [( 16)] re
stricting the function M(z), and hence 

E = - MM" 181Ta2, 

G=Mexp[ - C I f dZ[M(Z)]-I] , 

H=MexP[CI fdZ[M(Z)]-I] , 

with M(z) any solution to Eq. (16), is a static solution to 
Eqs. (5 )-( 9). Therefore the task of solving a system of par
tial differential equations has been reduced to solving an or
dinary differential equation. 

IV. A SPECIAL STATIC SOLUTION 

A special solution (more precisely, a family of solu
tions) to Eq. (16) is 

M(z) = Clz + C3r/3
, C3 constant, 

and the corresponding static solution to Eqs. (5)-(9) is 

E = C3Z-2I3(CIZI/3 + C3 )/361Ta2, 

G = r/3( CIZ I /3 + C
3

) 1-.[3, 

H = r/3(Clz
l / 3 + C3 )1 +.[3. 

The metric, after a trivial coordinate transformation, reads 

dS 2 = Z-2/3(CIZ
I/3 + C3 )( - dt 2 + dr) 

+ r/3( CIZ
I / 3 + C3 ) 1-.[3 dx2 

(18) 

This is an example of a "semi-plane-symmetric" metric 
yielded by a plane-symmetric electromagnetic field, illus
trating that there does exist some electrovac metric that does 
not share some of the symmetries of the corresponding elec
tromagnetic field. 

The following observations are also worth noting. 
(A) If a = 0, then there is no electromagnetic field 

(vacuum) and it follows from Eq. (12) that 

M"=O, 

M = az + /3, a,/3 constants. 

In this case, Eq. (13) gives 

N = C2 (az + f3)C,/.[3a, 

Substitution into Eq. (5) yields 

E'IE = (Ci - 3a2)/6a(az + {3); 

thus 

E = y(az + {3) (Ct - 3a'l/6a', y constant. 

J. Li and C. Liang 

(19) 

(20) 
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This, together with the expressions for G and H obtained 
from (19), (20), and (10), gives the following metric: 

dS 2 = r(az + /3) (ci - 3a
2

)/6a' ( - dt 2 + dr) 

+ C 2- I (az + /3) 1- (C,/v'Ja) dx2 

(21) 

which, by a coordinate transformation, can be transformed 
into the static cylindrically symmetric vacuum metric given 
by Levi-Civita [formula (20.8) of Ref. 1], as expected. 

(B) If C3 = 0, then a trivial coordinate transformation 
leads the metric (18) to 

dS 2 = Z-1/3( _ dt 2 + dr) + ZI-v'J/3 dx2 + Zl + v'J/3 dr, 

which is a special case (C1 = C2 = a = r = 1, /3 = 0) of the 
vacuum solution (21), in accordance with the fact that 
C3 = OimpliesM" = 0, which, in tum, implies a = 0, by Eq. 
(12). 

(C) If C1 = 0, then G = H = M. The solution (18) is 
reduced to a plane-symmetric metric yielded by a plane
symmetric electromagnetic field. It is well known that such a 
solution must be the one given by Patnaik4 and Letelier and 
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TabenskyS [formulas (13.27) and (13.28) of Ref. 1], and a 
straightforward calculation from our Eqs. (12) and (16) 
indeed leads to the same result. Thus solution (13.27) and 
(13.28) of Ref. 1 is a special case of ours. 
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The conditions for a relativistic perfect fluid to admit a thermodynamic scheme are considered, 
and the necessary and sufficient requirements for a metric to define a thermodynamic perfect 
fluid space-time are given. 

I. INTRODUCTION 

Let g be the metric tensor of (a region of) a space-time, S 
its Einstein tensor, and let (M,T) be the pair of the definition 
equations M of a medium and of its energy tensor T. We call 
here Rainich theory of the medium the set of necessary and 
sufficient conditions on g insuring the existence of the pair 
(M,n such that the Einstein equationsS = T(Ref. 1) hold. 

It is clear that this definition is nothing but a direct ex
tension to other media of results developed by Rainich2 for 
the regular electromagnetic field; in it, T is the Maxwell
Minkowski energy tensor and M is the set of the vacuum 
Maxwell equations. 

Rainich worked out his theory about seven years after 
the Einstein paper on the foundation of the general theory of 
relativity,3 where both media, the perfect fluid and the elec
tromagnetic field, were explicitly considered. It seems rather 
paradoxical that the perfect fluid had not, up to now, been 
the object of a work analogous to Rainich's one on the elec
tromagnetic field. 4 We would like to comment here on four 
of the factors that have contributed to this situation. 

(i) The apparent simplicity of the barotropic case. A 
Rainich theory involves two sets of equations: a first, alge
braic, set ensuring that S has the same algebraic structure as 
T, and a second, generally differential set translating in 
terms of g (and its differential concomitants) the definition 
equations M. In the barotropic case, the second set reduces 
to the expression of the functional dependence of the two 
algebraically independent invariant scalars of S, so that to 
complete the Rainich theory of the barotropic perfect fluid 
one only needs to know the algebraic characterization of the 
perfect fluid energy tensor. It is true that to obtain it is an 
easy task. Nevertheless, because of the Lorentzian character 
of the metric, it is not so easy a task as it has been evoked in 
the literature;5 in addition to imposing T to have a triple 
eigenvalue and be of algebraic type I, one must give the con
dition insuring that to the simple eigenvalue corresponds a 
timelike eigenvector. For symmetric tensors, the general 
problems of finding the causal character of the eigenspace 
associated to a given eigenvalue, and its application to the 
perfect fluid, have been solved only very recently;6 we will 
need here these results. 

(ii) The apparent multiplicity of fluid thermodynamics. 
Both the equations of electromagnetism and relativistic con
tinuous media have been largely analyzed, discussed, and 

criticized from the beginning of relativity. But, meanwhile, 
the matter for the electromagnetic field has been, in general, 
to find for it a nonlinear system.? For thermodynamic con
tinuous media, the matter has been to establish the basic sys
tem of equations, playing the role analogous to the Maxwell 
ones. And, as it is well known, there are many proposed 
versions for this basic system. This situation would indicate 
that thermodymamics is not yet ripe to be incorporated in 
relativistic continuous media. Nevertheless, Marle's workS 
pointed out in the opposed sense: many of these versions9 

may be obtained from a unique relativistic kinetic theory, 
their differences corresponding essentially to the different 
methods used to approximate the Boltzmann equation. 10 

Furthermore, any two arbitrary versions differ in at least one 
of the following three aspects: the form of the conserved 
quantities (stress energy, momentum), the thermodynamic 
closure (generalized Fourier law, entropy balance), and the 
physical definition of the variables appearing in the equa
tions. What is important here for us is that, generically, 11 the 
proposed versions, when reduced to the thermodynamic per
fect fluid, differ at most in the third aspect,12 that is to say: 
the thermodynamic perfect fluid is generically unique, up to 
an eventual redefinition of some of its variables. 

(iii) The apparent independence of the thermodynam
ics from the energy tensor. In the usual presentation of the 
thermodynamic perfect fluid, the thermodynamic scheme is 
obtained by adding to the standard energy tensor a con
served matter current, an entropy relation, and an equation 
of state. It would seem that the existence of these three ele
ments could not be deduced from the metric and the energy 
tensor itself, so that a Rainich theory would not be possible. 
Nevertheless, we shall see that a unique condition from the 
energy tensor guarantees the existence of such a thermody
namic scheme. 

(iv) The wideness of Rainich's work. The work devel
oped by Rainich2 to geometricize the electromagnetic field 
was, fortunately, superabundant. In particular, he revealed 
the (weighted) (2 + 2) almost-product structure associated 
to the electromagnetic field 13 and obtained the necessary and 
sufficient equations that the volume element U of the struc
ture must verify in order to have a solution of the Maxwell 
equations. As similarly, a perfect fluid has an associated 
(weighted) (1 + 3) almost-product structure, the extension 
of the Rainich work to the perfect fluid would implicate cor
respondingly the obtainment of the necessary and sufficient 
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equations that the volume element u (Ref. 14) ofthe struc
ture must verify in order to have a solution of the hydrody
namic equations. 15 Rainich considered also the uniqueness 
of the Maxwell field, which he solved, but globally, the cor
responding uniqueness of the thermodynamic scheme would 
need to introduce some rather artificial ad hoc conditions. It 
is to palliate these features that we have chosen our above 
definition of a Rainich theory, which includes only a part of 
Rainich's work. 

The above analysis shows that a Rainich theory of the 
thermodynamic perfect fluid may be boarded. But, is it 
worthwhile? We think there are, at least, four reasons to 
construct it: (i) A general medium may not admit a Rainich 
theory. What are the media admitting it? According to 
Misner and Wheeler's geometrical point of view, 16 the exis
tence of a Rainich theory would be a necessary condition for 
such a medium to be realistic. In any case, these media admit 
such a particular physical characterization [see (iv) below] 
that the question about the existence of a Rainich theory is 
already an interesting question. (ii) A Rainich theory offers 
an alternative method 17 of integration of the Einstein equa
tions: the set of all unknowns being reduced to the metric 
coefficients, the completed system of equations (the Einstein 
ones plus those corresponding to the set M) is now an over
determined system (unless M = 0), and the corresponding 
methods of compatibility conditions may be applied. (iii) 
This last consideration may be of interest in the study of 
those conjectures about perfect fluids which do not restrict 
the space of solutions of the hydrodynamic (test) equations, 
but restrict the space-times with which they are coupled; 18 
due to this fact, it seems plausible that the Rainich theory 
may help their analysis. (iv) In the penultimate phase of a 
Rainich theory, the set M is reduced to a system of equations 
on the energy tensor: a medium which admits a Rainich the
ory is a medium which may be completely described in terms 
of the sole energy tensor variables. This fact may be of inter
est for practical purposes; 19 it is certainly of interest for con
ceptual and epistemological analysis. 20 

In Sec. II we find a simple, necessary, and sufficient 
condition for a perfect fluid to admit a thermodynamic 
scheme (Theorem 1 ), and in Sec. III we give the equations of 
the Rainich theory for it (Theorem 4). The barotropic and 
polytropic particular cases are given explicitly (Corollaries 
2 and 3). 

The results without proof of this paper were communi
cated to the Spanish relativistic meeting E.R.E. 87.21 

II. CHARACTERIZATION OF THE THERMODYNAMIC 
PERFECT FLUID 

A. Thermodynamic scheme 
(r 

The energy conservation equations 8 T = 0 (Ref. 22) for 
a perfect fluid T= (p+p)u®u-pg (Ref. 23) may be 
written 

dp = (p + p)a + pu, 

(p + p) () + p = 0, 

(1) 

(2) 

where a and () are, respectively, the acceleration and the ex
pansion ofu: a=u, ()= - 8u. 
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From the evolution point of view, the system (1), (2) is 
open. A usual algebraic closure is obtained by imposing a 
barotropic condition p = p (p); however acceptable in some 
cases, it is known that this condition is too restrictive in 
many other interesting physical situations.24 The standard 
general closure to the energy conservation system is the dif
ferential closure consisting of a thermodynamic scheme. 

Let r be the (Eckart) matter density25 of the fluid; de
noting by E=p - r the internal energy density and by 
E=E Ir the specific internal energy, one has 

p=r(1+E). (3) 

When an equation of state, depending only on the inter
nal structure of the fluid, is known, 

E = E(p,r), (4) 

the one-form dE + P dv is integrable, v = lIr being the spe
cific volume. Then, the temperature 9 of the fluid may be 
identified, by a classical argument, with an integrant divisor, 
and the specific entropy s is given, up to an additive constant, 
by 

9 ds = dE + P dv. (5) 

As far as creation or annihilation of baryons do not take 
place,26 the equation of conservation of matter holds: 

8(ru) =0. (6) 

The relation (5) allows us to write Eq. (2) in the form 

8(ru) = [relf]s, (7) 

where!= 1 + E + pv is the enthalpy index of the fluid/7 Eq. 
(7) shows the intimate relation existing between the local 
adiabatic motion and matter conservation. 

It is interesting to note that, while in classical thermody
namics, because of the nonequivalence between mass and 
energy, the internal energy E v of a given volume Vis deter
mined up to an additive constant; in relativistic thermody
namics this energy is univocal/y determined once the matter 
density is given. However, this fact does not imply that the 
zero of the internal energy Ev be fixed in relativity; because 
of its noninertial character, the matter density is only deter
mined up to a constant factor and, as a consequence, there 
still exists indeterminacy of E v by an additive constant. 
Thus, if M and M' = kM denote two mass balances28 of the 
particles contained in Vone has r = M I V, r' = M 'I Vand it 
results inE' v = (1 - k)M + Ev. This observation is perti
nent, for example, in the study of reaction fronts, where it 
allows us to localize conveniently the binding specific energy 
of the reaction,29 or in the study of those hot perfect gases for 
which the limit 9-+0 is meaningless. 30 

B. Characterization theorem 

Einstein equations for the thermodynamic perfect fluid 
being not easy to solve, one often, in a first step, looks for a 
solution to the general perfect fluid and, once obtained, in a 

B. Coli and J. J. Ferrando 2919 



                                                                                                                                    

second step, considers the admissibility by this solution of a 
thermodynamic scheme. 

The existence of a thermodynamic scheme for a perfect 
fluid verifying Eqs. (1) and (2) amounts to the existence of 
functions c and r such that Eqs. (3), (4), and (6) hold. As a 
consequence of (6), the equation in the function F, 

F=e, (8) 

must admit at least one solution of the form 

F(x) = F(p(x),p(x». (9) 

If this is the case, the one-form r=.dp + (p + p)dFis 
integrable, the variables r, c, and 1 may be defined by 
r=.e - F, c = peF 

- 1, andl = (p + p )eF
, and, to every inte

gral factor D > 0 for r, it may be associated an absolute tem
perature e = eF I D and a specific entropy s such that 
ds = Dr. Thus we have the following. 

Lemma 1: The necessary and sufficient condition for a 
perfect fluid to admit a thermodynamic scheme is the exis
tence of solutions of the form F = F(p,p) to the equation 
F = e. Then, every pair {F,D} where D> 0 is an integral 
factor of the one-form dp + (p + p) dF, determines a ther
modynamic scheme. 

For a thermodynamic perfect fluid, Eq. (9) may be 
written in the equivalent form 

dF= h(p,p)dp + g(p,p)dp, 

which implies 

(10) 

F = hp + gp. (11) 

On the other hand, from (2) and (8) one obtains 
p + (p + p)F = 0, so that (11) becomes 

hp + gp = - pl(p + p). (12) 

Suppose p = 0; from (12) it is either p = 0 or g = O. If 
P = 0, every arbitrary function F = F(p,p) verifies (8); 
meanwhile if g = 0, they are the functions of the form 
F = F(p) which verify (8). Suppose p 1= 0; then if g = 0, 
from (12) we have h = - 1/(p + p) and (10) implies that 
p = p(p): the fluid is barotropic. Finally, if gl=O we have 
from (12) 

jJ!p = [ - 1/g(p,p) ]{1/(p + p) + h(p,p)}, (13) 

which implies that pip is a function of state: 

jJ!p=.X(p,p)· (14) 

Conversely, if ( 14) is verified, we can consider the following 
first-order partial differential equation: 

(15) 

Then, because of (2) and ( 11), every solution F(p,p) to it is 
a solution to (8). Differentiating (14) and multiplying by p2, 
we obtain an equivalent expression which is identically satis
fied for p = 0, and thus we have the following. 

Theorem 1: The necessary and sufficient condition for a 
perfect fluid T = (p + p) u ® u - pg to admit a thermody
namic scheme is 

(pdp - pdp) 1\ dp 1\ dp = O. (16) 
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Let A = A (p,p) and Il = Il (p,p) be two independent 
thermodynamic variables, J = J(A,Il;P,P) 1=0. We know 
that dA 1\ dll = J dp 1\ dp so that, evaluating p dp - P dp up 
to terms in dA and dll, one easily finds the following. 

Corollary 1: Let T = (p + p) u ® u - pg be a perfect flu
id and A = A (p,p) and Il = Il (p,p) two independent thermo
dynamic variables. T admits a thermodynamic scheme iff 

(17) 

III. RAINICH THEORY FOR THE THERMODYNAMIC 
PERFECT FLUID 

Remember that if S is the Einstein tensor of the metric g, 
and if {M, T} is the pair of definition equations of a medium, 
with T the energy tensor and M the complementary equa
tions, then we call Rainich theory 01 the medium the set of 
conditions on g and on its differential concomitants, which 
ensure the existence of the pair {M, T} verifying the Einstein 
equations S = T. 

As everyone knows, the genuine Rainich theory con
cerns the regular Einstein-Maxwell equations. The pair 
{M, T} is constituted of the set M of the vacuum Maxwell 
equations, {jF = {j* F = 0, and of the Minkowski energy ten
sor T, 2T= F2 + (*F)2. Let us write R = Ric(g), r 
= tr R, s = tr R2, and define the one-form 
¢ = s - I . * (VR X R) (Ref. 31); the Rainich theory of the 
regular Einstein-Maxwell space-times consists2 of the alge
braic equations r = 0, R2 = (1/4 )sgI=O, and the differential 
equations d¢ = 0; any metric g verifying these conditions 
defines an Einstein-Maxwell space-time corresponding to a 
regular solution to the source-free Maxwell equations. 

A. Algebraic conditions 

Let us consider the thermodynamic perfect fluid space
times. The pair {M, T} consists now of the set M of Eq. (16), 
ensuring the existence of a thermodynamic scheme, and of 
the energy tensor T = (p + p) u aJ U - pg. 

The algebraic set of equations characterizing the perfect 
fluid energy tensor T were partially given by Taub5

; we will 
present here a slightly different form of his result. 32 Let tr 
and I be, respectively, the trace operator and the identity 
over the second rank tensors; consider the trace-removing 
operatorQ=.I - (1/4)g tr, and, for any second rank tensor 
T write t=.tr T and s=.tr T2; then we have the following 
lemma. 

Lemma 2 (Taub's lemma): A second rank symmetric 
tensor T is of algebraic type I and admits a strictly triple 
eigenvalue if, and only if, it satisfies the following relations: 

Q(T2 - XT) = 0, 

4s>t2, 2XI=t. 

This result says nothing about the causal character of 
the associated eigenvectors. Regarding them, the following 
lemma has been shown elsewhere.6 

Lemma 3: A necessary and sufficient condition for the 
eigenvector associated to the single eigenvalue to be timelike 
is that the expression 
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E{2P(x)T- x} 

be positive for any timelike vector x, where € denotes the sign 
of the quantity e - 6ts + 8 tr T3. 

Weare assuming that the perfect fluids considered here 
correspond to a macroscopic level of description. For this 
reason it is plausible to submit them to the Plebanski energy 
conditions, which state that, for any observer, the energy 
density is positive definite and the Poynting vector is non
spacelike.33 In terms of p and p, the Plebanski conditions for 
the perfect fluid are equivalent to the inequalities 
- p <p<p, which may in tum be expressed as € = 1 and 

X;>O. Taking into account the above two lemmas, one ob
tains the following theorem.6 

Theorem 2: In a space-time of signature - 2, a second 
rank symmetric tensor T defines algebraically a perfect fluid 
submitted to the Plebanski energy conditions if, and only if, 

Q(T 2 
- XT) = 0, 

4s>f, t<2X;>0, 

2P(x)T> X' 

(18) 

where t = tr T, s = tr T2, Q = 1- (1I4)g tr, and x is any 
timelike unit vector. 

The intrinsic decomposition of T may then be obtained 
according to the following result.6 

Theorem 3: The total energy p, the pression p, and the 
direction of the unit velocity U of a perfect fluid energy tensor 
T are given by 

p = 1I2(3X - t), p = 112 (X - t), 

uo::i(x)T+px, 

where 

X=1I2(t+z), Z= [(4s-f)/3]1/2, 

and x is any timelike vector. 

B. General case 

(19) 

(20) 

Let us write R=Ric(g), r=tr R, and s=tr RZ; from 
Einstein equations, we have (Ref. 1) R = T - 1I2tg so that 
r = - t = - tr Tahd s = tr TZ. Taking into account these 
values in definitions (20) and the expressions (19), the Jaco
bian of rand s with respect p and p is given by 
J(r,s;p,p) = - 6(2X + r), which does not vanish under the 
third of the assumptions ( 18). Thus according to Corollary 
1, the perfect fluid admits a thermodynamic iff (17) holds 
for A = rand J-L = s. 

Iff = 0, (17) holds trivially; if r # 0, (17) is equivalent 
to 

d(s/r) 1\ dr 1\ ds = 0, (21) 

and we have to evaluate the scalar s/r in terms of the con
comitants R, r, and s of the space-time metric g. To do it, let 
us observe that the direction of the unit velocity u, as given 
by the third of the relations (19), is the image of the endo
morphism U given by 

U= T + pg = R + 1I4(z - r)g, (22) 

so that u = Ai(y) U, where y is any vector field not belonging 
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to the kernel of U: i (y) U # O. Thus, for any function f we 
havef = i(u)df = i(dj)u = Ai(dj)i(y) U; in particular, tak
ingf= randy = dr, we have r = AP(dr) U, which vanishes 
only if dr belongs to the kernel of U. Also, for f = s we have 
s = Ai(dr)i(ds) U and, consequently, 

s/r = i(dr)i(ds) U /P(dr) U. (23) 

On the other hand, let us note that the three inequalities 
expressed by the second and the third of the relations (18) 
are equivalent to 4s> rZ and z;>r, which are nothing but 
- 2Sl/Z <r<s1lZ, as it is not difficult to show. 

Finally, taking into account this result, Theorem 2, and 
expressions (21) and (22), we have the following. 

Theorem 4 (Rainich theory of the thermodynamic per
fect fluid): A metric g defines a thermodynamic perfect fluid 
space-time with the Plebanski energy conditions if, and only 
if, it verifies 

and 

or 

_ 2Sl/Z < r<sl12, 

R2 - 21TR + 114(21TC - s)g = 0, 

P(x)R> 1T, 

P(dr)U=O 

d[i(dr)i(ds) U /P(dr) U] 1\ dr I\ds = 0, 

where R=Ric(g), r=trR, s=tr R2, 
1T= 1I4{r + [( 4s - r2)/3] liZ}, U=R + (1T - r/2)g and x 
is an arbitrary unit timelike vector field. 

As a corollary of Theorem 3, the total energy density p, 
the pression p, and the direction of the unit velocity u of the 
perfect fluid are then give by 

p=31T-r, p=1T, uo::i(x)R+(1T-r/2)x. 

C. Barotropic case 

Let us note that in the barotropic case, since the Jacobi
an J(r,s;p,p) does not vanish, the condition dp 1\ dp = 0 is 
equivalent to dr 1\ ds = O. Thus we have the following corol
lary. 

Corollary 2: A metric g is a barotropic perfect fluid 
space-time with the Plebanski energy conditions if, and only 
if, it verifies the algebraic relations of Theorem 4 and the 
differential equation dr 1\ ds = O. 

Also, in the case of a polytropic fluid of index y, 
p = (y - 1 )p, it is easy to show the following result. 

Corollary 3: A metric g defines a polytropic perfect fluid 
space-time with the Plebanski energy conditions if, and only 
if, it verifies the algebraic relations of Theorem 4 and the 
equation d (s/rz) = O. Then, if s/r2 = c, the polytropic index 
is given by 

y={4c-l + [(4c-l)/3]1I2}/(3c-l). 
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For a theory of gravitation with nonlinear Lagrangian it is shown that the Cauchy problem is 
well posed. 

I. INTRODUCTION 

In recent years, a great deal of interest has been devoted 
to fourth-order theories of gravitation based on nonlinear 
Lagrangians: 

L(g,r,R,,p,rJit» = - (1/2K)~ - detgF(g"v,R"v) 

+ L mat (g,r ,,p,a,p) , (1 ) 

where L mat is a matter Lagrangian, R"v = R"v (g) is the 
Ricci curvature of a metric tensor g, r is the Levi-Civita 
connection of g, and K = 81TG is the gravitational constant. 
Different generalizations of the Einstein theory can be ob
tained by a choice of a special form of the function F; e.g., the 
quadratic Lagrangian 

F(g"v,R"v) = aR + bR 2 + clt'Pg"vRa"Rpv , (2) 

has been used by many authors. 1 The Cauchy problem for 
theories derived from (2) has been examined by a number of 
authors. 2 The purpose of the present paper is to study the 
Cauchy problem for a general theory based on a Lagrangian 
(1). 

II. THEORY 

The Euler-Lagrange equation for the theory 

oL =0 
og"v 

has the form 

G"v + KT"V = 0, 

where 

and 

o(~ - detgF) 
~::;:::=-
~ - det g og"v 

oLmat 
-:-;::::::::;==-
2~ - det g og"v 

Let us denote by 'TT"V an auxiliary quantity: 

'TT"v=~ ( R) aR g, 
"V 

(3) 

(4) 

(5) 

(6) 

(7) 

(it is interesting that the quantity 1T can be interpreted3 as a 
new metric tensor but this point of view is not relevant for 
the present paper). The fourth-order differential equation 

(3) can be replaced by a system of second-order differential 
equations for g and 1T treated as independent quantities. 
More precisely, Eq. (7) is already a second-order differen
tial equation for g. Moreover, due to definition (5) we have 

G "V = ~ DaDp (g"v~P + It'f3'TT''v _ gf3"~v _ gf3v~,,) 

_.1.. g"vF _ aF . (8) 

2 ag"v 
Therefore Eq. (4) can also be treated as a second-order 
equation for 1T. It is interesting to notice that the second
order differential operator acting on 'TT"V is universal and 
does not depend on a special choice of a Lagrangian function 
( 1).1t is easy to check the scalar invariance of the function F 
implies the following identity: 

aF = _ ~vRa". 
ag"v 

Therefore expression (8) can be rewritten as 

(9) 

(10) 

In a similar way the invariance of the Lagrangian (1) im
plies the Noether identity 

Dv (G "V + KT"V) = O. (11) 

Let us assume that our four-dimensional space-time M is a 
topological product of a three-dimensional manifold ~ and a 
real line (time axis). Moreover, we assume that the hyper
surfaces ~t corresponding to t = const are spacelike. We in
troduce the following quantities: 

(12) 

(13) 

(14) 

Let us notice that diey do not contain any information about 
the second derivatives a~o" with respect to the time vari
able. The corresponding derivatives of the spatial compo
nents of the metric (i.e., a~ij) are contained only in X. Let 
us denote by F a new function that is given by 

F(g,x,Y) = F(g,R(g,x,y». (15) 

Let us define 
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.. ap 
H'J=- (g,X,y). 

aXij 
(16) 

It is easy check that 

H ij = 1T"ij + (1/ gOo)( 1T"OOgij _ ~igOj _ 1T"0jgOi) (17) 

and 

1T"0!'- = ap (g,X, y). 
ay!'-

(18) 

We assume that the components go!'- of the metric g (lapse 
and shift4

) are known in the entire space-time M. We will 
prove that the Cauchy problem for field equations (4) and 
(7) is well posed for the following set of Cauchy data (CD) 
on ~: the three-dimensional metric tensor gij' the three-di
mensional tensor H ij, the matter field tP, and their first time 
derivatives; a~ij' aoHij, and aotP· 

Our analysis will be based on the following regularity 
conditions, which we impose on P (i.e., on F): 

det( ap )#0, 
aXij 

det( a
2

p )#0, 
aXij aXkl 

(19) 

(20) 

where the second derivative of P is treated like a (6 X 6) 
matrix. Condition (20) guarantees the existence of a solu
tion of the six algebraic equations (16) with respect to Xij 
(i.e., Rij) 

Rij=:?llij(g,Y,H), (21) 

where :?ll ij are functions uniquely defined by the Lagrangian 
(1 ). Field equations (7) are equivalent to (21) and (18), 
rewritten as follows: 

1T"0!'- = 9!'-(g,a~,H): = ap (g,:?ll ij (g, Y,H) , y). (22) 
ay!'-

Equation (21) enables us to calculate the second derivatives 
aO~ij on ~ in terms of g, a~, and H. It is important that the 
time derivatives of H do not appear. This allows us to calcu
late ao1T"°!'- (on ~) differentiating Eq. (22): 
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(23) 

Using (23) we rewrite the field equations (4) so tha~ the 
time derivatives of the second order appear explicitly. The 
spatial part (G ij + KT ij = 0) has the form 

!goo aooHij = Wj(F + HklRkl ) - 31T"iaR/ 

- i (1/goo) (~gij - 1T"0igOj - 1T"0jgOi)R 

(24) 

where by G I (CD) we denote the quantity that is determined 
by the Cauchy data on ~. The remaining part of ( 4 ) 

Go!'-(g,ag,H,aH) + KT°!'- = 0 (25) 

gives us the constraint equation for the Cauchy data: 

ig°!'-(F + HijRij) - ~!'-R + G2 (CD) = O. (26) 

It is known that the Noether identity (11) implies the con
straint conservation. Indeed, we have 

ao(G°!'- + KT°!'-) = - r A °o(G A!'- + KTA!,-) 

_ rA!'-o(GOA + KToA) 

- Dj (Gj!,- + KTj!,-). (27) 

As a result of the vanishing of ( G ij + KT ij), the above equa
tions can be considered as four linear homogeneous differen
tial equations for (G o!'- + KT°!'-) with the vanishing Cauchy 
data on ~. This implies G°!'- + KT°!'- = 0 identically. 

'A. D. Sakharov, Dok!. Akad. Nauk. SSSR 171, 70 (1967); F. w. Hehl and 
G. D. Kerlick, Gen. Re1ativ. Gravit. 9, 691 (1978); K. I. Macrae and R. J. 
Riegert, Phys. Rev. D 24, 2555 (1981); A Frenke1 and K. Brecher, ibid. 26, 
368 (1982); V. Muller and H.-J. Schmidt, Gen. Relativ. Gravit. 17, 769, 
971 (1985); H. J. Schmidt, Astron. Nachr. 308,183 (1987). 

2K. S. Stelle, Gen. Relativ. Gravit. 9, 353 (1978); P. Teyssandier and Ph. 
Tourrenc,1. Math. Phys. 24, 2793 (1983). 

3G. Magnano, M. Ferraris, M. Francaviglia, Gen. Relativ. Gravit. 19,465 
(1987); A. Jakubiec and J. Kijowski, Phys. Rev. D 37,1906 (1988). 

4R. Arnowitt, S. Deser, and C. Misner, in Gravitation: An Introduction to 
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The TeukolskY-StarobinskY identities are proven for arbitrary spin s. A pair of covariant 
equations are given that admit solutions in terms of Teukolsky functions for general s. The 
method of proof is shown to extend to the general class of space-times considered by Torres del 
Castillo [J. Math. Phys. 29, 2078 (1988)]. 

I. INTRODUCTION 

Gravitational and electromagnetic perturbations in 
Kerr geometry are known to be intimately connected to Teu
kolsky functions. I This came about because ofinvestigations 
by Teukolsky who showed that in the Newman-Penrose for
malism2 separable solutions were possible for certain Max
well and Weyl scalars in Kerr geometry. The resulting sep
arable solutions are known as Teukolsky functions. In 
addition to the problem of gravitational and electromagnetic 
perturbations these functions reappear when the neutrin03 

and Rarita-Schwinger4 equations are solved in a back
ground of Kerr geometry. These functions satisfy what are 
known as the Teukolsky-Starobinsky identities. In this work 
we prove these identities for any spin s. This result is estab
lished relatively easily. One ofthe difficulties with the Kerr 
metric is that for s > 2 these functions do not appear to come 
from any covariant equation. We rectify this situation by 
introducing covariant equations that admit Teukolsky func
tions for general s as their solutions. No claim is made that 
these equations have physical significance. Finally we note 
that the method of proof applies to the more general class of 
space-time studied by Torres del Castill05 who proved these 
results for s;;;;2. 

II. THE TEUKOLSKY-STAROBINSKY IDENTITIES 

We consistently use in this article the spinor notation of 
Penrose and Rindler6 and the null tetrad formalism of Chan
drasekhar.7 Specifically we restrict ourselves to the Kinners
ley null tetrad of vectors with components 

fa = (1/~a)(,-2 + a2,a,0,a), 

na = (l/~pp*)(,-2 + a2, - a,O,a), 

ma = (l/~p) (ia sin 8,0,1,i csc 8) 

rna = (l/~p*) ( - ia sin 8,0,1, - i csc 8), 

where 

a = ,-2 - 2Mr + a2, p2 = ,-2 + a2 cos2 8 

and 

p = r + ia cos 8. 

(1) 

(2) 

The Kerr solution has the line element 

d~ = (1 - ~:: )dt 2 - p!* d,-2 - pp* d8 2 

_ (,-2 + a2) + 2a2~:in2 8)sin28 dtfo2 

+ 4aM~_s;n2 8 dt dtfo. 
pp 

(3) 

The differential operators ffl n' ffl ~, .st' n' and .st'~ are de
fined as 

ffl n = ar + iK /a + 2n[ (r - M)/a], 

ffl~ = ar - iK /a + 2n[ (r - M)/a], 

.st' n = a f) + Q + n cot 8, 

.st'~ = af) - Q + n cot 8, 

where 

(4) 

K = (,-2 + a2)u + am and Q = au sin 8 + m csc 8. (5) 

Teukolsky functions P + sand P _ s in the variable r satisfy 

(affl 1- s ffl'6 - 2(21s l - l)iur)P + s =).,P + s' 
(6) 

(afflL s ffl 0 + 2(21s l - l)iur)P _ s =).,P - s' 

where s = p, .... The first result proven is the following 
theorem. 

Theorem 1: Ifs = p, ... then 

as ffl~S[ afflL s ffl 0 + 2(2s - 1 )iur] 

= [affl 1- s ffl'6 - 2(2s - 1 )iur] as ffl~S. (7) 

Proof By induction on s. Noting that for s = ~ 
a l/2fflo(a fflT/2fflo) = (affl 1/2 ffl'6 )al/2fflo. (8) 

If we now assume the result is true for a given s then 

a>+ l/2ffl~(s+ 1/2) [afflL (s+ 112) fflo + 2(2(s +~) - l)iur] 

= a>+ 1/2 ffl6>+ I [a(fflT _ s - (r - M)/ a)ffl 0 + 4siur] 

= a l / 2 ffl _ s [as ffl~S(a fflL s ffl 0 + 2(2s - l)iur) 

+ as ffl ~S(2iur - (r - M) ffl 0) ] 
(9) 

and 
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[ a~ ~t _ 2(2(s + 1) _ l)iur]as+ 1/2 ~2(s+ 112) 1-(s+1/2) 0:2 0 

= aI/2(a~ 1-, ~Tn - 4siur)~ _ ,a·' ~~' 
=aI/2~ -s(a~1/2 ~ -s -4siur)aS~~s+4siuas+1I2~~s 

= al/2~ -s[ a( ~ 1-, + (2s _ 1) r~ M _ 2~K)( ~6 _ 2s r~ M + 2~) _ 4siur]as ~~s + 4siuas+ 1/2 ~~s 

= a l/2 ~ _ s [(a~ 1-, ~6 - 2(2s - 1)iur)a' ~~s + (2iur - 2s - (r - M)~ _ s)a' ~~s + 4siua' ~~' - I]. (10) 

Note that 

a' ~~'(2iur - (r - M)~ 0) = (2iur - (r - M)~ _ ,)a' ~~' + a'( 4siu ~~'-I - 2s ~~') 

= (2iur - 2s - (r - M)~ _ ,)a' ~~' + 4siua' ~~' - I. 

Thus subtracting (10) from (9) and making use of (11) we have 

a'+ 112 ~~('+ 112) [a ~L (,+ 112) ~ 0 + 2(2(s + !) - l)iur] 

- [a~I_('+1/2) ~6 -2(2(s+!) -l)iur]aS+I/2~~('+1I2) 

= a l/2 ~ _, [a' ~~'(a ~t _,~ 0 + 2(2s - 1 )iur) - (a~ 1- s ~6 - 2(2s - 1 )iur)aS ~~']. 

(11) 

(12) 

A direct consequence of this result is that a~~'p _, is a solution of the Teukolsky equation for P +,. Similarly it may be 
proven that 

a' ~62'[ a~ 1-, ~6 - 2(2s - l)iur] = [a ~L, ~ 0 + 2(2s - 1 )iur] a' ~62', (13) 

i.e., a' ~62' P +, is a solution of the Teukolsky equation for P _so By suitable choice of the relative normalization of the 
functions we can write the following results: 

a' ~~' P _, =D,P +" 

a' ~62' P +, = D~ P _" 
(14) 

whereD, is some complex constant. These are the Teukolsky-Starobinsky identities known to be true for s = !, 1,~, 2. For the 
variable () we can prove a similar result. 

Theorem 2: If s =~, 1, ... then 

2" 1- ,2" 2 _, ••• 2", _ 12", [2"L ,2", + 2(2s - 1)ua cos () ] 

= [2"1_' 2";-2(2s-1)uacos()]2"I_,2"2_,···2",_I2",. 

Proof Again using induction we note that for s = ! 
2" 1/2(2"112 2" 1/2) = (2" 1/2 2"t12)2" 1/2' 

Then 

2" 1- (,+ 112) 2" 2 _ (s+ 1/2) ... 2" (s+ 1/2) _12"s+ 1/2 [2"1 _, 2", + 2(2(s +!) - l)ua cos ()] 

= (1/~sin ()2" _,2"1_,' "2"._12",(2";2", + 4sua cos ()~sin () 

(15) 

(16) 

= (1/~sin () ) 2" _,2" I _., ... 2", _ I 2" s [2"1 _, 2"., + 2(2s - 1 )ua cos () - cot ()2", + 2ua cos () ] ~sin () (17) 

and 

[2" 1- (, + 112) 2"1+ 112 - 2(2(s +!) - l)ua cos () ] 2" 1 - (,+ 112) 2"2_ (,+ 1/2) ... 2' (, + 112) _ I 2" (,+ 1/2) 

= (1/ ~sin () )( 2" _, 2"; - 4sua cos () 2" _,2" I _, ... 2", _ 12", ~sin () 

= (1/~sin ()2" _, (2"; 2" _, - 4sua cos ()2" 1- ,2" 2 _, ... 2" ,_ 12", ~sin () 

- 4sua ~sin () 2"1 _ ,2" 2 _, ... 2",_ 12", ~sin (). 

Now note that we can write 

2"; 2" _, - 4sua cos () = (2" 1 _, + (2s - 1)cot () - 2Q)( 2"; - 2s cot () + 2Q) - 4sua cos () 

= 2" 1-, 2"1 - 2(2s - 1 )ua cos () - cot () 2"; + 2s csc2 () - 2m cot () csc () 

observing the identities 

(18) 

(19) 

2" a 2" a + 1 ... 2" b- 12" b COS () = COS ()2" a 2" a + 1 ... 2" b- I 2" b - (b - a + 1)sin ()2" a + I 2" a + 2' •• 2" b _ 1 2" b (20) 

and 

2" a 2" a + I ... 2" b _ 12" b cot () = cot ()2" a _ I 2" a ••• 2" b _ 2 2" b _ 1 - (b - a + 1) 2" a 2" a + I ... 2" b _ 2 2" b _ 1 (21) 

and noting that 
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(1!~sin(})2" _s[2"I_s2"2_s·"2"s_l2"s( -cot(}2"s +2uacos(}) 

- ( - cot (} 2"; + 2s csc2 
(} - 2m cot (} csc (}) 2" I _ s 2' 2 _ s ... 2' s _ I 2' s ] ~sin (} 

+ 4sua~sin (} 2'1_s2" 2 -s·· ·2's_1 2's~sin (} 

= (1/~sin(})2" -s[ -cot(}2" _s2'l_s···2"s_l2's +2s2'I_s2"2_s"·2"s_l2's 

+ 2ua cos (} 2" I _ s 2" 2 _ s ... .::t's _ I .::t' s - 4sua sin (}.::t' 2 _ s.::t' 3 _ s ... .::t's _ I .::t's 

- ( - cot (}2" s + 2Q cot (} + 2s csc2 (} - 2m cot (} csc (}).::t' 1- s2" 2 _ s ... .::t' s- I .::t' s ]~sin (} 

+ 4sua~sin (} 2" I _ s 2" 2 _ s ... 2" s _ I .::t' s ~sin (} 

= (1!~sin (} ).::t' _ s [ - cot (}2" _ s + 2s + 2ua cos (} + cot (}.::t's - 2Q cot (} - 2s csc2 
(} 

+ 2m cot (} csc (}] 2" 1- s2" 2 _ s .. · .::t's_l2"s~sin (} 

=0, 

we have established that 

2"1_ (s+ 1/2) 2"2_ (s+ 1/2) .. . 2"(s+ 1/2) -12"s+ 1/2 [2'1 -s .::t's + 2(2(s +!) - l)ua cos (}] 

- [2" 1- (s+ 1/2) .::t'! + 1/2 - 2(2(s + !) - l)ua cos (} ] 2' 1- (s+ 1/2).::t' 2 - (s+ 1/2) ... 2' (s + 1/2) _ I.::t' (s + 1/2) 

= (1/~sin (} ) 2" _ s [ 2" 1- s2' 2 _ s·· . .::t' s- I .::t's(2'!- s.::t' s + 2(2s - 1)ua cos 0) 

- (2"I_s .::t'J - 2(2s - l)ua cos 0).::t'I_ s.::t'2_s·· ·2's_1 2's ]~sin (} 

(22) 

(23) 

and the result is proven. In this case the Teukolsky equations 
are defined as 

Using the Rarita-Schwinger equation and the symmetry in 
the indices Band C we write 

(2"1-s 2"s +2(2s-1)uacos(})S+s = -AS+ s' 

(2"I_s 2"; -2(2s-1)uacos(})S_s = -AS_ s. 
(24) 

Consequently Theorem 2 tells us that we can upon suitable 
renormalization, find a constant Cs such that 

2" I _ s .::t' 2 _ s ... 2" s _ I 2" sS + s = CsS - s· 

Similarly one may prove the identity 

2"1- s .::t'L s .. ·2"L I 2"; 

X [2"I_s 2"; - 2(2s - l)ua cos (}] 

= [.::t'1- s 2" s + 2(2s - 1 )ua cos (} ] 

X 2"1- s .::t'L s .. ·2"L I .::t'; 

from which we can write 

(25) 

(26) 

2"1-s 2"Ls···2"LI 2"; S_s = CsS+ s. (27) 

These are the Teukolsky-Starobinsky identities known to be 
true for s = !, 1 ,~,2. The question we now ask is what if any 
significance do the Teukolsky functions have for general s. 
Before giving a covariant equation that works for general s 
let us recapitulate how things work in the case of the Rarita
Schwinger field. The Rarita-Schwinger equation written in 
spinor notation is 

(28) 

where FABB , = F(AB)B'. We can construct a coupled system 
of equations as follows. Let 

hABC = V(AA,FBC) A'. (29) 

Then hABC satisfies a first-order equation as follows: 

VAA'hABC = VAA'V(AB,FBC) B' 

(30) 
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= ~VAA'V(BB,Fc)AB'. 

Consequently (30) becomes 

VAA'hABC = VAA'V(BB,Fc)A B' 

(31 ) 

AA' B' [AA' ] B' = V(BB'V FC)A + V ,V(BB' FC)A 

[ AA' ] B' = V ,V(BB' FC)A 

= - ~'B,'I'ABCMFMAB' 

= 'l'BcAMFAMA'. (32) 

The pair of equations (29), (32) when written in Newman
Penrose notation become 

(D-p)h 111 -(8*+31T+a)h 110 = -'I'2FllO" (33) 

(D - 2p)h llO - (8* + 21T - a)h lOO = 'l'2FiOo' , (34) 

(D - 3p)h iOO - (8* + 1T - 3a)hooo = - 'l'2FOOO' , (35) 

(8 + 3/3- r)h lll - (d + y+ 3p.)h llO = - 'l'2F111' , (36) 

(8 + /3 - 2r)h llO - (d - Y + 2p.)h IOO = 'l'2F iOl' , (37) 

(8 - /3 - 3r)h lOO - (& - 3y + p.)hooo = - 'l'2FOOI' , (38) 

and 

(D - p*)Fooo, + (8 - a* - 2/3 + 1T*)Foo
I ' = hooo, 

(8* + 2a +/3* - r*)Fl1o, 

+ (d + 2y- r* + p.*)Fl1
l' = hlll' 

2[ (D - p* + p)FIOO, + (8 + 1T* - a* + r)FIOI,] 

+ [(8* + /3* - 2a - T* - 21T)FooO, 

+ (A + p.* - y* - 2y - 2p.)FOO
1
'] = 3h 1oo, 

Kalnins, Miller, Jr., and Williams 
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(40) 
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2[(0* +f3* -7* -1T)FIOO' + (. - r* +p* _p)FIO
I,] 

+ [(D - p* + 2p)FII O, 

+ (0 - a* + 2f3 + 1T* + 27)FII
I'] = 3h llo' 

Considering Eqs. (35), (38), and (39) and putting 

h 100 = (lIp* )HI, hooo = Ho, 

Fooo= (lI..j2P*)Gooo" Fool' = (1I..j2p2)GooI', 

we obtain 

(2't_1I2 + 2ia;;n 8) HI + a (li)!12 - :*) Ho 

= - '1'2 Goo I , , 

(
li) .2..)H _ (2' _ 2ia sin 8)H = ° + _* I 3/2 _* ° P P 

(42) 

(43) 

(
Rr 1 )a ( CPt ia sin 8)a 2H = ° - p* 001' - -z _ 112 -~ 000' = 2p 0' 

(44) 

These equations imply that Ho satisfies the separable equa
tion 

(ali) I li)!/2 + 2't_ 112 2'3/2 - 4iap )Ho = 0 (45) 

admitting solutions Ho = a -3/2p +3/ZS+3/2' Similarly if 
Eqs. (33), (36), and (40) are considered then putting 

we obtain 

(li)o - :* )H3 - (2' -1/2 + 2ia;;n 8)H2 = - 'l'2GIIO" 

(2'112 - 2ia;;n 8)H3 + a( li)t_ 1/2 + p2*)Hz = - 'l'ZGIII" 

( 2' -1/2 - ia ;i: 8) Gil I' + a( li)t_ 1/2 - ;* )GIIO' = 21 H 3 • 

(47) 
The functions H3 satisfies the separable equation 

(a li)t_ lIz li)o + 2' -I/Z 2'1/2 + 4iap)H3 = 0 (48) 

admitting solutionsH3 = P -3/2S-3/Z' Two solutions to Eqs. 
(44) and (47) can be found 

and 

(1) hooo = a -3/2p +3/2S+3/2' 

1 (cp 2iasin8)A_3/2 S 
Fooo' = .z 3/2 - _ L.1 P +3/Z +3/2' 

,(2p * 'I' 2 p* 

F. - - 1 A( Rrt 2 ) A -3/Zp S 001' - ---L.1 = 31Z - -_- L.1 +3/2 +3/2' 
..j2p2'1' Z p* 

1 
(2) hili = -::;3 P -3/ZS -3/2' 

P 

- 1 ( 2 ) FllO, = li)o - -_- P -3/2S-3/2' 
..j2p * 3'1'z p* 

- a (t 2ia sin 8) Fill' = 2'3/2 - _ P -3/ZS -3/Z' 
..j2p2p * 2'1' 2 p* 

(49) 

In the case of each solution we have given only the nonzero 
components. It is interesting to note that the spinor FABA , 
satisfies the equation 
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VA C' V(AA,FBC) A' = 'l'AMBCFAMC" (50) 

However, the above choices do not satisfy the Rarita
Schwinger equation (28).1t is possible to extend these equa
tions to a set which has solutions in terms ofTeukolsky func
tions for general s. If we consider the equations 

A' A' 
¢V(A,A,F A,"'A,,) - i(2s - 3)(V(A,A,¢)F A,"'A,,) 

= ¢hA "·A , , " 
(51) 

AA'h BC A' V AA," 'A" = (2s - l)(s - 1) 'I' (A,A, FA." 'A,,)BC' 

where ¢ = 21 = 'I' ABCD 'l'ABCD (Ref. 8) then these equations 
admit analogous solutions, viz. 

and 

(1) ho .. o = a -sp +sS+s' 

-1 
Fo .. ·ol' = ---------

..j2p2(2s-1)(s-l)'I'2 

xa(li)t _ (2s - l))a -sp S 
s _. +s +s' 

p 
1 

Fo···oo' = ---------
..j2p*(2s-1)(s-l)'I'2 

(2) 

x(2's _ (2s - l)ia sin 8)a -sp S 
_. +s +s' 
p 

1 
h l "' 1 =---p _sS_s' 

(p* )Zs 

-1 
F I .. · IO, = ----------

..j2(p*)zS(2s-1)(s-l)'I'z 

x(li)o- (2S
p
--.1»)p_ sS_s, 

-a FI .. · II , =-----------
..j2p(p*)2S(2s-1)(s-1)'I'2 

X (2'; - (2s - ~~a sin 8)p _ sS _ s' (52) 

where P + sS + s are separable solutions of 

(ali) 1 li); + 2'1-s 2's - 2(2s - l)iap)a -sp +SS +s = 0 

and P _ sS _ s separable solutions of 

(a li)t li) s + 2' 1- s 2'; + 2(2s - 1 )icp)a - sp _ sS _ s = O. 

Equation (51) is a generalization of the Rarita-Schwinger 
equation although it does not in itself have obvious physical 
significance for s >~. We also note that the method of proof 
for the Teukolsky-Starobinsky identities can be successfully 
used in the general context of Torres del Castillo.5 Indeed we 
have the following result. 

Theorem 3: If the operators li) n and li)~ are defined by 

li) =!...-+i!L+n Q(J) = Q -nli) Q n 
n ~ Q Q 0 

and 

li)t =!...--i!L+n Q(I) =Q-nli)t Qn (53) 
n ar Q Q 0' 

with the functions q and Q polynomials such that q(3) = 0 
and Q (5) = 0, then for all integer s 
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QS ~62S[Q~I_s ~6 - (2s-l)iq(1) 

+i(s-1)(2s-l)Q(2)] 

theorem applies to all non-null orbit, type-D vacuum metrics 
given as for example by Torres del Castillo.s 

ACKNOWLEDGEMENT = [Q~Ls ~o+ (2s-1)iq(t) 

+ i(s - 1 )(2s - l)Q(2)] QS ~62S, (54) 

with a similar complex conjugate identity also holding. This 
I 

The work ofW. M. was supported in part by the Nation
al Science Foundation under grant DMS 86-00372. 

APPENDIX 

Here we list the value of the Teukolsky-Starobinsky constant IDs 12 for a number of values of s, where jj2 = a 2 + ma/u: 

IDI/212 =,.1" 

IDI12 = A 2 - 4trjj2, 

ID3/212 = A 2(..1, + 1) - 16tr(Ajj2 - a2), 

ID212 = A 2(,.1, + 2)2 - 8trjj2A(5A + 6) + 96tra2A + 144u4jj4 + 144trM2, 

IDs/212 = A 2(,.1, + 3)2(,.1, + 4) - 16trjj2A(A + 3)(5,.1, + 8) + 48tra2A(7A, + 12) + 1024u4jj4(A + 1) 

- 3072u4jj2a2 + 1152trM2(A + 2), 

ID312 = A 2(,.1, + 4)2(,.1, + 6)2 - 4trjj2A(A + 4)(35,.1, 2 + 25U + 360) + 128tra2A(A + 4)(7,.1, + 15) 

+ 16u4jj4(259A 2 + 1140,.1, + 900) - 2560u4jj2a2( 11A + 15) + 25600u4a4 - 14400cf'jj6 

+ 576trM 2«3A + 10)2 - l00trjj2), 

ID7 / 212 = A 2(,.1, + 5)2(,.1, + 8)2(,.1, + 9) - 32trjj2A(A + 5) (A + 8) (7,.1, 2 + 63,.1, + 108) 

+ 288tra2A(A + 5) (7,.1, 2 + 65,.1, + 120) + 256u4jj4(49A 3 + 549,.1, 2 + 1728,.1, + 1296) 

- 4608u4jj2a2(31A 2 + 175,.1, + 180) + 57600u4a4(5A + 9) - 147456cf'jj6(A + 3) 

+ 884736cf'jj4a2 - 92160u4M 2(7jj2A + 30jj2 - 15a2) + 5760trM 2(3A 3 + 45,.1, 2 + 220,.1, + 360), 

ID412 = A 2(,.1, + 6)2(,.1, + 10)2(,.1, + 12)2 - 48trjj2A(A + 6) (A + 10) (7,.1, 3 + 154,.1, 2 + 996,.1, + 1680) 

+ 576tra2A(A + 6) (A + 10) (7,.1, 2 + 78,.1, + 168) + 96u4jj4(329A 4 + 737U 3 + 55484,.1, 2 + 156240,.1, + 117600) 

- 4608u4jj2a2( 115,.1, 3 + 1592,.1, 2 + 6216,.1, + 5880) + 9216u4a4( 191A 2 + 1344,.1, + 1764) 

- 256cf'jj6(3229A 2 + 31010,.1, + 63700) + 64512cf'jj4a4( 169,.1, + 630) - 25288704cf'jj2a4 

+ 28224000ifjj8 + 28224000cf'M2jj4 + 25401600u4M 4 

- 11520u4M 2(341jj2A 2 + 4242jj2A + 12740jj2 - 1596a2A - 8232a2) 

+ 630trM 2(75A 4 + 2112,.1, 3 + 21568,.1, 2 + 96000,.1, + 161280). 
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A real analytic space-timef can be embedded as a real slice in a complex Riemannian 
manifold (M,g). A theorem due to Woodhouse [Int. J. Theor. Phys. 16,671 (1977)], stating 
that real slices are necessarily totally geodesic submanifolds of (M,g) , is used to find all real 
slices of the complexified sphere cs ~ of dimension n and radius r, and of complexified 
Robertson-Walker space-time c.5f. The real slices f of cs ~ are n-dimensional spaces of 
constant curvature ( ± r- 2

) of all possible signatures. c.5f is determined by a holomorphic 
radius function r(x), the x-constant hypersurfaces being isometric to cS ~(x) • In general, all real 
slices of c.5f are Robertson-Walker-type spaces (of various signatures). The interesting case 
that a Robertson-Walker space-time with radius function ",,(t) intersects a Euclidean real slice 
in an n-dimensional hypersurface, can only occur if ",,(t) is time reflection symmetric. Finally, 
propagators to the scalar wave operator (D-m2

) on real slicesfl ofcS~ are considered and 
their analytic continuations to other real slices fz are discussed. There are useful 
continuations only if fl' fz are isometric either to the sphere and de Sitter space-time, or to 
the hyperbolic plane and anti-de Sitter space-time. In this case the continuation does not 
depend on the relative position offl andfz in cS~. For instance, it also works if the 
intersection fl nf2 is one dimensional. 

I. INTRODUCTION AND RESULTS 

The subject of this work is the generalization to curved 
space-time of the Wick rotation t t---+ - i1' known in flat 
space-time. An application of this procedure to a curved 
space-time was used by Dowker and Critchley I to derive the 
Feynman propagator of the massive scalar field in de Sitter 
space-time for the de Sitter invariant vacuum state: The 
Wick rotation is done in the time variable of the embedding 
Lorentzian R5. Under this Wick rotation de Sitter space
time is analytically continued to the sphere S4 embedded in 
Euclidean R5. The analytic continuation of the Dirichlet 
propagator to the operator t::. - m2 on S4 back to de Sitter 
space-time yields the Feynman propagator mentioned 
above. Analytic continuation in a parameter related to twas 
used by Candelas and Raine2 to derive the Feynman propa
gator in static space-times. A systematic treatment of the 
Wick rotation for the case of globally static space-times was 
given by Wald3 and Fulling and Ruijsenaars4: It is shown in 
Wald3 that, if the spacelike hypersurfaces orthogonal to the 
timelike Killing vector field are labelled by the Killing pa
rameter t, the Wick rotation t t---+ - i1' yields a Riemannian 
(Le., positive definite) metric and the wave operator gets 
elliptic. The Dirichlet propagator to this operator can be 
analytically continued back to the Lorentzian space-time l' 
t---+it and yields the Feynman propagator one also obtains by 
using directly the full translation symmetry in the static Lor
entzian space-time. In Fulling and Ruijsenaars4 the treat
ment is generalized to include thermal states on the static 
space-time, and the relations are studied between these ther
mal states, periodicity of the two-point functions in the Eu
clidean time l' = - it, and the existence of Killing horizons 
in the static space-time. The mathematical tools to genera
lize this procedure to arbitrary curved space-times in a geo
metric, coordinate-free way were introduced by Wood-

house5
: A real analytic Lorentzian space-timeL is embedded 

in a four-dimensional complex Riemannian manifold (a 
complex manifold with a non degenerate, holomorphic ten
sor field) as a real slice. Such a complex Riemannian mani
fold can be obtained by starting from a real analytic atlas of L 
and allowing the coordinates to assume complex values. 
Since the coordinate transformations are real analytic func
tions, they can be continued slightly into the complex and 
can be used to "piece" the atlas together to form a complex 
manifold. The metric coefficients which are analytic func
tions of the coordinates can also be continued to the complex 
and can be interpreted as the coefficients of a second rank, 
covariant, holomorphic tensor field, a complex Riemannian 
metric. In Woodhouse5 a reference is given for more detail 
on this point. The question is now whether there are other 
real slices in this complex Riemannian manifold, in particu
lar whether there are Euclidean real slices, restricted to 
which the complex Riemannian metric is positive (or nega
tive) definite. One important result of Woodhouse is that 
real slices are necessarily totally geodesic submanifolds of 
the complex Riemannian manifold. In particular, this im
plies that the intersection of two real slices is a totally geodes
ic submanifold of both real slices. So, for instance, if a Lor
entzian space-time L has no totally geodesic 
three-dimensional submanifold, there are no Euclidean real 
slices that intersect L in a three-dimensional submanifold. 
This indicates that the Euclideanization procedure might 
fail in many cases, just because there are no Euclidean real 
slices. 

This work is meant to shed some light on the following 
two questions which quite naturally arise here. First, one 
should get some better understanding under which condi
tions, or "how often" real slices do exist in a given complex 
Riemannian manifold. Second, provided there are some real 
slices, what is the use of possible analytic continuations from 
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one real slice to another. These two points are studied here 
by means of some specific examples for which the questions 
can be posed and answered explicitly. Point one is treated in 
Sec. III and point two in Sec. IV. 

As to the existence of real slices the first example consid
ered is the complexified sphere cS~, all real slices of which 
are found. cS~ is the submanifold oflCn + I described by the 
equation l:~ = 0 (SA)2 = r. The result is that for rEtR there 
are no real slices at all. For rER, however, real slices exist 
and they are spaces of constant curvature of all possible sig
natures, the sphere sn, signature ( + + ... + ), de Sitter 
space-time, (- + + ... +), anti-de Sitter space-time, 
( - - ... - + ), the hyperbolic plane H n, ( - - ••• - ) 

(i.e., with negative definite metric), and other spaces of con
stant curvature for the remaining signatures. All real slices 
of the same signature are isometric to each other. Finally, for 
the case n = 4, all possible intersections of two real slices are 
described. 

The second class of examples are complexified Robert
son-Walker space-times (RWS) of dimension higher than 
two. These manifolds are determined by a holomorphic radi
us function r of a complex "proper time" x. The x-constant 
hypersurfaces are complexified spheres isometric to cs ~(X) • 

Again for a "generic" radius function r(x) there are no real 
slices at all. Real slices exist if and only if for some x = xo, 
r(xo + t) or r(xo + it) is real for all tER. All real slices are 
then real R WS with proper time t and radius function 
r(xo + t), r(xo + it), respectively, differing just in the t-con
stant hypersurfaces, which can be any of the spaces of con
stant curvature contained as real slices in cS~. "Interesting" 
interesections of real slices can only occur if there is some 
x = Xo for which both r(xo + t) and r(xo + it) are real for 
all real t. This then implies that the radius function r(xo + t) 
of the real slices is symmetric under time-reflection: 
r(xo + t) = r(xo - t) Vt. This provides an example which 
shows that in a four-dimensional space-time L the existence 
of a three-dimensional totally geodesic submanifold N does 
not imply the existence of a Euclidean real slice which inter
sects Lin N: In a real RWS with radius function r(t) the t
constant surfaces at t = to with r' (to) = 0 are totally geodes
ic submanifolds, but r' (to) = 0 does not imply the reflection 
symmetry of r about to necessary for a Euclidean real slice to 
pass through the t = to hypersurface. 

To discuss the use of analytic continuation from one real 
slice to another, Green's functions to the wave-operator 
o - m 2 of a massive scalar field are considered on the real 
slices of the four-dimensional complexified sphere cS~. To 
start with, all possible analytic continuations of the Dirichlet 
propagator on a real slice ff I' isometric to the sphere S 4, are 
described. One of these continuations, when restricted to a 
real slice ff2' isometric to de Sitter space-time, yields the 
Feynman propagator of the de Sitter invariant vacuum state. 
None of these continuations restricted to a real slice isomet
ric to anti-de Sitter space-time (adS) yields a physically use
ful propagator; there is however a linear combination of two 
such continuations which yields the Feynman propagator of 
an adS-invariant vacuum state discussed in Avis, Isham, and 
Storey.6 (This is not astonishing since all these propagators 
are solutions to an ordinary second-order differential equa-
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tion in the squared geodesic distance and thus they are essen
tially the linear combination of two fundamental solutions.) 
In the same way as the Feynman propagator on de Sitter is 
obtained from the Dirichlet propagator on the sphere, this 
adS-invariant Feynman propagator can be obtained from 
the Dirichlet propagator on a real slice isometric to H 4. 

These results seem to indicate that the continuation of 
propagators gives only useful results if the signatures of the 
two real slices differ only in one sign (as is the case for H 4 and 
adS or for S4 and de Sitter). The result of the continuation 
from ffl to ff2 discussed above does not depend on the 
specific choice offfl andff2, the only condition on them is 
that they both contain a common point p (the two-point 
function to be continued is considered as a function of one 
variable by keeping one argument fixed, equal to p) and one 
of them is isometric to S4, the other to de Sitter space-time. 
There are many such ffl and ff2' in particular there are 
such ffl' ff2 that ffl nff2 is three-dimensional, and oth
ers such thatffl nff2 is one-dimensional, in which case the 
analytic continuation cannot be interpreted as a Wick rota
tion since the continuation is necessarily done in more than 
one coordinate. This might suggest that the dimension of the 
intersection of the two real slices is not essential, provided 
their signatures differ only in one sign. It might, however, 
hold only in this special case, because of the high symmetry 
ofcS~ which also implies, for instance, that all real slices of 
the same signature are isometric to each other. 

The plan of the paper is as follows: In Sec. II, in order to 
fix the notation and to keep the paper self-contained, the 
main definitions on complex manifolds and the main results 
ofWoodhouse5 are briefly reviewed and some corollaries are 
added which will facilitate the work in the subsequent sec
tions. This section relies heavily on Chap. IX in Kobayashi 
and Nomizu 7 on complex manifolds. Then the possible tan
gent spaces to real slices and their mutual intersections are 
discussed. These tangent spaces can alternatively be inter
preted as the real slices of complexified Minkowski space
time (i.e., flat en) passing through the origin ofCn

• Most of 
the proofs in this section are kept short or are omitted. They 
are given in detail in Ref. 8. 

In Sec. III the real slices of the complexified sphere and 
the complexified Robertson-Walker space-times are found 
and in Sec. IV the propagators on the real slices of cS; are 
treated. 

II. COMPLEX MANIFOLDS 

We will first very briefly review the main definitions and 
statements about complex manifolds. This is found in more 
detail in Kobayashi and Nomizu,7 Chap. IX. The definition 
of a complex manifold M is essentially the same as the defini
tion of a real differentiable manifold, just that local coordi
nates (U,tp) are homeomorphisms of an open subset of M 
into cn instead ofR n and coordinate transformations tp0tp ,- I 

are required to be holomorphic (i.e., complex differentiable) 
functions. 

It is convenient to consider a complex manifold as a real 
Coo manifold of dimension 2n. This is done by identifying en 
with R2

n as follows: 
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en ~ R2n, 

(Zl ,r, ... ,zn) ~ (Xl ,x2, ... ,X2n ), Zk = Xk + ixk + n. 
(2.1 ) 

(Here and in the following, indices i,j,k, ... will run from 
1 to n, indices a,b,c, ... will run from 1 to 2n, and Einstein 
summation convention will be used. ) 

By means of the correspondence (2.1) the differentiable 
structure of a complex manifold M of dimension n is inter
preted as an atlas of a 2n-dimensional real C 00 manifold also 
denoted by M. The coordinate systems of this atlas are called 
holomorphic coordinates. These holomorphic coordinates 
define a (: ) tensor field, the complex structure J: 

a . a . 
Jlu = -. - ®dx'- -. ®dx'+n (2.2) 

ax' + n ax' 

[where (U, (Xl ,X2
, •.. ,x2n » is any holomorphic coordinate 

system]. J will usually be interpreted as a mapping of the 
tangent bundle T(M) onto itself or alternatively of the co
tangent bundle T*(M) onto itself. Equation (2.2) shows 
that in either case it satisfies 

JOJ = -1, (2.3) 

where 1 is the identity mapping on the tangent bundle (co
tangent bundle). 

The complexified tangent space T~ (M) at a point pEM 
is the complexification of the tangent space Tp (M). J is ex
tended to act on T~ (M) by complex linearity. T~ (M) may 
be decomposed into the eigenspaces T ;.o(M) and T~·l (M) 
to the eigenvalues + i and - i, respectively, 

(2.4 ) 

( (j1 denotes the direct sum). The dual space T~*(M) is de
composed in the same way: 

T~*(M) = Tpl,o(M) (j1 TpO,l (M), (2.5 ) 

where Tpl .O (M) and TpO,1 (M) are the eigenspaces ofJ to the 
eigenvalues + i and - i, respectively. The decomposition 
(2.4) and (2.5) then extends to the full tensor algebra 
~p (M) generated by T~ (M). The two spaces r;,o(M) and 
Tpl,o (M) generate a subalgebra Sp (M) of ~p (M): Let 
S;s (M) denote the space: 

® Tpl,o (M) ® Tpl,o (M) ® ... ® Tpl .O (M) 
s tImes 

(2.6) 

and define Sp(M) :=~r,sS;s(M) (direct sum). Let 
Te(M), Tl,o(M), S~ (M), etc., denote the corresponding 
vector bundles and reB) denote the set ofC 00 cross sections 
of the bundle B (tensor fields). By complex linearity one can 
extend such notions, defined on the real bundles and their 
cross sections, as contractions, Lie differentiation, exterior 
differentiation, covariant differentiation, etc., to the com
plexified bundles and their cross sections. 

In holomorphic local coordinates ( U,rp) one introduces 
basic vector fields (alaZk)Er(Tl,o(U», (alazk) 
Er(To,1 (U» and covector fields dZkEr(Tl,o (U», 
d ZkEr( To, I ( U» adapted to this decomposition of the tensor 
algebra as follows: 
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a l(a . a ) a l(a . a ) 
azk: ="2 axk - I axk + n' azk: ="2 axk + I axk + n ' 

dzk: = dxk + i dxk+ n, dzk: = dxk _ i dXk+ n. (2,7) 

Between these fields the following duality relations hold: 

dZk(~) = dZk(~) = Ok 
aZ' aZ" 

and 

dZk(~) =dZk(~) =0. 
aZ' az' 

(2.8) 

A tensor field VEr(S ~ (M» is called holomorphic if its com
ponents with respect to the basic fields (2.7) are holomor
phic functions. This definition makes sense due to the 
Cauchy-Riemann equations of the holomorphic coordinate 
transformations. Now we can define a complex Reimannian 
manifold. 

Definition 2.1: A complex Riemannian manifold (M,g) 
is a complex manifold M endowed with a holomorphic co
variant second-rank tensor field gEr(S~ (M» which is sym
metric and nowhere degenerate, that is in every point pEM, 
g(ZI,Z2) = 0 VZ2ET~ (M) impliesZI = O. (Woodhouse5

), 

Note that in contrast to the real case, g cannot be classi
fied by a signature, since all nondegenerate, symmetric bilin
ear forms on a complex vectorspace are equivalent. 

The metricg, regarded as a cross section of T'f(M), can 
be split into its real and imaginary part: 

g = h + ik, where h,kEr(T~ (M». (2.9) 

This splitting is given by h(X,y) = Re(g(X,Y», 
k(X,y) = Im(g(X,Y» for X,Yreal vectors, i.e.,X,YET(M). 
h,k are pseudo-Riemannian metrics [i.e., symmetric, nonde
generate (~ ) tensor fields] of signature (n,n) and they satis
fy (Woodhouse5

): 

h(X,y) = k(JX,y), 

k(X,y) = - h(JX,y) 

-+h(X,y) = - h(JX,Jy), 

k(X,y) = - k(JX,Jy), VX,YET(M). 
(2.10) 

The two pseudo-Riemannian metrics hand k define two 
metric connections hV and ~. In W oodhouse5 the following 
proposition is proven. 

Proposition 2.2: The metric connections hV of h and ~ of 
k coincide and the connection V:=hV=~ satisfies Vg=O 
and VJ=O. 

Next we define real slices. 
Definition 2.3: A real slice JV of an n-dimensional com

plex Riemannian manifold (M,g = h + ik) is an n-dimen
sional real submanifold of M such that h L~ is nondegener
ate and k If=O. (Woodhouse5

). 

The second important result proven in Woodhouse5 

reads as follows. 
Proposition 2.4: A real sliceJV of (M,g = h + ik) is nec

essarily totally geodesic, i.e., a geodesic that is tangent toJV 
in one point lies entirely in JV. 

Since the intersection of two totally geodesic submani
folds is a totally geodesic submanifold it follows that the 
intersection of two real slices is a totally geodesic submani-

A. Meister 2932 



                                                                                                                                    

fold of M (and of both real slices) (W oodhouse5 
) • 

We will use the geodesic equation expressed in terms of 
holomorphic local coordinates. 

Proposition 2.5: Let (U,q> = (zl,r, ... ,zn» be holomor
phic local coordinates. Define 

. ·1 
r;k: = !g' (gjl,k + glkJ - gjk,l ), 

where 

gkl: =g(a~k' ~I) 
and 

kl >:k g glj =Uj 

and 

a 
gjl,k: = azk (gjl ), 

Let y: [O,l]i .. --+U be a differentiable curve represented by 
Zk(y(t» = :ck(t). Then the tangent y(t) to yis given by 

• 'k a ':"'k a 
y=c azk1r +c azk 1r 

and y is an affinely parametrized geodesic if and only if the 
functions ck(t) satisfy: 

Ci+r;k(y)H:k=o. (2.11) 

Proof' It follows from VJ=.O in Proposition 2.2 that V is 
type preserving, so 

Va/az' (~) 
az' 

is of type (1,0) and hence can be written as 

Va/azk(a~J = Va/azj(a~ k) + [a~' ~j] = Va/azj(a~) 
must be both of type (1,0) (left-hand side) and of type (0,1) 
(right-hand side) and hence must vanish. Finally, purely 
algebraically 

Write dt) = :ai(t) + iai+n(t), where ab(t) are real.. Then 
really 

. k a 1 ':"'k alb a 1 
c azk r + C azk r = a axb r = y. 

Using this and V r (ck
) = ck and the above relations one gets 

the equation 

V ( ') "k a + 'i'jrAk a +~k a +':"';:;:j~ a r y = c azk CC ji azk C azk CC r ji azk' 

which yields the equivalence of the geodesic equation 
V r ( y) = 0 and (2.11). The expression for f;k is obtained as 
in the real case: 
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. i·1 Evalualing now r jk : = !g' (gjl.k + glkJ - gjk,l ) one gets 
r;k = r;k' • 

Definition 2 .. 6: Choose somepEMand let (e l ,e2, ... ,en ) be 
an orthornormal basis of T~·o(M), i.e., g(ej>ek ) = 0ik' De
fine complex normal coordinates ( W,X) at p by 

X: W ~VCC, X-I: V~W 

p ~(",I,rl, ... ,rt) (",1,,,,2, ... ,,,,n) ~xp(",iei + rye;). 

Proposition 2. 7: Complex normal coordinates (W,X) at 
pare holomorphic coordinates. They are uniquely charac
terized by their properties [define 

gik = g(a~i 'a~k) 
and r;k as in Proposition 2.5]: ( W,X) are holomorphic local 
coordinates, (a la",i) Ip = ei and 

r;dX-I(",I,,,,2, ... ,,,,n»~,,,k = 0, V (",I,,,,2, ... ,,,,n)EV. 

Sketch of the proof' We will only prove that complex 
normal coordinates are holomorphic. From the theory on 
the exponential mapping (e.g., Helgason,9 Chap. 1) it is 
known that there is a neighborhood V' of 0 in Tp (M) such 
that 

exp: V'~M 

v ~exp(v) = y( 1), where y is the 

affinely parametrized geodesic with y(O) = v, 

is a diffeomorphism onto a neighborhood exp ( V ') of p .. Fur
thermore for VEV', y(t) = exp(vt) is the affinely parame
trized geodesic with y(O) = v. So let (U,q» be a holomor
phic chart coveringp such that (alazi)l p = ei and define 
r;k with respect to this chart as in Proposition 2 .. 5. Define 
the functions 

Ck(S I'S2'''''''S2n;t): = zkoexp(tsa ~Ip). 
axa 

From the properties of exp mentioned above and from Prop
osition 2.5 it follows that: 

"i+ri ·j·k_O 'kl _f;-k+ "f;-k+n C jk C C - , C 1 = 0 - ~ l~ , 

ck 1/=0 = Zk(p). 
(2 .. 12 ) 

Now take the partial derivative of (2.12) with respect to 51 
and add to it i times the derivative of (2 .. 12) with respect to 
5 I + n to get (using also that r;k given in Proposition 2.5 are 
holomorphic functions) 

(2.13 ) 
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Consider the following differential equation for functions 
fi(t): 

d 2 a( r i 0;;" - I ) d J d k 
_fi+ jk.,.. I m m~~fm 
dt 2 azm z = C dt dt 

2ri dc j d fk - 0 + jk dt dt -. (2.14 ) 

This is a linear differential equation for J, so it has unique 
solutions to given initial data. In particular, P=O is the 
unique solution to the initial datap(O) = o,ji(O) = o. On 
the other hand we see in (2.14) and (2.13 ) that 
aci/a5

i + i(aci/a5 i + n) is a solution to (2.14) with this ini
tial data, so it is zero for all t and in particular it is zero for 
t = 1. But these are just the Cauchy-Riemann equations 
which show that the cil t = I are holomorphic functions of the 
variables r/: = 5 k + is k + n. This shows that X as defined by 

- I ( I 2 n) (kA - k'A ) X : 1] ,1] , ... ,1] t--+exp 1] ek + 1] ek 

= exp( (1]k a~k Ip + tjk ~k Ip ) = exp(5 a a~alp ) 
is a holomorphic chart satisfying (a /a1]k) Ip = ek. • 

Definition 2.8: Let peM. A k-null plane N is an n-dimen
sional subspace of Tp (M) satisfying kiN = 0, i.e., 
k(X, y) = 0 V X, YeN, and h I N is nondegenerate, i.e., XeN, 
h (X, y) = 0 V YeN implies X = O. 

Let S be a real slice of M passing through p. Then by 
Definitions 2.3 and 2.8 Tp (S) is a k-null plane, so k-null 
planes are the possible tangent spaces to real slices. Choose a 
basis (e l ,e2, ... ,en) of T !.o(M) such that g(~i'ek) = i~ik' 
Define el ,e2, ... ,en by ei : = ei + ei . Then 
h(ei,ek ) +ik(e;.ek) =g(e;.ek ) =g(e;.ek ) =i~ik' From 
this and (2.9) it follows that (el, ... ,en,Jel, ... ,Jen) form a ba
sis of Tp (M) satisfying k(e;.ek ) = - k(Jei,Jek ) = ~ik and 
k(Jei,ek ) = h(eih) = O. Using this basis one can describe 
the k-null planes in Tp (M). 

Proposition 2.9: There is a one-to-one correspondence 
between the k-null planes N and orthogonal matrices 
aEO(n) with a + aT nondegenerate: N is spanned by the n 
vectors /; = ei + d;Jej and h IN is given by 
h(J;,i;) = -(a;+d;). 

Sketch of the proof: (for more details see Ref. 8): Set 
P = span{el ,e2, ... ,en }. P satisfies Tp (M) = p(fjJP and 
JP = p l (P l denotes the orthogonal complement with re
spect to k). Define 17': Tp(M)~P and r: Tp(M)~Pl by 
X = 17'X + r X, 17'XEP, r XEP l for allXETp (M). Now given 
a k-null plane N it follows from the fact that kip is positive 
definite and k Ip l is negative definite that 17'IN and rlN are 
isomorphisms and so one can define a: Pt---+P as 
a: = - Jo( 17' liN )o( 17'1N) -I. This implies that 

(1 + Ja) Ip = « 17'IN )o( 17'1N) -I + Ja)lp 

= «17'IN) + (17' l IN»0(17'IN)-llp = (17'IN)-llp, 

so (1 + Jii) is injective and N = (1 + Jii)P. Then 

O=k«1 + Jii) Ip ',(1 + Jii) Ip')=k(',) - k(a',a') 

implies that a is an orthogonal mapping. Define aEO(n) by 
a(ei ) = d;ej . The rest of the proofis straightforward verifi
cation. • 
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Let .fi1(n) denote the set §(n) = {aED(n)la+aT 

nondegenerate} . .fi1 (n) is an open submanifold of D(n) 
since the set D(n) \.fi1 (n) = {aED(n) Idet(a + aT) = o}is 
closed as det(· + . T) is a continuous function on D(n). 
Proposition 2.9 allows to consider the set of all k-null planes 
as a manifold diffeomorphic to § (n). 

One can show (a proof is given in Ref. 8) that .fi1 (n) has 
n + 1 connection components, one to every possible signa
ture (p,n - p) of the symmetric bilinearform 
- (a + aT), aE.fi1 (n). 

Using these orthogonal matrices one can also get some 
restrictions on the possible intersection of two k-null planes. 

Proposition 2.10: Let N I,N2 be two k-null planes and let 
(PI,n - PI)' (p2,n - P2)' P2>PI denote the signatures of 
h IN" h IN" respectively. 

Define m, II' 12 by: m: = dim(NlnN2), and (/1,/2) the 
signature of h IN, nN, . m, II' 12 satisfy the following relations: 
(a) (- 1)m = ( - 1)n+ p, +P', (b) m -/2<'PI' (c) 

m -/1<.n - P2' (d) m<.n + PI - P2' Conversely, given PI> 
P2' II' 12, m satisyfing the above relations, there exist k-null 
planes N I, N2 such that (PI,n - PI)' (p2,n - P2) are the sig
natures of h IN" h IN" respectively, dim(NI nN2 ) = m and 
the signature of h IN,nN, is (/1,/2), 

Sketch of the proof (for more details see Ref. 8): As in 
the proof of Proposition 2.9 let NI = (1 + Jii I) P and 
N2=(1+Jii2)P, al,a2E.fi1(n). It follows that 
N l nN2 = (1 + JiiI)E, where Eis the eigenspace ofa l-

la 2 
to the eigenvalue 1 and therefore m: = dim(NI nN2 ) 

= dim(E). Considering the characteristical polynomial of 
the orthogonal mapping a l- la2 one finds that 

det(a l )det(a2 ) = det(a l-
la 2 ) = ( - 1)n - m. 

On the other hand, one finds [using the fact that the set of all 
aE.fi1 (n) such that - (a + aT) has a given signature is a 
connected open subset of D( n)] that 

det(a l )det(a2) = ( - 1)p' ( - 1)1'2 = ( - 1)P, + p'. 

These two equations prove (a). Relations (b), (c), and (d) 
follow from the restrictions on the signature of h IN, n N, one 
gets using that h IN nN = h IN IN nN = h IN IN nN . As to 
the last part of the proposition' on~ c~ expli~itly c~nstruct 
matrices ai' a2 such that afa2 has an eigenspace E to the 
eigenvalue 1 such that dim(E) = m and the signature of 
- (a l + an IE is (/1,/2), • 

Proposition 2.4 implies that if there is a real slice S 
tangent to a given k-null plane NETp (M) thenS is just the 
image under the exponential mapping of N, since any line 
passing through the origin in N gets mapped onto a geodesic 
in M, which by Proposition 2.4 lies entirely in S. This also 
implies that the restrictions on the possible intersections of 
k-null planes in Proposition 2.10 are directly applicable to 
the intersections of real slices (of course this is not true for 
the existence part). 

Combining the above remark with Proposition 2.9 one 
works out (see Ref. 8) the following corollary which will be 
useful in the subsequent applications. 

Corollary 2.11: Let (M,g = h + ik) be a complex Rie
mannian manifold, peM. Choose complex normal coordi
nates (w,X) at P as in Definition 2.6. Let aE.fi1 (n) and 
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define ..G1~: =!(1 + i)~~ - ~(1- i)a~. Introduce coordi
nates ( W,A) by 

Then 
N = {S k( ..G1~e; + d'~~;) 1 (t I,t 2, ... ,t n)ERn} C Tp (M) is a 
k-null plane and there is a real slice JV tangent to N if and 
only if metric coefficients g( (a / aJ..);, (a / aJ..) ") 1 A -, restrict
ed to (J.. I';" 2, ••• ';" n)ERn are real. Every real slice passing 
throughp can be described in this way. 

This corollary shows that every real slice can be ob
tained locally by restricting an appropriate holomorphic co
ordinate system to real values. 

III. TWO APPLICATIONS 

A. The complexified sphere cS<: 
In the following n-tuples (zl,z2, ... ,Zn )ECn will be de

noted by ZECn and z will denote a square root of Z·Z, that is 
~=~;ii. 

For some reC\ {a} define the manifold cS~ as the sub
manifold of Cn + 1 determined by the equation: 

(to)2+ (tl)2+ ... + (t n)2=r. (3.1) 

Denote by N, S the points N: = (r,O), S: = ( - r,O). In or
der to see that cs ~ is really a complex manifold introduce an 
atlas on cS; consisting of the two complex stereographical 
projections (U N,(fJN)' (Us,(fJs) about the points N,S, respec
tively, 
UN: = {(to,s)ECS~ltO#r}, 

Us: = {(to,s)ECs;ltO# - r}, 

V=(fJN(UN) = (fJs(Us ) = {zECn lz2 # -r} 

(fJN: UNI---+VEcn, (to,s)l---+[r/(r - to) ]s, 

(fJs:UsI---+VEcn, (to,s)l---+[r/(r + to) ]s. (3.2) 
Clearly UN and Us are open and cover cS~. Calculating the 
coordinate transformations one finds: 
(fJN0(fJ S 1 = (fJs0(fJ N I: V'I---+V', 

ZI---+(r /~)z 

V' = (fJN(UNn Us) = (fJs(UNn Us) 

= {ZEcnl~#O,~# - r}. (3.3) 

These transformations are holomorphic, so the atlas 
(UN,(fJN)' (Us,(fJs) turns cS; into a complex manifold. 

On c n + 1 there is a natural complex Riemannian metric 
~ given by ~ = ~ ABdt A ® dt B. Let I: cs ;I---+Cn + 1 denote the 
inclusion of cS; into c n + 1 and I. its differential. The metric 
~ induces a complex Riemannian metric g on cS; by 
g(ZI,Z2): =g(I. (ZI),I. (Z2» for ZI,Z2ET~(CS;), pEcS~. 
In stereographical coordinates g is given by 

4r4 .. 
glu = r ~ 2 ~ij dz'®dz', (3.4) ( + ) 

where (U,(ZI, ... ~» is anyone of the charts 
(UN,(fJN), (Us,(fJs)' Equation (3.4) shows that g is holo
morphic and nondegenerate and hence a complex Rieman
nian metric. 

An isometry Sbetween two complex Riemannian mani
folds (M,g), (M',g') is a holomorphic diffeomorphism S: 
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MI---+M' such that S *g' = g. The isometry group ofcS ~ is the 
subgroup 'G' den + 1) of GL(n + 1,(;) given by 'G'd 
(n + 1) = {AEGL(n + I,C) IAAT = n. This is due to the 
following proposition. 

Proposition 3.1: Given p, qEC S;, (e l ,e2, ... ,en ), 
(/uh""/n) orthonormal bases of T!,o(CS;,T!'o(CS;), re
spectively, there is exactly one isometry of cS; which 
takes (e l ,e2, ••• ,en ) to (/I/;""/n)' 

Proof: Let again I: cs ;I---+Cn + 1 denote the inclusion of 
cS; into Cn+ I. Define EI,E2, ... ,En,FI,F2, ... ,FnETb,O(cn+ I) 
as the vectors I. e l ,!. e2, ... ,!. en' I.ft'!.!;, ... '!.!n parallely 
transported to the origin OECn+ I. Identifying T b'o (Cn + I) 

with c n + 1 in the natural way one can define Eo: = (11 
r)I(p) and Fo: = (1Ir)I(q). (Eo,Ew .. ,En) and 
(Fo,F1, ... ,Fn) form orthonormal bases of Tb,o(Cn+ I). The 
isometry Y of Tb,o(Cn+ I) which takes (Eo,E1,. .. ,En) to 
(Fo,F1, ... ,Fn) can be interpreted as an isometry Y' of 
(C n + 1 ,~) whose restriction to I( CS;) induces an isometry S 
ofcS;. This isometry takes (e l ,e2, ... ,en) to (/1/2""/n) and it 
is the only such isometry since two isometries coincide if 
they agree on one basis of a tangent space. • 

Using these isometries we get the following corollary. 
Corollary 3.2: Assume there is a real slice JV in cS; and 

the signature of h I. r is (p,n - p). Then to every k-null plane 
N in any tangent space Tq (CS;) such that h IN has signature 
(p,n - p) there is a real slice....l( of cs ~ tangent to N and ....I( 
and JV are isometric. 

Proof: Choose some point q'E./V and a basis 
(E1,E2, ... ,En) of the k-null plane Tq. (JV) orthogonal with 
respect to h and normalized to h (E;,E;) = 1 for i<.p and 
h(E;,E;) = - I for i>p. Define the orthonormal basis 
(e l ,e2, ... ,en) of T!:o(CS;) byek = !(1- iJ)Ek for k<.p and 
ek = Ci/2)(1- iJ)Ek for k>p. In the same way construct 
an orthonormal basis (/1/2""/n) starting from an orthogo
nal basis of N. Let S be the isometry of cS; which takes 
(e l ,e2, ... ,en) to (/1/2""/n)' ThenS.(Tq.(JV»=N and 
since an isometry clearly maps a real slice to a real slice, 
....1(: = S(JV) is a real slice tangent to N and isometric to 
ff • 

Corollary 3.2 shows that it is sufficient to find one real 
slice JVp of cS; to every possible signature (p,n - p) of 
h Lv-

p
' This is easily done for reR, r> O. 

Proposition 3.3: Let reR, r> O. To every k-null plane N 
of any tangent space there is a real sliceJV tangent to N, and, 
depending on the signature (p,n - p) of h 1.1" JV is isomet
ric to 

p=n: 
p = n - 1: 

.' .' 
p= 1: 

p=O: 

the n-dimensional sphere S n, 

de Sitter space-time, 

(some other spaces of constant curvature), 

anti-de Sitter space-time, 

the hyperbolic plane H n. 

Proof: Let P7J;k denote the diagonal matrix with the first 
p diagonal elements equal to 1 the remaining n - p equal to 
- 1. Consider the real slice R p of (Cn + t,~) given by 
to =J.. 0, t 1 = J.. I, ... ,t p = J..P,t P+ 1 = iJ..P+ I, ... ,tn = fA n, 

(J.. 0';" 1 , ... ';" n)ERn + I. The metric ~IR then reads 
p 

~IR = dJ.. o®dJ.. 0+ P7J;k dJ.. ;®dJ.. k. (3.5) 
p 
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The intersection JY'p of Rp with cs ~ is an n-dimensional 
submanifold of Rp given by the equation 

(A. 0)2 + PTJikA. iA. k = r (3.6) 

and clearly gl .. vp = OIRJ.Y'p' This shows that JY'p is a real 
slice of cS~ and (3.5) and (3.6) are just the usual embed
dings of the spaces of constant curvature listed in the propo
sition in R n + I. The rest of the proposition follows from Cor
ollary 3.2. • 

In order to answer the question whether there are any 
real slices in cs ~ for rEiR we can apply Corollary 2.11. Due to 
Corollary 3.2 it suffices to find the answer for the real slices 
passing through some given point, say the point S. Take the 
stereo graphical coordinates (U,'P N) and define the ortho
normal basis ei : = !(alat)ls of T}o(CS~). Define the co
ordinates ( W,X) by 

o -I() 1) sin (TJlr) 
'PN X 1) =r-

TJ 1 + cos( TJlr) 
(3.7) 

One checks that (alaTJ)ilx-'(o) = ei and that X are holo
morphic coordinates in some neighborhood of S. The metric 
expressed in terms of X is calculated to be 

(r . 2(TJ)( TJiTJk) TJiTJk) i k 
glw =.fr TJ2 sm -; °ik -7 +7 dTJ ®dTJ· 

(3.8) 

Verifying now that rJk<X-I(TJI,TJ2, ... ,TJn»7fTJk = 0 one gets 
by Proposition 2.7 that ( W,X) are complex normal coordi
nates. 

Now calculate the metric in terms of the coordinates 
( W,A) introduced in Corollary 2.11, 

(3.9) 

where dik is given by dik = - !(a~ + a~). Now by Corol
lary 2.11 there is a real slice tangent to the k-null plane deter
mined by a if and only ifgis real for all (A. I,A. 2, ... ,A. n)ERn. 
This implies the following proposition. 

Proposition 3.4: If rER then to every k-null plane in a 
tangent space T!'o(CS~) there exists exactly one real slice 
tangent to this k-null plane. For rEl:R, cs ~ has no real slices 
at all. 

Finally one checks that (CS Z"g) and (CS ~,k 2g) are iso
metric to each other for all kEC\ {O}. This shows that the 
real slices of cs ~ with rE1R are the same as those for rER 
discussed in Proposition 3.3 up to an overall change of sign 
in the signatures. 

As a last point, as an application of Proposition 2.10, we 
write down (for rER, r> 0) all possible intersections of two 
real slices JY'I' JY'2 of the four-dimensional complexified 
sphere cS; for the physically interesting cases of JY'1,JV2 
being isometric to the sphere S4, de Sitter space-time dS 4, 
anti-de Sitter space-time adS 4, and the hyperbolic plane H 4. 
The upper index will denote the dimension of the manifold. 
[Since to every k-null plane there is a real slice, Proposition 
2.10 yields the possible dimensions m of the intersections 
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and the possible signatures (/1,12) ofthe metric restricted to 
the real slices. To identify the intersections one can consider 
the metric (3.9) restricted to the intersection.] 

Corollary 3.5: Let JY'\,JV2 be two real slices passing 
through a fixed point pecS;, isometric (=) to either of the 
spacesS 4, dS 4, adS 4, or H4. The possible intersections ofJY'\ 
andJY'2 are 

JY'1=S4 
JY'1=S4 
JY'1=S4 
JY'1=S4 
JY'1=dS 4 

JY'\=dS 4 

JY'\=dS 4 

JY'\=adS 4 

JY'2=S4 
JY'2=dS 4 

JY'2 = adS 4 

JY'2=H 4 

JY'2=dS 4 

JY'2=adS 4 

JY'2=H 4 

JY'2=adS 4 

S\S2,SO, 
S3,SI, 
SI , 
{P}, 
dS 4,S2,dS2,S \ X Rwith 
a degenerate metric, So, 
dS 2, So, 
HI , 
adS 4, H2, adS 2" R2 with 
a degenerate metric, So, 
H\H\, 
H\H2, {P}. 

B. Complexified Robertson-Walker space-times cf!Il 

Define a complexified Robertson-Walker space-time 
( R WS) C f!Il as follows. 

Let fi) C C be open and connected and let r: fi) f--+C be a 
holomorphic function such that r(x) #0 'VXEfi). Define the 
complex manifold cf/? as cf/? = fi) X cs ~ and introduce the 
two projections 1T\, 1T2' 

1TI :cf/?f--+fi), 1T2:
cf/?f--+cS ~, 

(x,p )f--+X, (x,p )f--+p. 
(3.10) 

Choose a stereographic atlas (UN,'PN)' (Us,'Ps) on cS~. 
Define the atlas (VN,tPN)' (Vs,tPs) on cf/? by 

VN.S: = fi) X UN,S' 

tPN,S: VN,sf--+cn + I, (3.11 ) 

~(x,z) = (1T\ (p) ,'PN,S(1T2 (p»). 

Introduce a complex Riemannian metric g on cf/? by 

I d d 4r(x) £ did k g V = x ® x + --2 2 Uik Z ® Z, 
(1+z-) 

(3.12) 

where (V,(x,z» is one of the charts of the atlas 
(VN,tPN)' (Vs,tPs)' The x = const hypersurfaces ofcf/? are 
isometric to eS ~ ,r (x )g) which is in turn isometric to cs ;(x) • 

Define the vector field eo to be the field a I ax in either of 
the coordinates ( VN,tPN) or ( Vs,tPs)' By (3.12) eolp is a unit 
vector for allpEcf/? The symmetries ofcS; give rise to sym
metries of C f/? . 

Corollary 3. 6: Let p,qEC f/? such that 1T \ (p) = 1T \ (q) and 
let (eOlp,el, ... ,en) and (eo,lq/\,. . .jn) be orthonormal bases 
of T !,o(cf/?), T !,o(cf/?), respectively. There is an isometry S 

ofcf/? which takes (eolp,e\, ... ,en) to (eolq/I, .. .Jn)' 
Next consider complex normal coordinates (W,X) at 

pec f/? with respect to an orthonormal basis of T !,O (C f/?) of 
the form (eOlp,el, ... ,en). In the following capital latin letters 
A,B,C, ... will denote indices running from 0 to n. By Corol
lary 3.6 the functional dependence on (TJo, 1) of the metric 
components 

A. Meister 2936 



                                                                                                                                    

g(~'~)1 aTj aTj x-'('1° .. ,,) 

can depend only on x: = TTl (p) and not on the special choice 
of pETTI-I(X) and of the orthonormal family (e l ,e2, ... ,en ). 

We may therefore assume that p = tP;:; I (x,O) and 

A 1 a I 
e; = 2r(x) az; p' 

Making for the affinely parametrized geodesic r: 
tl---+X-I(TjOt,llt) the following ansatz [guided by (3.7)] 

tPNoX-1(TjOt,1lt) = (p(t), 2l sin(f(t)1Jf) ) (3.13) 
Tj 1 + cos(f(t)Tjt) 

one can calculate the geodesic equation (2.11 ) and finds that 
the complex normal coordinates X are given by 

tPN OX- I(Tjo,ll) = (p, 2l sin(jTj») (3.14) 
Tj 1 + cos(jTj) 

where/ = /(1) andp = p( 1) and/(t) andp(t) are solutions 
to the following differential equation with initial data: 

P - Tj2r(p )r' (p )i2 = 0, p(O) = x, p(O) = Tjo, 

!+ 2[r'(p)/r(p)J.ip =0, /(0) =0, j(0) = 1/r(x). 
(3.15 ) 

Equation (3.15) shows that/and p are functions of Tj2 and 
Tjo. 

From Proposition 2.7 we know that the complex normal 
coordinates X are holomorphic coordinates, so the metric 
coefficients of the metric g in these coordinates are repre
sented by a power series in TjO,TjI, ... ,Tjn. Having calculated the 
metric in terms of Xu sing (3.14) one can use (3.15) tocalcu
late the coefficients of this power series. After a somewhat 
lengthy computation one finds that the expansion up to sec
ond order is given by [r,r' ,r" stand for r: = r(x), r': = r' (x), 
r":=r"(x)] 

g = 0 AB dTjA ® dTjB 

+ [(1 - r,2)/3,z](OABOcDTjATjC dTjB ® dTjD 

- 0 AB TjATjBOCD dTjc ® dTjD) 

+ [(1 - r'2 + rr" )/3,1]0 AB (TjA dTjo - Tjo dTjA) 

(3.16) 

In order to apply Corollary 2.11, change to the coordinates 
A = (A 0,.1 1, ... ,.1 n) as indicated in Corollary 2.11 [set again 
dAB: = - ~ (a~ + a! ) ], 

g = dAB dA A ® dA B 

+ [(1 - r,2)/3,z](dABd cDA AA C dA B ® dA D 

- dABA AA BdcD dA C ® dA D) 

+ [(1- r'2 + rr")/3,z]dAB.if~.if~ 
X (A AdA C _ A C dA A) 

® (A B dA D _ AD dA B) + 0(3) (3.17) 

Now consider the restriction of (A 0,A. 1, ... ,A. n) to Rn+ I. If 
this restriction describes a real slice, by Corollary 2.11 the 
coefficients of the metric must be real, so in particular their 
Taylor expansion up to any order must be real, so from the 
form (3.17) of the metric we can get necessary conditions 
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which a has to satisfy for (3.17) to describe a real slice. The 
first possibility is that the coefficient of the third term van
ishes identically. 

Proposition 3. 7: (1 - r'2 + rr") /3,1 vanishes identically 
if and only if r(x) = a sin( ( 1/ a)x + b) for some a,bEC. In 
this case, cf/l is locally isometric to cS: + I and for the real 
slices of C f/l the results of the previous section apply. 

Proof rex) = a sin« 1/a)x + b) is the general solution 
of (1 - r,2 + rr" )/3,1 = o. To establish the local isometry 
to Sa introduce complex normal coordinates (W',X') on 
cS:+ I as given in (3.7) and (3.8). Introduce new coordi
nates I{I on cS: + I by 

X'ol{l-I(X,Z) = (TjO,TjI, ... ,Tjn), 

where 

Tjo=x[(r-l)/(r+ 1)], 1l=x[2z/(r+ 1)]. 

Calculating the metric (3.8) in terms of the coordinates 
I{I = (x,z) one gets (3.12) with rex) = a sin«(1/a)x). This 
establishes the local isometry by identifying the coordinates 
I{I with tPN on cf/l for instance. An affine transformation of 
the coordinate x then yields the general form rex) = 
a sin« 1/a)x + b). • 

Otherwise we get the following result. 
Proposition 3.8: Assume that cf/l is not locally isometric 

to cS: + I and let n>2. There is a real slice passing through a 
pointp with TTI(p) = x if and only if,z(x + t) or ,z(x + it) 
is real for all tER. 

Sketch o/the proo/(for more details see Ref. 8): Assume 
first that there is a real slice JV passing through p. We may 
further assume that [(1 - r'2 + rr" )/3,1] 11T,(P) does not 
vanish (if it would vanish for all pE./V, it would vanish iden
tically, contradicting the assumption by Proposition 3.7). 
Let a be the orthogonal mapping describing the k-null plane 
Tp(JV) in (3.17). 

Considering the third term in (3.17) define the function 
Bon (Rn + 1)3 given by 

B(A,s,;) = dAB.if~.if~ (A AS C - /i, CSA)(A B;D _ A D;B). 

(3.18 ) 

If n > 2 and if ag is not equal to + 1 or - 1, then the values 
assumed by B on (R n + I) 3 do not lie in a one-dimensional 
subspace of C (considering C as a vector space over R). 
This is due to the following: .if~ is given by 
.if~ =!( 1 + i)~ -!( 1 - i)a~. If ag is not equal to + 1 
or - 1, ~ and a~ are linearly independent, so the complex
valued bilinear form .if on Rn + I given by .if (s) = .if~s cis 
surjective onto C. One can then show that one can choose 
three linearly independent vectors of Rn +, (here we use 
n>2) which yield two linearly independent complex values 
when plugged into (3.18) in different ways. 

This shows that ag must be either + 1 or - 1 since 
otherwise the metric ( 3.17) cannot be real for all 
(A 0,.1 1, ... ,A. n)ERn + '. Taking this into account, we can 
write (3.17) as 

g = dAB dA A ® dA B + [( 1 _ r'2)/3,z] (dABdcDA AA C dA B 

® dA D _ dABA AA BdcD dA C ® dA D) 
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_ ag [( 1 - r2 + rr" )/3r]dAB (A. AdA. ° - A. ° dA. 4) 

® (A. B dA. ° -A. ° dA. B) + 0(3). 

Since in n>2 the second and the third term may vary inde
pendently of each other, the reality of g implies the reality of 
both coefficients: 

(1 - r2)/3r and (1 - r2 + rr" )/3r must be real. (3.19) 

On the other hand ag = 1 or ag = - 1 implies that y: 
t~A-l(t,O, ... ,O) =X-I(vt,O, ... ,O), where v=; if ag = 1 
and v = 1 if ag = - 1, gets mapped to tPNoy(t) 
= (x + vt,O, ... ,Q) [see (3.15)]. So the real sliceff contains 

points q with 1TI (q) = x + vt for all t. Since the arguments 
above did not depend on the special choice of x, (3.19) ob
tains 

[( 1 - r 2)/3r] Ix+ vt and [( 1 - r2 + rr" )/3r] Ix+ vt 
(3.20) 

must be real for all tElR. Then we get 

d (1 - r2) I 2vr 1 - r2 + rr" I 
dt ~ x+vt = --r- 3r x+vt 

must be real for all t, so using (3.20) vCr Ir) must be real, 
so r2/r must be real, so finally, using once more the first 
term in (3.20), r must be real for all t. This proves the "only 
if" part of the proposition. 

Assume now that for v = iorv = 1, rex + vt) is real for 
all t. Introduce coordinates <I> = (xo,xi, ... ,xn) by 
~No<l>-I (xo,x) = (x + vxo,x) and restrict these coordi
nates to real values. Then (3.12) shows that the restricted 
metric is real, so the coordinates describe a real slice. • 
By an argument similar to that leading to Corollary 3.2 we 
get the following corollary. 

Corollary 3. 9: Let n > 2, ff a real slice of C f!It, pE./Y', and 
x = 1TI (p). Then ffn1TI- I(X) is a real slice of cS~(x) and 
conversely to every real slice JI' ofcS ~(x) there is a real slice 
JI ofcf!lt such that JI n1TI- I(X) = JI'. 

The different real slices in Corollary 3.9 reflect only the 
results on the real slices of cs ~ and are somehow trivial with 
respect to the geometry of C&? We will say that all real slices 
obtained from one another in the way described in Corollary 
3.9 belong to the same class of real slices. If two real slices 
belonging to two different classes intersect in a point p, then 
by Corollary 3.9 and Proposition 3.8 r(1TI (p) + t) and 
r(1T I (p) + it) must both be real for all t. Since r(1TI(p»:;i:O 
this implies that the Taylor expansion of rex) about the 
point 1T I (p) can contain only even powers of (x - 1T I (p) ). 
This leads to the following corollary. 

Corollary 3.10: Let n>2. Two real slices belonging to 
different classes can pass through some point pecf!lt if and 
only if r( 1T I (p) ) is real and the function r is symmetric about 
the point 1TI (p), i.e., t(1TI (p) + x) = r(1TI (p) - x) for all x. 
Furthermore, the intersection of two such real slices is a real 
slice or a totally geodesic submanifold of a real slice 
of cS~(x)' 

IV. PROPAGATORS ON THE COMPLEXIFIED SPHERE 

Throughout this section r will be real and positive. We 
will discuss cS:-invariant Green's functions to the wave-op-
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erator 0_m2
, in particular, analytic continuations of such 

functions from one real slice to another. 
First we will introduce an auxiliary function.j). (This 

function is the straightforward generalization of the func
tion p used in Dowker and Critchley. I) As in Sec. III let I 
denote the embedding mapping of cs ~ into en + I, but this 
time interpret en + I not as a complex Riemannian manifold 
but as a complex vector space provided with a symmetric 
bilinear form ~ given by ~(v,w) = ~AB~wB [so for instance 
we have ~(I(p),I(p» = r for allpecSn. 

Every point pecS ~ can be assigned its antipodal point 
denoted by p* and defined by I(p*) = - I(p). 

Define the function.j): 

.j):cS ~ X cs ~~e 

(p,q)~.j)(p,q) = (1/r)~(I(p),I(q)r (4.1) 

This.j) isa cS~-invariant function, that is, .j)(p,q) = .j)(Sp,Sq) 
for all p,qeCS ~ and for all isometries S ofcS ~. Conversely one 
can show (see Ref. 8) that every cS~-invariant functionfis 
essentially a function / of .j), that is, / defined by 
J(.j) (p,q» = f(p,q) is well-defined (except maybe for p = q 
or p = q*) . .j) satisfies .j)(p,q) = - Np,q*) as is seen in 
(4.1). 

Furthermore one can show (see Ref. 8) that .j)(p,q) is 
real if and only if there is a real slice ff of cs ~ containing p 
and q or p* and q. In this case: 

If.j) (p,q) > 1: p and q can be joined by a timelike geodes-
ic; 

if.j) (p,q) = 1: p and q can be joined by a null geodesic; 
if 1 > .j) (p,q) > - 1: p and q can be joined by a space1ike 

geodesic; 
if.j)(p,q) = -1:p*andqcanbejoinedbyanullgeodes-

ic; 
if .j) (p,q) < - 1: p* and q can be joined by a time1ike 

geodesic; 
where timelike, null, and spacelike mean that the tangent to 
the geodesic has everywhere, respectively, negative, zero, or 
positive squared length. 

Next fix some point pecS ~ and define the sets 
S+: = {qECS~IIm(.j)(p,q»>O},S -: = {qECS~IIm(.j)(p,q» 
<o}, So: = {qECS~IIm(.j)(p,q» = O}. S +, S -, SO are con
nected and SO is the boundary of S + and S - , 
so=as+ =as-. 

Now turn to the wave-operator (0 - m 2
). Given a ho

lomorphic function/on cS~, define the action of (0 - m2
) 

on/by 

(0_m2)/1 =ikl (a 2(joq;-I) 
q q az'azk 

1 a(j0q; - I ) ) 2 -riklq az
j 

Iq;(q) -m'j(q) (4.2) 

in some holomorphic chart ( U,rp). This operator clearly re
duces to the usual wave operator on all real slices ofcS ~ as is 
seen by choosing holomorphic coordinates which describe 
the real slice when restricted to real values. By Proposition 
3.3 one sees, considering the signatures ofthe restricted met
ric, that on real slices isometric to de Sitter space-time m2 

must be chosen positive in order that solutions of the wave 
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equation describe physical particles, and on real slices iso
metric to anti-de Sitter space-time m2 must be chosen nega
tive. 

The propagators we will consider will turn out to be 
invariant and can therefore be considered as functions of ~. 
So let /(z) be a holomorphic function. The action of 
(0 - m2

) on the functionj(~(p,» is given by 

(0 _ m2)J{~(p '»1 = d
2
/ l..(1 _ z2) _ d/ nz 

, q dz2r dzr 

- m
2
/lz=l>(p.q)' (4.3) 

Now turn to the four-dimensional case. The homoge
neous wave equation for an invariant function / reads by 
(4.3), 

(4.4) 

Two linearly independent solutions Y I' Y 2 to this equation 
are given by 

d d 
m2r=l2:Y I =-Pv(z), Y 2=-Qv(z), 

dz dz 

where V= - ~ + ~ ~9 - 4m2?, 

m2r = 2: Y I = _1_, Y 2 = ~ Qo(z) (4.5) 
1 +z dz 

where Pv' Qv are the Legendre functions of the first, respec
tively, second kind (Gradshteyn-Ryzhik lO

). The case 
m2r = 2 has to be treated separately since in this case v = 0 
and (d Idz)Po(z) =0. In the following we will denote the 
derivatives of Pv and Qv by P ~ and Q ~ respectively. Note 
also that if a function/(z) solves (4.4) then/( - z) is an
other solution of ( 4.4 ). 

Let us collect some properties of the Legendre func
tions. Most of the following formulas are either directly tak
en from Gradshteyn-Ryzhik 10 or follow from asymptotic 
expansions about the singular points - 1, 1, 00 of the Le
gendre equation, as they are treated for example in Smir
nov. ll 

For vEl, Pv is singular at - 1 and 00 and is analytic on 
q [ - 00, - 1] and the continuation onto the branch cut 
from above or from below follows from 

Pv ( - z) = eiVl1p v (z) - (2hr) sin ( V1T)Qv (z) 

[Im(z) <0], 

Pv ( - z) = e - iV"Pv (z) - (2hr)sin( V1T)Qv (z) 

[Im(z»O]. 

The singular behavior at - 1 is given by 

Pv(z) 

= (1/1T)sin( V1T)ln(z + 1 )Pv ( - z) + h(z) 

(4.6) 

= (1/1T)sin( V1T)ln(z + 1)(1 - [v( v + 1)/2](z + 1) 

+"')+h(z), Iz+ll<2, (4.7) 

where h(z) is an analytic function and the cut for the loga
rithm is taken to be [ - 00 ,0] . 

For 1IEZ, Pv is a Legendre polynomial, in particular 
Po=I,PI (x)=x. 

For vEl, Qv is singular at 00, - 1, 1 and is analytic on 
C\ [ - 00,1] and its continuation onto the branch cut from 
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above and from below are given by (4.6) for 
- 1 < Re(z) < 1 and for Re(z) < - 1 by 

Qv( - z) = - e- iV1TQv(z) [Im(z) <0], 
(4.8) 

[Im(z»O]. 

For v = neZ, Qv is singular at - 1 and 1 and analytic on 
C\( - 1,1]. Qn reads 

Qn (z) = !Pn (z)ln{(z + 1)/(z - 1) - Wn_ 1 (z), (4.9) 

where Wn _ I is a polynomial, 

n 1 
Wn_ 1 (z) = k~1 -;;Pk- I (z)Pn_k(z). 

For Izl > 1 Qv and Pv are given by 
00 

Qv(z) =cz- v- I L cnz- 2n 
n=O 

=CZ- V - IF(V+2 v+l V+3l..) 
2 ' 2 ' 3 'z2' 

00 

Pv(z) = c'zv L c~z-2n + cHQv(z), 
n=O 

where F(a,{3,y,z) denotes the hypergeometric series. 

(4.10) 

In (4.5) it is seen that for m2r > t, v is of the form 
v = - ~ + iy, ye:R, for m2r .. q, v is real and for 
m2r = 2 - n(n + 1), v is an integer and equals n. 

Now consider the Dirichlet propagator G(p,q) on a real 
slice ff isometric to S 4, satisfying 

(a-m2)G(p,)l q = -o(p,q), (4.11) 

where 0 is the Dirac delta function on ff and a is the Lapla
cian on ff. Assuming that G(p,q) is invariant under the 
symmetries of S4, we can write it as a function/of ~ (p, . ) Ly. 
This function must then solve (4.4) everywhere except at 1 
(corresponding to p = q). It follows that/must be propor
tional to Y I ( - z) in (4.5) since all other functions are sin
gular at - 1 (corresponding to p = q*). The Dirichlet pro
pagator G(p,q) is derived for instance in Dowker and 
Critchley I and reads, for m2r=l2: 

G(p,q) = [1/81Trsin(v1T)]P~(x)lx= -l>(P.q» 

form 2r = 2: 

G(p,q) = (1/8rr)[1/1-~(p,q)]. (4.12) 

(The case m 2r = 2 can also be obtained directly by taking 
the limit v -+ 0 in the general case; we will therefore not write 
it down explicitly any longer.) Equation (4.12) describes 
the Dirichlet propagator satisfying (4.11) for all values of 
m2 except the values m2r = 2 - n(n + 1), nEN. For these 
values the polynomials P ~ (x) I x = l>(P.') are eigenfunctions of 
the 0 operator to the eigenvalue m 2

, so (0 - m 2
) has no 

inverse. For all other values of m 2 the kernel of (0 - m2
) is 

0, so the inverse exists, is unique, and is represented by the 
Dirichlet propagator G(p,q) in (4.12). 

Now proceed to the analytic continuation of G(p,q) to 
other real slices. To this end keep p fixed and continue the 
function G(p,' ). First we note the following proposition. 

Proposition 4.1: Any function F defined on an open con
nected subset U of cS ~ (we mean in particular that F has no 
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singularities on U) and obtained by analytic continuation of 
the function G(p,') L+~ can be written as a holomorphic 
function of.\> (p, .) and solves the homogeneous wave equa
tion (0 - m2 )Flu = o. 

Proof If F is obtained from G(p,' ) II ' by analytic con
tinuation, there is a sequence (UI,FI ), ( U2,F1) , ... , ( U m ,F m ) 

of open connected subsets U; of cs ~ such that U; n u; + I is 
nonempty and holomorphic functions F; defined on U;, such 
thatF;lunu =F;+llunu for all 1 <,i<,m, Ulnffis 

, 1+ I I 1+ 1 

nonempty and FII u,n I' = G(p,') I u,n /' and the last ele-
ment ( U m ,F m ) equals ( U,F). On the open set UI defined as 
UI = {qE UII Re(.\> (p,q» < - 1} (4.12) defines a holomor
phic function G(p,' ) satisfying G(p,') 1 v n J' 

= G(p,') I v,n I' So FI and G(p,') coincide on UI, ~~ the 
holomorphic function (0 - m1)FI = (0 - mZ)G(p,) 
vanishes on UI by (4.12), (4.4), and (4.3), and hence, as UI 

is an open subset of UI, (0 - m2 )FI vanishes on UI. There
fore the holomorphic functions (0 - mZ)F; must all vanish 
since they coincide on the nonempty sets Uj n U; + I . Analo
gously one infers that since FII v, is a holomorphic function 
of l' (p, . ), and therefore all F; are holomorphic functions of 
l'(p,). • 

We can now write down the general form of the analytic 
continuation. 

Proposition 4.2: Let Ube an open connected subset of S + 
(S -) (see the beginning of the section) and F + (F -) be a 
function on U obtained by analytic continuation from 
G(p, . ) I, v· Then F + (F -) can be written in the form 

F + (F-) Iq = [1I81Tr sin( v1T)](T lip ~ (z) 

(4.13 ) 

where the matrix T;k is an element of the discrete subgroup 
Y ofSL(2,tC) generated by the two matrices A and B: 

(
1 - i1T) A·-. - 0 1 ' 

(

eZ;V1T 
B'-

. - - (2i/1T)tan( V1T) sin (2V1T) 

(4.14 ) 

Conversely to every element TEY there is a continuation 
F+ [T] (F- [T] )ofG(p,') II,toS + (S -) suchthatF+ [T] 
(F - [T] ) is given by (4.13), 

Proof Consider again a sequence 
(UI,FI ) (Uz,Fz) , ... , (U m ,F m) as in the proof of Proposition 
4.1. Denote by U / , U;- the intersections 

I 

u;ns+, u;ns-, respectively. By Proposition 4.1 F;l u,+' 
F; I u ,- can be written as 

F;IU; + = (a/ YI(z) +b/ Y1(z»lz= _P(p,'» 

F; I U; - = (a;- Y I (z) + b;- Y 2 (z»lz= _ P(p,') 

where a/, b /, a;-, b ;-EtC and at = al-

= 1I81Trsin(v1T), bt =b l- =0. Then clearly 
a/ = a/ ,b ;:;. I = b /, a;~ I = a;-, b;~ I = b ;-. On the 
other hand, from the continuity of F; one gets by (4.8) and 

(4.6), (:'~ ) = T; (:',~ ), where T; is either of the matrices 1, 

A, or B. Expressing now a;:; ,b ;:; ,a;;; ,b;;; successively in 
terms of a 1+ ,b t ,a 1- b 1- one gets (4.13). Finally one easily 
convinces oneself that by appropriately choosing the open 
sets U1,,,,,Un one can realize every element of Y. • 

The analytic continuations F + [T] to S + (F - [T] to 
S -) defined in Proposition 4.2 can be continued to a func
tion + FO[ T] (-FO[ T]) on the boundary SO of S + (S -) 
which contains all real slices passing through p. These con
tinuations to S ° may be singular on the light cones of p and p* 
[where l' (p,q) equals + 1 or - 1]. In order to identify the 
propagators it will be useful to know the singular behavior of 
these continuations at p expressed in terms of the squared 
geodesic distance 7l. Using (3.7), (3.2), and (4.1) one finds 
that l'(p,q) = cos( 7]/r). Using (4.7) and (4.6) one finds for 
the singular behavior of + FO [T] (-FO [ T] ) at p 

( 
1Te;V1TT21 ) 

sing( ±FO[T]) = Tll +--.--
2 sm( V1T) 

where () is the step function. Since all real slices passing 
through p lie in So, (4.15) gives the singular behavior of the 
restriction of ± FO [ T] to any real slice passing through p. 

Now choose a real slice JI passing through p isometric 
to de Sitter space-time. Comparing (4.15) to the singular 
behavior of Green's functions in flat space-time one finds 
that i-FO [1] has the singular behavior of a Feynman propa
gator. Setting GF (p,q): = i-FO [1] (q) we get [using (4.6) ] 

i {X>-I:P~(X) }I GF(p,q) = , . . 
81Trsin(v1T) x< -1: _e+'V1Tp~( -x) + (2/1T)sm(v1T)Q~( -x) x= _P(p,q) 

(4.16 ) 

GF (p,q) is the Feynman propagator of the de Sitter-invariant vacuum state derived for instance in Dowker and Critchley I by 
analytic continuation in l' or in Tagirovl2 by summing over orthogonal modes. - i+ FO[I] is the complex conjugate of 
i-FO [1], so it is the anti-Feynman propagator. Since the future and past lightcone of p in JI are disconnected, we can also 
choose - i+ FO [1] inside the future lightcone of p and i-FO [1] inside the past lightcone of p and vice versa which yields the 
Wightman two-point functions iG + and - iG -, respectively. So the situation is similar to the Wick rotation in flat space
time. 

Now let JI be a real slice passing throughp, isometric to anti-de Sitter space-time (adS). On JI the signature of the 
metric is ( + - - - ), so the physical value of the squared mass is - m Z

• Taking this into account one sees in (4.15) that 
- j+ FO [1] has the singular behavior of a Feynman propagator. But it follows from (4.10) that this function blows up at 

timelike infinity of p [which corresponds physically to spacelike infinity because of the reversed signature ( + - - - ) on 
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adS]. so it cannot describe a good propagator. There are however other continuations which have the right singular behavior 
at P. for instance - i+ FO[B], as is checked using (4.15) and (4.14). - i+ FO[B] reads 

_ i { x> I: e+2iV11p~(x) - (4i/1T)sin2(v1T)Q~(x) } 

-i+FO[B] = -1<x<l: P~(x) -2isin(v1T)P~( -x) 
8m2 sin ( V1T) 

x< -I: _e+'V1Tp~( -x) + (2/1T)sin(v1T)Q~( -x) x= _!>(p,') 

( 4.17) 

There is a linear combination of - i+ FO[I] and - i+ FO[B] which falls of at physically spacelike infinity. namely 
LG(p.·): = ceiv1r( - i+ FO[I]) - ce- iV1r( - i+ FO[B ]). Ifwe want LG to have the correct singular behavior. we must choose 
c = 1/2i sin ( V1T). LG then reads [using (4.17). and the complex conjugate of ( 4.16) ] 

{ 

x>l: e-iV1TQ~(x) } 

LG(p,) =~ -1<x<l: [1T/2sin(v1T)](e-iV1rp~( -x) +P~(x» 
4~r 

x< - I: Q~( -x) x= _!>(p,') 

(4.18 ) 

which can be written in a more elegant form: 

LG(p,) = (-i/4~r)Q~(x+iO)lx=l>(p,.). (4.19) 

Here we note that although we started from G(P.·) Lv 
which was defined only for m2r=l=2 - n(n + 1). nEN. 
LG(p.·) is now well-defined for all m2.;;;0. So. by construc
tion. LG has the singular behavior of a Feynman propagator. 
falls off at physically spacelike infinity of P. and is regular in 
physically spacelike distance to p. It is seen in (4.18) that for 
VEN. V even. LG(p.· ) is even under the antipodal transforma
tion q -+ q* and for VEN. V odd. LG is odd under this transfor
mation. Forthesevaluesofm2

• that is m2r = 2 - n(n + I). 
nEN. LG is the Feynman propagator to an adS-invariant 
vacuum state as derived and discussed in A vis. Isham. and 
Storey6 [up to a sign due to the normalization of LG: LG 
satisfies (0 + m2)LG(p,) = o(p,) + ( - 1) no(p*,) 
where we have replaced m 2 by its physical value ( - m2

)]. 

Now let JI be a connected real slice isometric to the 
hyperbolic plane H4 containing p. As in the case above the 
continuations ± FO[I] and ± FO[B] restricted to JI blow 
up at infinity. but again the linear combination LG restricted 
to JI falls off at infinity. The operator - 0 on JI is just the 
Laplacian. The Laplacian on H4 acts on the space C (f (H4) 

of C 00 functions with compact support and is essentially self
adjoint. that is. it has a unique self-adjoint extension in the 
Hilbert space !f2(H 4

) of square integrable functions. This 
is stated for instance in Wald3 and is due to a theorem by 
Gaffney l3 which says that the Laplacian on manifolds with 
"negligible boundary" is essentially self-adjoint. The class of 
manifolds with "negligible boundary" contains in particular 
the complete Riemannian manifolds. It is shown in Wald3 

that for m2 < 0 the Dirichlet propagator to 0 - mZ can be 
given in the form ofa two-point function. For mZr <~ ILG IZ 

falls off at infinity as ~p with {3 < - 3 as is seen using (4.10). 
~p is integrable for {3 < - 3 and not integrable for {3> - 3. 
So ~: = - iLG describes the Dirichlet propagator satisfy
ing (the factor - i adjusts the singular behavior) 

(0 - mZ)~ (p,) = 8(p,) 

for mZ<O: 

~(p,) = (-1/4~r)Q~(x)lx=l>(p,,). ( 4.20) 

This shows that in the cases where it exists. the Feynman 
propagator on adS is obtained by analytic continuation from 
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the Dirichlet propagator on H4 in the same way as the Feyn
man propagator on de Sitter is obtained from the Dirichlet 
propagator on S4. both are boundary values of a holomor
phicfunction defined on S + (H 4.adS). S -. (S\ de Sitter). 
respectively. The question which arises naturally is: does 
there exist an analytic continuation of say the Dirichlet pro
pagator on the sphere which would yield the Dirichlet pro
pagator on the hyperbolic plane? The following proposition 
shows that this is not the case. which implies also that there 
is no analytic continuation from the sphere S4 to the Feyn
man propagator on adS or from H 4 to the sphere S4 or to de 
Sitter. 

Proposition 4.3: Let mZr <0. mZr=l=2 - n(n + 1). 
nEN. There is no analytic continuation of the Dirichlet pro
pagator G(P.·) I. v in (4.12) which yields the Dirichlet pro
pagator on a real sliceJl isometric toH 4 passing throughp. 

Proof' It is seen from (4.20) and using Propositions 4.1 
and 4.2 that it is sufficient to show that there is no TEY such 
that TIl = O. 

An element T of Y is of the form 

T= A n'B k'A n'B k""A nrB kr for nl.kl.nz,kz ..... nr.krEZ. Us
ing induction one easily proves that 

Using (4.21) we find that 

BkAn+A -nB -k=F(n,k)l. 

with 

F(n,k): = 2 cos(2kv1T) 

- 2n tan ( V1T) sin (2kv1T) . 

~- ZikV1r)' 

(4.21 ) 

(4.22) 

Note that for mZr < O. v and hence F( n,k) is real. Using 
the above relation we can rewrite the element T as follows: 

(4.23) 

Using this relation repeatedly we can express Tin the form: 
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T= L l(n,k)A nBk, (4.24) 
n.k 

where the coefficients 1( n,k) depend on nl,kl,n2,k2, ... ,nr,kr' 
only finitely many of them are different from zero and they 
all are real [since F(n,k) is real]. 

Now assume that there is a TE!7 with TIl = O. Express 
T in the form (4.24). Since Til = 0, its real and imaginary 
part must vanish. Since the 1 (n,k) are real, 1m ( TIl) is given 
by [using (4.21) and (4.24)] 

0= Im(TII) = L l(n,k)sin(2kv1T). (4.25) 
n.k 

On the other hand T21 is given by [using (4.21) and (4.24) ] 

T21 = _ 2i tan(v1T)L l(n,k)sin(2kv1T). (4.26) 
1T n.k 

So by (4.25) we get T21 = O. But then det( n = 0 which 
contradicts det( n = 1 V TEY, so there is no TEY with 
Til =0. • 
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The variational problem E B f~(f3, - A(t,x,)f dt - f~c(t,x, )dt] = min,wherep, is the 
drift process of a diffusion process with unit diffusion coefficient and given initial and final 
distributions, A is a given vector field, and c is a given scalar field, is considered. It is shown 
that the solution is given by a certain Markovian diffusion process, which (in the case A = 0, 
c = 0) first was investigated by Schrodinger (Sitzungsber. Preuss. Akad. Wiss. Phys. Math. 
Kl. 1931,144). 

I. INTRODUCTION 

In 1931/32, Schrodinger),2 treated the following prob
lem: A large number N of particles in Euclidean space Rd 
with initial distribution (approximately) Po(x)dx performs 
standard Brownian motion, i.e., the particles move indepen
dently of each other according to the probability transition 
density 

Pw(s,x;t,y): 

= exp( - (x - y)2/2(t - s) )/(21T(t - s) )d/2. 

Assume that at some later time T the particle distribution is 
observed to be (approximately) PT(z)dz, where PT(Z) 
"largely deviates from the law oflarge numbers" in the sense 
that it is different from 

f Po(x)Pw(O,x;T,z)dx: 

then which way that leads from Po to PT is still the most 
probable? Schrodinger showed that the most probable distri
bution densities at intermediary time points are ofthe prod
uct form 

Prey) = $ (t,y)q;(t,y) , 

where 

$(t,y) = f ~(x)Pw(O,x;t,y)dx, 
q;(t,y) = f q;(z)pw (t,y; T,z)dz, 

and the pair $(x),q;(z) solves the integral equations 

Po(x) = $(x) f q;(z)Pw(O,x;T,z)dz, 

PT(Z) = q;(z) f $(x)Pw(O,x;T,z)dx. 

(1) 

(2) 

(3) 

The crucial step in Schrodinger's derivation was to deter
mine the most probable joint distribution v( dX,dz) of initial 
and final positions, which turned out to be 

v(dx,dz) = $(x)Pw(O,x;T,z)q;(z)dx dz. (4) 

Since the joint distribution densities at times t), ... ,tn , condi
tioned upon the initial and final positions x and z are given by 

[Pw(O,x;t),y)" 'PW(tn,Yn;T,z) ]/Pw(O,x;T,z), 

the unconditioned joint distribution densities at times 
0< t) < ... < tn < Tare 

(5) 

Hence the distribution Q of the corresponding stochastic 
process is absolutely continuous with respect to the station
ary Wiener measure, with Radon-Nikodym derivative 
$(XO)q;(XT ). Here and below, X = (X,) stands for an ele
ment of the "path space" n, the space of continuous func
tions from [0, T] into Rd. 

Follmer3 gives a rigorous treatment of Schrodinger's 
problem, proving the above-mentioned results by methods 
from the theory oflarge deviations. Using his approach, one 
can also show {cf. the result in Sec. II for the special case 
A = 0, c = 0) that Schrodinger's process satisfies a simple 
least action principle. The fact that Schrodinger's processes 
should be accessible to a variational characterization was 
already conjectured by Bernstein4 in 1932, cf. remarks in the 
paper of Zambrini. 5 

Now let Pw be replaced by a more general transition 
density p, say, the fundamental solution of the differential 
equation 

(
a 1 a

2 
a} -+--+A'-+c =0, 

as 2 ax2 ax 

limp(s,',t,y) =8y , (6) 
sf' 

for a given vector field A (s,x) and a given scalar field c(s,x). 
If the field c does not vanish, p is no longer a probability 
transition density, but rather corresponds to a stochastic 
process with creation and annihilation.6 For any given initial 
density Po and final density PT it is, however, still possible 
(a) to construct a Markovian diffusion process (with con
servation of mass) via the system of integral equations (2) 
and the joint distribution densities (5) (see Jamison,7,8 Zam
brini,5,9,10 and Nagasawa ll

); and (b) to formulate a least 
action principle generalizing the above-mentioned one for 
the case A = 0, c = 0. 

There have been various attempts to relate these two 
approaches: Zambrini, 5,9.10 who revived Schrodinger's ideas 
for contemporary physics and gave connections to Nel
son's)2 stochastic mechanics, shows that among a certain 
class of "neighboring diffusions" with drift processes (P,), 
the above-mentioned Markovian diffusion process (which 
we continue to call Schrodinger's process) minimizes the 
functionals 

E(s.x) [Ls.T - In q;( T,X T) ], O';;;s';;; T, xERd
, 
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where the "stochastic Lagrangian" is given by 

i
T I 2 iT Ls,T:= -(/3t-A(t,X,» dt- c(t,x,)dt, 

s 2 s 

(7) 

(In fact, Zambrini considers the case A = ° and gives a re
verse time formulation, ) 

Nagasawa 13 gives a similar variational characterization 
of what he calls a Schrodinger process prescribed by a pair of 
functions cp (t,y), ~ (t,y) : among all diffusion processes with 
unit diffusion coefficient and square integrable drift pro
cesses, it minimizes the functional 

E[L6.~m+ ~ 10g($)(0,xo) - ~ 10g($)(T,XT )], 

where L 6.~m is a certain time symmetric stochastic Lagran
gian first considered by Yasue. 14 For related results, see 
Blanchard et al. 15 and also Zhao. 16 

We will show that, among all diffusion processes with 
unit diffusion coefficient, square integrable drift process, 
and prescribed initial and final densities Po and PT' Schro
dinger's process is the one that minimizes the functional 
E[Lo,T], where the stochastic Lagrangian LO,T is defined in 
(7). This reveals, in particular, that one can dispose in the 
objective functional of initial and final valuations invoking cp 
and ~, if one restricts the variational problem to processes 
with prescribed initial and final distributions-a restriction 
on the line ofSchrodinger's original program. The methods 
used for the proof are purely probabilistic; they are close to 
the approach of Follmer3 and different from those of Zam
brini5

,10 and Nagasawa. 13 

II. FORMULATION AND PROOF OF THE RESULT 

Let D be the set of distributions of diffusion processes 
with unit diffusion coefficient and square integrable drift 
process, i.e., D consists of the probability measures Q on path 
space n: = C( [O,T],Rd

) for which there exists a family of 
measurable mappings /3 t: n - R with /3, depending only on 
X" O';;s.;;t, such that 

EQ[iT /3; dt] < 00 

and 

W,: = X, - f /3s (X)ds 

is a standard Wiener process defined on (n,Q). 
For any given probability densities Po, PT on Rd

, let 
D(PO,PT) denote the set of all distributions in D having ini
tial density Po and final density PT' i.e., 

D(PO,PT): = {QED: Q [XoEdx] =Po(x)dx, 

Q [XTEdz] =PT(z)dz}. 

Let A: [O,T] XRd_Rd be a given vector field, and c: 
[O,T] XRd_R be a given scalar field. To avoid technical 

I 

2944 J. Math. Phys., Vol. 30, No. 12, December 1989 

difficulties, we will assume that A is continuous and bound
ed, and c is continuous and bounded from above (though 
presumably the following theorem should hold for a larger 
class of fields A and c). 

Theorem: Let Po and PT be probability densities on Rd
, 

with Po> 0. Suppose that D(PO,PT) is nonvoid. Then the 
unique solution of the variational problem 

I: = EQ [~ iT (/3, - A (t,x,)2 dt - iTc(t,X, )dt ] = min, 

QED(PO,PT)' (8) 

is given by Q * = ;P(Xo)cp(X T )PI, where PI is the measure 
on n starting with Lebesgue measure at time zero and hav
ing transition density p given by ( 6), and (cp,;P) is the unique 
solution of the system of integral equations 

Po(x) = ;P(x) f p(O,x;T,z)cp(z)dz, 

PT(Z) = cp(z) f p(O,x;T,z);P(x)dx. (9) 

Moreover, Q * is the distribution of a Markovian diffusion 
with drift process /3, (X) = A (t,X,) + V In cp(t,x,), where 

cp(t,y): = f p(t,y;T,z)cp(z)dz. (10) 

Proof A combination of the formulas of Girsanov and 
Feynman-Kac l7 shows that PI has Radon-Nikodym deriv
ative 

N: = exp(i
T 

A (t,X, )dX, - ~ iT A 2(t,x, )dt 

+ iT c(t,X, )dt ). 

with respect to stationary Wiener measure P ~ on n. Writing 
pW: = Po(Xo)P~, P: = Po(XO)PI, one has 

P=N·p w. 

Any Q in D (PO,PT) with drift process (/3, ) has, by Girsan
ov's formula, a Radon-Nikodym derivative 

dQ (X) = exp( fT /3, (X)dX, _ J.- fT /3 ;(X)dt), 
dPw Jo 2 Jo 

Q almost surely. (11) 

Since the martingale expectations 

EQ [iT /3, dW, ] 

and 

EQ [iT A (t,X, )dW, ] 

vanish, one can rewrite the functional I as 
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[If the finite measure P would have total mass 1 (this is the 
case, e.g., if c=O), the latter expression would just be the 
relative entropy of Q with respect to P.] We now consider 
the disintegrations of P and Q with respect to initial and final 
positions, 

Pxz:=P['IXo=x, XT=z], 

Qxz:=Q['IXo=x, XT=z], 

and the projections of P and Q under initial and final posi
tions, 

{l: = P [(XO,xT)E(')], 

v: = Q [(XO,XT)E(·)]. 

Note that Px Z and Qx Z are probability measures on fl, and 

P= f PxZ('){l(dx,dz), Q= f QxZ(·)v(dx,dz). 

In view of the multiplication formula 

dQxT 

dQ (X) = dv (XO,XT) ~(X), Q almost surely, 
dP d{l dP~,~ 

one has 

1= EQ [In ~;,] = EQ [In ~: (Xo,x T) ] 

(12) 

+EQ[ln dQ;'~(X)] =f(ln dV)dV 
dp XT d{l 

X;, 

+ f f f(ln ~;~)dQ~ v(dx,dz). 

Because of Jensen's inequality, the second summand on the 
right-hand side becomes minimal (namely zero) if and only 
if 

Qx Z = Px z, for v almost all (x,z). (13) 

Thus the problem (8) boils down to 

f (In ~: )dv = min (14) 

under the side conditions 

v(dxXRd) =Po(x)dx, v(RdXdz) =PT(z)dz. (15) 

dQ'" (X) = dQ* (X) dP (X) 
dP w dP dPw 

Denoting the total mass of {l (which equals that of P and 
hence is finite) by k and writing m: = p,lk, we observe that 

dv dv 
In-= -Ink +In-. 

d{l dm 

Hence (14) is equivalent to 

f (In ::)dv = min. (16) 

A result of Follmer3 shows that the minimization problem 
[ ( 16) and (15)] has a unique solution v*, which is deter
mined by the following conditions: 

v*(dx,dz) =/(x)g(z)m(dx,dz), (17) 

log/(x)EL I (Po(x)dx), logg(z)EL I(PT(Z)dz), (18) 

Po(x) = lex) f k -lpo(x)p(O,x;T,z)g(z)dz, 

PT(Z) = g(z) f k -lpo(x)p(O,x;T,z)/(x)dx. (19) 

Writing$(x): = k -1/(X)PO(x), cp(z): = g(z), we thus note 
that ( 14) and ( 15) have a unique solution v*, which is deter
mined by 

v*(dx,dz) = $(x)cp(z)p(O,x;T,z)dx dz, (20) 

together with (18) and the system (9). From (12), (13), 
and (20) one has, for the distribution Q *, which minimizes 
the functional I, 

dQ* dv* 
-(X) = -(Xo,X T) 
dP d{l 

$(Xo)cp(X T )p (O,Xo; T,XT ) 
(21) 

hence 

Q * = $(XO)cp(XT) [lIpo(Xo)]P = $(XO)cp(XT)p[. 

With cp(t,y) defined by (10), one infers from (21) and the 
first equation of (9) that 

dQ* $(XO)cp(XT) 
-(X) = A , 

dP cp(Xo)cp(O,xo) 

and hence one obtains, applying Ito's formula to 
V In cp(t,X,), 

= exp(ln cp( T,xT) -In cp(O,Xo) )exp(i
T 

A(t,x, )dX, - + iT A 2 (t,X, )dt + iT c(t,X, )dt ) 

= exp(i
T 
V In cp(t,x, )dX, - + iT (V In cp)2(t,x, )dt 

+ iT[ ~ (~ Llcp + Z)] (t,X, )dt )exp(i
T 

A(t,X,)dX, - ~ iT A 2(t,x,)dt + iT c(t,X, )dt) 

= exp(i
T 

(A + V In cp) (t,X,) - + iT (A + V In cp)2(t,X, )dt ). 

This reveals, by Girsanov's formula, that Q * belongs to D, 
with drift process 

13, (X) = A (t,X, ) + V In cp(t,X,). 
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I~---------------------------------
The Markov property of Q * now is an easy consequence of 
the fact that 13, depends only on the present state X, of the 
process X. Thus the proof of the theorem is complete. 
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The conjecture that the magnetic field energy introduced into an imperfectly conducting 
medium by diffusion is less than the thermal energy produced by the associated Joule heating 
is shown to imply the positivity of a certain integral operator with an indefinite kernel. 
Counterexamples are found by means of a variational calculation. 

I. INTRODUCTION 

In a number of experiments carried out during the past 
several decades, multimegagauss magnetic fields have been 
generated by rapid compression of magnetic flux confined 
within a metal chamber or liner (see, e.g., the review by 
Herlach I. The limit to the peak fields attained in these at
tempts is imposed in practice either by the compressibility of 
the liner or by losses resulting from finite electrical conduc
tivity. In the latter case flux diffuses through the collapsing 
walls at a rate equal to the speed with which the liner moves, 
and no further increase in the field strength results. 

Attempts to predict the maximum obtainable fields l
•
2 

begin by treating the simplest problem, that of magnetic dif
fusion into a static homogeneous medium. When a magnetic 
field is produced in a cavity or dielectric medium adjoining a 
region oflarge but finite conductivity, it immediately begins 
to diffuse into the latter. This process is described by Am
pere's law, Faraday's law, Ohm's law, and a prescription for 
the time history of the field strength B outside the conduct
ing region. If we assume that the permeability p, and conduc
tivity u are constant and that the displacement current and 
the motion of the medium can be neglected, we can deter
mine the evolution of B within the conducting region in 
planar geometry by solving 

aB a2B 
Tt=K ax2 ' (1) 

where K is the (constant) magnetic diffusion coefficient or 
diffusivity, given in cgs units by 

(2) 

The magnetic energy density is B 2/811'p" so the total 
magnetic energy per unit area introduced into the conduct
ing region as a result of diffusion is 

WM(t) =_I_JdXB 2 (X,t). (3) 
811'p, 

The diffusion induces currents in the conducting medium. In 
terms of the current density J = (c/41rp,)VXB the rate of 
Joule heating is J2/U, so the thermal energy per unit area 
evolved by Joule heating in the course ofthe process is 

a) Current address: Physics Department, California Institute of Technolo
gy, Pasadena, CA 91125. 
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WJ (t) = ~ i' dt 1 J dx[VXB(x,t ') V (4) 
411'p, 0 

In Eqs. (3) and (4) the spatial integrals are carried out over 
the entire conducting region. 

Assuming that the conducting region occupies the half
space 0 < x < 00 (see Fig. 1) and that B vanishes within this 
region at t = 0, we can write the solution of Eq. (1) in the 
familiar form3 

B( t) - x i' dt ' BO(t') [ X2] (5) 
x, - 2(11'K)I/2 0 (t_t ' )3/2

exp 
- 4K(t-t ' ) , 

for x > 0, t> O. Here Bo(t), the boundary or "driving" mag
netic field, is the value of B applied at the interface. Knoep
fel2 has evaluated Eq. (5) for a number of different forms of 
Bo(t) and used the resulting solution B(x,t) to determine 
W M and WJ • In every case these quantities are found to 
satisfy the inequality 

(6) 

For example, when Bo(t) cd" one finds WM/WJ = 0.414, 
0.811,0.891,0.924,0.942, and 0.953 for n = 0,1,2,3,4, and 
5, respectively. This pattern has given rise to the conjecture 
that Eq. (6) is a general property of magnetic flux diffusion. 

There is no obvious way to derive the conjecture (6), 

t 
FIELD 

STRENGTH 

~V=-=A::,:C::,:,U:-.U;7M--1_ .. _--,C"",O~N~D,:;U,:,,::C:7T~IN~G!-"'-""0--
REGION REGION 

o 
x-

FIG. I. Typical plot of magnetic field strength B(x,t) vs x, superposed on 
sketch indicating locations of vacuum and conducting regions in slab geome
try. 
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nor does there appear to be any thermodynamic reason why 
it should hold. In this paper we show that in fact it is some
times false. To do this, we proceed as follows. In the next 
section we express a W = wJ - W M for an arbitrary BoCt) 
as an integral with respect to its two arguments of the prod
uct of a symmetric real kernel K ( 7,7') and f ( 7) f ( 7'), 

wheref (7) is a normalized form of the derivative of Bo( t)
in other words, as a quadratic form on a real Hilbert space. 
Then in Sec. III we show by means of a variational calcula
tion that this form can become negative, i.e., that the opera
tor K has negative eigenvalues. In Sec. IV we discuss these 
results and summarize our conclusions. 

II. DERIVATION OF THE INTEGRAL OPERATOR 

To find an expression for the magnetic energy W M in 
terms of Bo, we substitute Eq. (1) in the one-dimensional 
form of Eq. (3). Interchanging orders of integration and 
integrating over x yields 

W = KI/2 (t dt' r dt" BoCt')Bo(t") . (7) 
M 16t?12J.L Jo Jo (2t - t' - t" )312 

An equivalent expression for the Joule heat WJ is most 
easily found if we first derive a relation for the value of 
aBo (x,t) lat at x = O. This is done by differentiating Eq. (1) 
with respect to x and integrating by parts: 

aB(x,t)_ 1 rdt'BoCt')[l_ x
2 lex [_ x

2 
] 

ax - 2(1TK) 1/2 Jo Ct_t')3/2 2K(t-t') p 4K{t-t') 

1 f'dt'Bo{t') { [ X2] 2( ') a [ X2]} 
= 2(1TK)1/2 Jo Ct_t')3/2 exp - 4K{t-t') + t-t af7 exp 

- 4K{t-t') (8) 

Bo(O) [ X2] 1 it dt' dBoCt') [ X2] 
-"-'-~ exp - - - exp - ----
(1TKt) 1/2 4Kt (1TK) 1/2 0 Ct-t')1/2 dt' 4KCt-t') . 

The desired expression is obtained in the limit x-o. 
Making use of this result, we integrate by parts with respect to x in the one-dimensional form of Eq. (4) and substitute 

using Eq. (1): 

WJ = ~ r dt' (00 dX[aB(X,t ')]2 
41TJ.L Jo Jo ax 

= ~ f' dt'[ _ B(O,t') aB(O,! ') _ ~ (00 dx B(x,t ') aB(x,t ') ] 
41TJ.L Jo ax K Jo at ' 

(9) 

KI/2 it [B(O) it' dt" dB(t")] ---- dt' B (t') _0 __ + 0 - W 
- 4t?12J.L 0 0 t'1I2 0 (t" _t")1/2 dt" M' 

We now subtract Eq. (7) from Eq. (9). After several further integrations by parts and interchanges of orders of integra
tions, the energy difference a W can be written in the form 

aw=~ f'dt,dBo(t') f'dt"dBoCt") 
2t?/2J.L Jo dt' Jo dt " 

X [ (2t - t' - t ") 112 -~ It' - t "1112 - (t - t') 112] 

+ Bo(o){L dt' dB;~~ ') [2(2t - t') 1/2 

_t"/2_ (t-t')1I2l-Bo{t)tI/2+Bo(0)(2t)1/1' 

(10) 

We take Bo(O) = O. This entails no loss of generality, because 
B(x,t) can always be approximated to any desired accuracy in 
the case Bo(O) #0 by letting the driving field rise from 0 to a 
finite value in a time short compared with the diffusion time 
4x2 I K, making a negligible contribution to both W M and WJ at 
distances greater than x. As a result, we have a relation for a W 
of the form 

aw= f d7' f d7" K(7',7")f(7')f(7"J (11) 

where 7' = 1 - t 'It and 7" = 1 - t" It, the kernel is 
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K( 7',7") = 2( 7' + 1''') 1/2 -17' - 7" 11/2 - 1'''/2 - 7"112 

in symmetrized form, and we have written 

f(7') 
KI/4t5/4 dBo(t-t') (Kl)1/4 dBo{t7') 

2t?14J.L1/2 dt' 2t?14J.L1/2 d7' 
(12) 

The only restriction on the real functionf ( 7) is that it be inte
grable. 

III. VARIATIONAL CALCULATION 

Equation (6) would be valid if the diagonal elements of K, 
which are positive, were sufficiently dominant. It would obvi
ously be false if K(7',r")2>K(7',7')K(7",7"), held for some 
choice of 7' and 7". But direct calculation (see Fig. 2) shows 
that this is not the case. 

To resolve the question, we adopt a computational ap
proach. We seek to minimize the value of the functional 

A. = S6 d7 S6 dr' K(7,r')f(7)f(7') . 

S6 d7[f(r)f 
(13) 

This is equivalent to finding the lowest eigenvalue of the Euler
Lagrange equation, which determines A. and the corresponding 
eigenfunctions fA for the operator K. 
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CONTOUR PLOT OF K 

FIG. 2. Contours of constant K( 1',r") for arguments between 0 and 1. Shown 
are levels from - 0.14 to 0.76 at intervals of 0.06. Broken lines represent nega
tive levels. 

We replace/with a piecewise constant approximation: 
N 

/(T) = L Cn()(Tn+ 1 - T)()(T- Tn), (14) 
n=O 

where () is the Heaviside step function, Tn = n/(N + 1), and 
the {cn } are constants. Substituting Eq. (14) in Eq. (13), inte-
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FIG. 3. Ground-state eigenvalue Ao obtained from variational calculation of 
order N, plotted versus N. Solid trace represents results of the square-wave 
approximation (14), broken trace represents results of the power-series ap
proximation (17). 
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FIG. 4. Ground-state eigenfunction for square-wave approximation of order 
40, plotted versus T. 

grating over T' and T", differentiating with respect to Cm , and 
equating the result to zero, we obtain a system of linear equa
tions that can be written as 

N N 

L Kmncn = A L Lmncn, (15) 
n=O n=O 

m = O,I, ... ,N. The condition that the system (15) be soluble is 
the vanishing of the determinant: 

detlK - ALI = o. (16) 

We solve Eq. (16), a standard problem in linear algebra, 
using the routine RSG from the EISPACK library.4 The lowest 
eigenvalue ..10 is found to be negative for N~3. All other eigen
values are positive. In Fig. 3 Ao(N) for 1 <N<4O is plotted. It is 
evident that ..10 approaches a limiting value of approximately 
- 7.3 X 10-3

• In Fig. 4 the ground-state eigenfunction for 
N = 40 is displayed. It is peaked at T = 0 and T = 1, which 
indicates that the most negative values of !1 W correspond to 
driving fields that rise fairly steeply at first, then slowly for a 
time, and then steeply again. [Remember that/ ( T) is essential
ly the derivative of Bo(t).] This behavior is seen in Fig. 5, 
which displays the corresponding driving field Bo normalized 
with respect to its maximum value, plotted against the normal
ized time. 

As a check, we carry out a second variational calculation 
using a power-series test function, 

N 

/(T) = L cn~' (17) 
n=O 

Again, it is necessary to solve Eq. (16). This problem is ex
tremely ill conditioned, as usually happens when power series 
are employed in a variational calculation. By using 64-bit arith
metic it is nevertheless possible to find the first zero of the 
characteristic function (the lowest eigenvalue) iteratively for 
NS1O. The results, which are plotted as the broken curve in 
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FIG. 5. Driving magnetic field corresponding to the eigenfunction shown in 
Fig. 4, plotted versus the nonnalized time. 

Fig. 3, are consistent with those obtained using piecewise-con
stant test functions. 

IV. CONCLUSIONS 

In this paper we have reduced the problem of proving or 
disproving the positivity of!J.. W to a spectral problem in terms 
of the operator K. The eigenvalues and eigenfunctions of this 
operator have been determined by means of a variational calcu
lation. The ground state has been shown to have a negative 
eigenvalue. In addition to proving that !J.. W can be negative and 
providing concrete examples, our calculation determines the 
form of Bo that minimizes !J.. Wand the corresponding eigenval
ue. It is found that the eigenfunction of this ground state has 
sharp peaks at r = 0 and T = 1 (t' = t and t ' = 0, respective
ly). 
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Although the present work is formulated in electromag
netic terms, the results are applicable elsewhere, e.g., in hydro
dynamics. Specifically, consider a viscous incompressible fluid 
flowing past a solid wall with time-dependent velocity - Vo (t). 
In the rest frame of the fluid the wall moves with velocity Vo and 
the fluid becomes entrained as the velocity diffuses into it. As
suming that the motion is rectilinear and pressure gradients are 
negligible, we can describe the diffusion process by Eq. (1), 

where B is replaced by v and K is replaced by the kinematic 
viscosity v. The kinetic energy in the entrained fluid is 

WK =~f d 3x zl. (18) 

wherep is the mass density. The total thermal energy generated 
by viscous dissipation in the fluid as a function of time is 

Wv =pv f dt'f d 3x[Vv(x,t'):Vv(x,t')]. (19) 

In slab geometry these relations are formally identical with 
Eqs. (3) and (4). Based on the preceding analysis we can 
therefore conclude that, although WK ..; W v holds most of the 
time (at least in slab geometry), it fails in some cases. 
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Nonlinear sigma models are studied in n space dimensions with values in a coset space G IH as 
infinite dimensional Hamiltonian systems. An "intrinsic" formulation is discussed in terms of 
coordinates on G I H, an "embedded" formulation in terms of fields satisfying a constraint and 
a "lifted" formulation in terms of fields having values in G iii, where H is a normal subgroup 
of H. The coupling of the sigma model to Yang-Mills fields with structure group G is then 
considered, and it is shown that this system is equivalent to a massive Yang-Mills theory. 

I. INTRODUCTION 

The nonlinear sigma models (NSM) have long been 
used as phenomenological theories in elementary particle 
physics. From this point of view, the most interesting models 
are the so-called chiral models, which have values in 
GL X GRIGn where GL and GR are isomorphic flavor 
groups and G v is the vector subgroup (diagonal subgroup). I 
This model is supposed to represent the low energy approxi
mation of an underlying fermionic theory (QeD) in which 
the left- and right-handed fermions transform under the 
groups GLand G R' respectively. 

Other kinds of NSM [O(N) models, CpN models, 
Grassmannian models] have been studied in great detail, in 
particular, in two dimensions. Although not of much use for 
phenomenology, these models are of great theoretical inter
est and have become an important subject in modem math
ematical physics, because they are the simplest examples of 
nonlinear field theories. 2 More recently, sigma models with 
values in an arbitrary Riemannian manifold N have become 
interesting because of their applications to supergravity and 
superstring theories. 3 

The dynamical variable of an NSM is a map cp: M -+ N, 
where M is space and N is an "internal" space. Throughout 
this work, we shall assume that Mis Rn, eventually compac
tified to S n by adding one point at infinity, and N is a coset 
space G I H. The main reason for restricting our attention to 
homogeneous spaces is that we will study in some detail the 
gauging of the group G. It is clear, however, that many re
sults can be generalized to the case of an N-valued model, 
with N an arbitrary Riemannian manifold. 

The most "intrinsic" formulation of the NSM makes use 
of a set of real scalar fields, whose number equals the dimen
sion of N. Every field gives a coordinate on N of the point 
cp(x) as x varies in M. We will call this the "intrinsic" or 
"minimal" formulation of the NSM. In the case N = G I H, 
the NSM is often presented in different formulations, which 
make use of a nonminimal set of fields. In order to maintain 
equivalence to the intrinsic formulation, some ofthese fields 
have to be made unphysical, and this can be achieved in two 
alternative ways: by means of constraints at the Lagrangian 
level or by means of gauge invariances. The first possibility 

amounts to considering G I H as a submanifold of another 
(usually linear) manifold V, the second to considering G I H 
as the quotient of G IH by the action of K, where H is a 
normal subgroup of Hand K = H IH. Following Ref. 4, we 
call the first an "injective" or "embedded" formulation and 
the latter a "projective" or "lifted" formulation. Due to gen
eral theorems, every G I H-valued NSM admits an injective 
formulation (see Sec. III) and clearly, if His nontrivial, also 
a projective formulation (with K = Hand H trivial). Al
though we shall not discuss this here, the injective and pro
jective formulations exist also in the case of an arbitrary in
ternal manifold N: In the former, N is embedded in another 
manifold V, in the latter it is regarded as the base manifold of 
some principal fiber bundle. 

It should be observed that the two procedures can be 
used simultaneously in the same model. For instance, in the 
standard formulation of the CpN model, where one starts 
with N + 1 complex linear fields zO, one degree of freedom is 
eliminated by means of the Lagrangian constraint 
l::= IIzOI2 = 1, and another one by declaring the configura
tions zO and AzO to be gauge equivalent when A is a complex 
function of modulus one. In order not to complicate the dis
cussion too much, we shall discuss only the "purely injec
tive" and the "purely projective" cases separately. 

The embedded formulations are physically interesting 
because they make clear the relation existing between the 
nonlinear and the linear sigma models. At the classical level, 
every NSM is the limit of a linear sigma model (or Higgs 
model), when the potential becomes peaked on one orbit. 
The lifted formulations are interesting in a more abstract 
sense. The NSM is the only nonlinear field theory for which 
it is possible to work directly with the physical degrees of 
freedom. This is practically impossible, e.g., in the Yang
Mills (YM) case: An intrinsic formulation of YM theory 
would make use of the gauge equivalence classes of connec
tions as fundamental variables. In this sense, the standard 
formulation ofYM theory, in which the gauge potentials are 
the fundamental variables, is analogous to the lifted formula
tion of the NSM. In both cases, there is a gauge group and 
some of the dynamical variables are unphysical (the gauge 
degrees offreedom). One may hope that studying the rela
tion between the intrinsic and lifted formulations of the 
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NSM may shed some light on the analogous problem for 
other nonlinear field theories. 

In the Hamiltonian approach, the intrinsic formulation 
is completely straightforward and presents no constraints, 
whereas the nonminimal formulations require using Dirac's 
theory of constrained dynamical systems.5 As we shall see, 
the embedded formulations lead to second class constraints 
at the Hamiltonian level, whereas the lifted formulations 
lead to first class constraints at the Hamiltonian level. 

The second part of this paper will be devoted to the 
coupling of the G I H-valued NSM to a dynamical YM field 
for the group G. The system obtained in this way will be 
called a gauged NSM (GNSM). The motivation for study
ing this system is threefold. First, in a realistic phenomeno
logical model gauging the flavor group (or a subgroup 
thereof) means taking into account the electroweak interac
tions of the underlying fermionic theory. More generally, 
due to the embedding theorems quoted above, every GNSM 
may be regarded, at least classically, as the strong coupling 
limit of a gauged Higgs model. This is also of some interest 
for phenomenology.6 Second, the GNSM features promi
nently in recent attempts at a consistent quantization of 
anomalous YM theories. A GNSM with Wess-Zumino term 
may be regarded as the low energy approximation of a fer
mionic theory in which the fermions carry an anomalous 
representation of the flavor group. Thus studying the 
GNSM may give useful information on the physics ofanom
alous gauge theories.7 As a third independent motivation, it 
can be shown that general relativity, and, more generally, 
any "metric" theory of gravity, contains dynamical vari
ables corresponding to a GL(4)/O(4)-valued GNSM. 
~herefore, studying the GNSM also means studying a par
ticular subsector of a theory of gravity.4.8 

In this paper, the dimension of space n and the internal 
manifold G I H are left completely arbitrary. In Secs. II-IV, 
we study the intrinsic, embedded, and lifted formulations of 
the NSM, respectively, and show their equivalence. In Sec. 
V, we study the intrinsic formulation of the GNSM and 
show that it is equivalent to a massive YM theory. In Sec. VI, 
we briefly discuss the embedded and lifted formulations of 
the G NSM. The Appendix is devoted to massive YM theory. 

II. THE MINIMAL FORMULATION 

We begin by describing the intrinsic, or minimal, formu
lation of the NSM. The Hamiltonian formalism is entirely 
straightforward in this case, and a good deal of this section 
will actually be devoted to the geometry of homogeneous 
spaces and to setting up the notation. 

Throughout this paper, G will denote a Lie group, not 
necessarily compact; the Lie algebra of G will be denoted 
2" ( G). We assume that in 2" (G) there is given an inner 
product, not necessarily Ad( G) invariant, and {Ta }, with 
a = l, ... ,dim G will be an orthonormal basis in 2"(G). 
When the generators Ta are represented by matrices, we 
will assume that they are normalized so that 
Tr( Ta Tb) = -! Dab' The structure constants Jab C are de
fined by 

(2.1 ) 
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if the inner product in 2" (G) is Ad (G) invariant, then the 
structure constants are totally antisymmetric [note that 
since the metric in 2" (G) is Dab' the distinction between 
upper and lower indices is immaterial] . 

Now, let Hbe a closed subgroup of G. We will assume 
that the coset space G I H is reductive, i.e., there exists an 
Ad(H)-invariant subspace 9 of 2"(G) such that 

2"(G) = 2"(H) $ 9. (2.2) 

The space 9 can be identified with the tangent space to G I H 
at the coset 0 = eH (we will call 0 the "origin" of G I H). The 
group G acts on G I H from the left by g(g' H) = (gg') H; the 
restriction of this action to the subgroup H leaves the origin 
fixed and, hence, maps the tangent space to the origin to 
itself. This defines a linear representation of the group H, 
which is called the linear isotropy representation. When G I 
H is reductive, the linear isotropy representation can be iden
tified with the restriction of the adjoint representation of H 
to 9. Note that if the basis is chosen in such a way that {T.} 
with a = 1, ... ,dim H is a basis in 2" (H) and {T,J wi~h 
ii = 1, ... ,d (with d = dim G IH) is a basis in 9, then 

/a-/'=O; ia,,c=O. (2.3) 
Let {ya} with a = 1, ... ,d be local coordinates on G I H. 

Without loss of generality, we assume that the coordinates of 
the origin are ya = O. In the following, the components of all 
tensor fields on G I H will be referred to the natural bases 
{a a} and {dya}. The left action of G on G I H is generated by 
vector fields Ka = Ka aaa' which, under Lie brackets, form 
an algebra anti-isomorphic to 2" (G): 

[Ka,Kb]P = Ka aaaKb P - Kb aaaKa P = -Jab cKc p. 
(2.4 ) 

We assume that the restriction to 9 of the inner product in 
2" (G) is Ad(H) invariant; via standard theorems, this gives 
rise to a G-invariant metric h = haP dya ® dy P on G I H. The 
vectors Ka are Killing vectors for this metric. That is, if 2" v 

denotes the Lie derivative along v, 

(2" Kah)py = Ka aaahpy + hp{jayK/ + hy{japKa {j = O. 
(2.5) 

The canonical configuration space for the NSM is the 
space 22 NSM = r(Rn,GIH) ofmapsfromRntoGIHsatis
fying certain regularity conditions and with prescribed be
havior at spatial infinity. In order to guarantee finiteness of 
the energy, we will assume that q>E22 NSM tends to a constant 
at infinity, so that Rn can be effectively replaced by S n. The 
tangent and cotangent spaces to r(S n,G I H) at q; are the 
spaces of sections of the pullbacks by q; of the tangent and 
cotangentbundlesofG IH,q; *T(G IH),andq; *T*(G IH). 
The phase space T * 22 NSM is endowed with a natural sym
plectic structure which gives rise to the usual Poisson brack
ets 

(2.6) 
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where F and G are functionals of cp a and their conjugate 
momenta 1T a' i.e., functions on phase space. The canonical 
coordinates and momenta can be regarded as locally defined 
functions on T * f!2 NSM; they satisfy the canonical Poisson 
brackets 

{cp a(x),cp,8 (y)} = 0, 

{cp a(X),1T,8 (y)} = <5(; <5(n) (x - y), 

{1Ta (X),1T,8 (y)} = o. 

The Lagrangian of the NSM is 

.!f = - (1I2/2)ha,8(cp)al'cpaal' cp,8, 

(2.7a) 

(2.7b) 

(2.7c) 

(2.8) 

where,u, v ... = 0, 1, ... ,n are space-time indices and the metric 
is 1] I'V = diag ( - 1, 1, ... , 1 ). The space indices will be denoted 
i,j ... = 1, ... ,n. The momentum conjugate to cp a is 

(2.9) 

Since the matrix ha,8 is nonsingular, the relation between 
velocities and momenta is invertible (aocp a = 12h a,81T,8)' so 
in this formulation the NSM is a regular dynamical system. 
The canonical Hamiltonian is 

H = f dX[~2 h a,8(cp)1T a 1T,8 + 2~2 ha,8 (cp )aiCP aaiCP,8 ]. 

(2.10) 

From the canonical Poisson brackets in (2.7), we get Hamil
ton's equations: 

(2.11a) 

d1T a _ { H} 1 a h a ,8 j2 a h,8y --- 1Ta, =2 i( a,8 iCP ) -- a 1T,81Ty 
dt 1 2 

-~aah,8yaicp,8aicpY. (2.11b) 
21 

The first one reproduces the relation (2.9) between veloc
ities and momenta; the two together give rise to the covariant 
equation 

(2.12) 

where r(;y are the Christoffel symbols of the metric ha,8' 
This is just the Euler-Lagrange equation that one gets from 
varying (2.8). 

For every uE.!f (G), we define a function Pu on 
T*!!2 NSM by 

Pu (cp,1T) = S dx uaKa a(cp)1Ta· 

We have 

{pu,cpa} = -uaKaa, (2.13a) 

{Pu,1Ta} = uaaaKa ,81T,8' (2.13b) 

so the functions P u generate the action of G on T * f!2 NSM • 

They satisfy the algebra 

{Pu,Pv} = Plu,v]' (2.14 ) 

The G invariance of the theory follows from 

{Pu,H} = o. (2.15 ) 
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The energy-momentum tensor corresponding to the La
grangian (2.8) is 

Tl'v = (l/j2)haf3 (cp) [al'CP aavcp,8 

(2.16 ) 

In the rest of this section, we consider the special case of 
an NSM with values in G. Ifwe regard this as the special case 
H = {e} of the situation considered above, then the model is 
called a "principal" NSM. In this case, one only requires 
invariance under the left action of G on itself, which is given 
by left multiplication. On the other hand, we can also think 
of G as the coset space G X G laG, where G X G acts on G 
from the left by (a,b)g = agb - 1 and aG is the diagonal sub
group, consisting of couples of the form (a,a). In this case, 
one requires that the metric h on G be invariant under the 
action of G X G, i.e., that it be bi-invariant. The correspond
ing model is called a "chiral" NSM. We will consider here 
the second case. 

The left and right actions of G on itself are generated by 
vector fields Ra = Ra aaa and La = La aaa' respectively. If 
we identify .!f ( G) with the tangent space to G at the identity 
e, we have Ra (e) = La (e) = Ta' These vector fields obey 
the following algebra: 

[Ra,Rb] f3 = Ra aaaRb f3 - Rb aaaRa f3 = -lab cRc f3; 
(2.17a) 

[La,Lb] ,8 = La aaaLb f3 - Lb aaaLa f3 = lab cLc f3; 
(2.17b) 

[Ra ,Lb] f3 = Ra aaaLb f3 - Lb aaaRa f3 = O. (2.17c) 

In particular, (2.17c) shows that the vector fields Ra are 
right invariant and the vector fields La are left invariant 
(this is the reason for the notation). We assume that the 
inner product in .!f (G) is Ad( G) invariant; from standard 
theorems, we then have a bi-invariant metric h on G. The 
vector fields La and Ra are Killing vectors for this metric: 

(.!f Rah)f3y = Ra aaahf3y + h,81jayRa lj + hylj af3Ra lj = 0; 
(2.18a) 

(.!f Lah),8y = La aaahf3y + hf3ljayL a lj + hylj af3La lj = O. 
(2.18b) 

It follows from these definitions that the vector fields Ra and 
La are orthonormal with respect to h: 

(2.19 ) 

The right- and left-invariant [.!f (G)-valued] Maurer
Cartan forms OR = OR aTa and 0 L = OL aTa are defined by 
OR a(R b) = 8~ and OL a(Lb) = 8~ and, therefore, have com
ponents OR a = (R -I)a a dya and OL a = (L -I)a a dya, 
where (R -I) a a and (L - I) a a are the matrix inverses of Ra a 
and La a, respectively. From (2.19), we see that the matrices 
(R -I)a a and (L -I)a a can be obtained from Ra a and La a 

by raising and lowering indices and transposing: 

(R- 1 ) a=8abR ,8h a b f3a' 
(L -I)a a = 8abL b ,8hf3a . 

(2.20a) 

(2.20b) 

In accordance with the standard rules of tensor calculus, we 
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will, therefore, always write R a a and L a a instead of 
(R - 1 ) a a and (L - 1 ) a a. With these conventions, the 
Maurer-Cartan forms can be written OR = R a a dya ® Ta 
and 0 L = L a a dya ® Ta. The Maurer-Cartan forms satisfy 
the following Mauer-Cartan equations, which are equiva
lent to Eqs. (2.17a) and (2.17b): 

(2.21a) 

(2.21b) 

Given a map cp: R" + 1 _ G, the pullbacks of the Maurer
Cartan forms on space-time are 

(2.22a) 

(2.22b) 

where Ra,.. =a,..cpaR a
a and La,.. =a,..cpaLaa. Note that 

the spatial components R a; and L a; depend only on the ca
nonical coordinates cp a, whereas the time components de
pend on the momenta: 

(2.23a) 

(2.23b) 

If we define the vector and axial vector currents 
va,.. = R a,.. _ L a,.. and A a,.. = R a,.. + L a,.., we find the fol
lowing Poisson brackets, which are well known in current 
algebra: 

{Vao(x), VbO(y)} = - fabc VCo(x)O(n)(x - y), (2.24a) 

{Vao(x), A bO(Y)} =labcA Co(x)o(")(x - y), (2.24b) 

{A ao(x), A bO(y)} = -labc VCO(X)O(n)(X - y). (2.24c) 

The Poisson brackets between the time and space compo
nents of the currents depend explicitly upon cp and do not 
reproduce the standard forms of current algebra. Using 
(2.19), the energy-momentum tensor (2.16) can be rewrit
ten in the Sugawara form9

: 

(2.25) 

In particular, the Hamiltonian (2.10) is 

H = f dx Too = - 8~2 f dx[ vaova
o + vaya; 

+A aoA ao + A a;A ad. (2.26) 

Ill. THE EMBEDDED FORMULATION 

A general theorem states that every compact Rieman
nian homogeneous space can be embedded isometrically and 
equivariantly in some vector space V carrying a linear repre-
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sentation of G. \0 Here, we will identify V with RN, for N 
sufficiently large. Choose an orthonormal basis in RN and 
denote ym, with m = 1,oo.,N, the components of a vector Y 
relative to this basis. The embedding of the theorem will be 
denoted j: G / H - RN; it is represented locally by a set of 
functions r = r (ya). The condition that j be isometric 
means that 

a·m a'" h Q =L_'1_ o al' aya ay p m" . 
(3.1 ) 

The condition thatjbe equivariant means that the image of 
the vector fields Ka in RN coincide with the generators of the 
action of G on RN; if we denote ( Ta ) m" the matrix that repre
sents TaE.!!' (G), we must have 

(3.2) 

It is possible to choose locally a set of curvilinear coordi
nates {z m} on RN such that the surfaces Z m = constant for 
m = d + 1,oo.,N are the orbits of the group G and {zm} for 
m = 1,oo.,d are coordinates in the orbits (recall that 
d = dim G / H). In particular, we can choose the coordinates 
{Z m} in such a way that the embeddingj is represented by 

/'(y p) = ya for a = 1,oo.,d (3.3a) 

ja(y p) = 0 for a = m - d = 1,oo.,N - d. (3.3b) 

The functions zm = zm( Y") define locally a coordinate 
transformation on RN and, therefore, the Jacobian matrix 
az m/ ay" is nondegenerate. Equation (3.3b) shows that we 
can take za( Y) = 0, for a = m - d = 1,oo.,N - d as the 
equations defining the embedding of G / H in RN. Note that 
the functions Z a (Y) are G invariant, in the sense that 

(3.4 ) 

The NSM can be described in terms of N linear fields 
(r(x) (with m = 1,oo.,N) satisfying the constraints 
za(ifJ) = Of ora = 1,oo.,N - d. The constraints can beincor
porated in the dynamics by introducing N - d Lagrange 
multipliers A a. Therefore, the canonical configuration space 
is!!2' = r(R",RN

) Xr(R",RN
-

d
). The Lagrangian is 

(3.5 ) 

This Lagrangian is equivalent to the Lagrangian (2.10) and 
can be obtained as a limiting case of a Higgs Lagrangian. 

We shall now develop the Hamiltonian form of the em
bedded formulation and prove the equivalence with the in
trinsic formulation. The momentum conjugate to ifJm is 

II - o.!!' _ 1 a ",m 

m - oa
o 

ifJm - f2 O'f' , 

whereas the momentum conjugate to A a vanishes: 

o.!!' 
A =--=0. 

a OaoA a 
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This defines the primary constraints of the theory: 
Oz.¢!: = Aa

, where z. means "weak" equality. The canoni
cal Hamiltonian is 

and we define the primary Hamiltonian by 

(3.9) 

where ua are other Lagrange multipliers. Consistency of the 
primary constraints under the time evolution generated by 
H p gives secondary constraints 

(3.10) 

Repeating this process, we get the following "tertiary" and 
"quaternary" constraints: 

(3.11) 

(3.12) 

No further constraints arise. In fact, consider the equation 

N-d aza az b b 
Oz.{~,Hp} = L --u + {~,Hc}' (3.13) 

b= 1 at/Jm at/Jm 

The matrix Mab = (aZalat/Jm) (aZ b lat/Jm) is nondegener
ate because aZalat/Jm has maximal rank N - d. Therefore, 
Eq. (3.13) determines the Lagrange multipliers ua and the 
process stops. Note that in a similar way Equation (3.12) 
determines the Lagrange multipliers A a. Taking Poisson 
brackets, it can easily be seen that all constraints are second 
class. 

The equivalence of the embedded formulation to the in
trinsic one can be easily established using the adapted co
ordinates that were defined in Eq. (3.3). In these coordi
nates, the constraints are ¢!: = Aa, 1/0. = t/Ja, t/I; = lla and 
~ = ai ait/Ja + A a. Note that the second and fourth con
straint imply A a = O. From (3.3a), we then have r = q;a 
and lla = 'ITa' Therefore,' the constrained submanifold of 
T*gNSM can be identified with T*!!2 NSM ' Finally, using 
(3.1), it can be seen that the Hamiltonian (3.8), restricted to 
the constrained submanifold, is identical to the Hamiltonian 
(2.12). 

IV. THE LIFTED FORMULATION 

The G I H-valued NSM can be reformulated in terms of a 
G-valued field subject to a gauge invariance under the group 
H. Borrowing from the mathematical terminology, we call 
this G-valued field a "lifted" field and the corresponding 
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formulation of the NSM a "lifted" formulation. In certain 
cases, e.g., when G I His a Grassmann manifold, it is custom
ary not to lift the fields all the way to G, but only to G iii, 
where H is a normal subgroup of H. Global aspects of this 
procedure have been discussed in the Lagrangian formalism 
in Ref. 4. Here, we describe the corresponding constrained 
Hamiltonian form of the theory. 

When He He G is a chain of closed subgroups and His 
normaIinH, G IHisaprincipalK = H IHbundleoverG IH. 
There is a left action of G on G I H defined by 
g(g'H) = (gg')H and a right action of K = H IH on G IH 
defined by (gH) (hH) = (gh)H. The bundle projection W 
G I H -+ G I H consists of taking equivalence classes under this 
action of K: !1- (gH) = gH. The vector fields generating the 
actions of G and K on G IH will be denoted Ka a and Fa a, 
respectively [as before, a = 1, ... ,dim Gis an index in 2" (G), 
Ii = 1, ... ,dim K is an index in 2" (K) and a = 1, ... ,d, with 
d = dim G I H, is an index labeling local coordinates {jiCZ} on 
G IH]. The vector fields Fa are called the fundamental vec
tor fields. 

The tangent space to G IH at the origin 0 = eH can be 
identified with a subspace 9 E2" (G) complementary to 
2" (H); we assume that &' C 9. Clearly, &' defines a sub
space of To ( G IH), which is complementary to the vertical 
subspace spanned by the vectors Fa. The bundle G I H -+ G I H 
carries a canonical G-invariant connection that is uniquely 
defined by the condition that the horizontal space at 0 is &'. 
It can be shown that the condition that G IHbe reductive is 
sufficient to guarantee that this connection is well defined, in 
the sense that the horizontal space at gH does not depend on 
the particular group element g which is used to transport &' 
from 0 to gH. To this canonical connection is associated a 
connection form w, which is a left-invariant 2" (K) valued
one on G IH. In local coordinates w = wa

a dja ® Ta, where 
{Ta} is a basis in 2" (K). It is a fundamental property of the 
connection form that w(Fa ) = Ta; in components 

(4.1 ) 

There follows that the tensors 

vap = Fa awap, (4.2a) 

Hap = 8ap _ vap, (4.2b) 

are the vertical and horizontal projectors. Given a map q;: 
Rn-+G IH, we say that a map ep: Rn-+G IH is a lift of q; if 
!1-@(x» = q;(x). Ifep is a lift of q;, then also ep', defined by 
ep'(x) = @(x»k(x) for some map k: Rn-+K, is a lift of q;. 
Therefore, the lifted NSM has a nontrivial gauge group. We 
define the covariant derivative ofep by 

D,.,epa = Hapa,.,epp 

(4.3) 

where B ~ =~,., ep p wap (q; t is a composite gauge potential. 
Let h = haP dja ® dj (3 be a left-G- and right-K-invar

iant metric on G I if; we assume that the corresponding inner 
product in 9, restricted to &', is the inner product corre
sponding to the metric h on G IH. The canonical configura
tion space of the NSM in the lifted formulation is 
g NSM = r(Rn,G IH). The Lagrangian of the lifted NSM is 
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(4.4) 

Because of its gauge invariance this Lagrangian depends 
really only on q:J and it can be seen that it coincides with the 
Lagrangian (2.8). Again, we defer comparison of this for
mulation with the intrinsic one until we have developed the 
Hamiltonian formalism. 

The canonical momentum conjugate to tpa is 

- tJ2" 1 h (-)D - P 
1T a = tJa

o
7p a = f2 ap q:J oq:J· (4.5) 

Since Hap is degenerate, this relation is not invertible and, 
therefore, the lifted NSM is a singular dynamical system. 
The canonical Hamiltonian is 

He =Ho+ J dxBg "pa' 

where 

(4.6) 

H Jd[J2h-ap- - 1 h- D-aD-p] (47) 
0= x "'2 1Ta1Tp + 2f2 ap jq:J jq:J , . 

and 

(4.8) 

Since vertical and horizontal vectors are orthogonal in the 
metric Ii, if we use the relation (4.5) between velocities and 
momenta, we find"pa = O. These are the primary constraints 
of the theory. Their Poisson brackets are 

In order to understand their physical meaning, let 
u = uaTa: R n 

-+ 2" (K) be an infinitesimal gauge transfor
mation, and consider the function Qu on T* PJ NSM defined 
by 

Qu (7p,1T) = J dx u""pa· 

We have 

{Qu,7pa} = _ uaFa a, 

{Qu,1Ta } = uaaaFa P1T P. 

(4.1Oa) 

(4.1Ob) 

These are just the infinitesimal variations of7pa and 1Ta un
der the gauge transformation u, so we conclude that the pri
mary constraints are the generators of the gauge transforma
tions of this theory. Notice that this is true also for 
time-dependent transformations. From (4.9), we get 

(4.11 ) 

In order to see whether there are any secondary con
straints, we define the primary Hamiltonian 

H p = Ho + J dx). a"pa, 

where the last term of He in Eq. (4.6) has been absorbed in 
the definition of the Lagrange multipliers ). a. Using the 
right-K invariance of Ii, one finds, after some algebra, 

{"pa,Ho} = 0; (4.12) 

this is just the statement that Ho is gauge invariant. There
fore, 
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(4.13) 

Thus there are no secondary constraints, and all primary 
constraints are first class. 

The equivalence of the lifted formulation to the intrinsic 
one can be proven by choosing local coordinates in G iii, 
which are adapted to the fibration G iii -+ G / H, in the sense 
that ya = ya when a = 7i = 1, ... ,d and {jii} with 
a = 7i - d = 1, ... ,dim K are coordinates in the fibers. The 
fields 7p ii are the gauge degrees of freedom; this suggests that 
we take 7p a as gauge conditions. Note that, in general, this is 
possible only locally, so we have an analog of the Gribov 
ambiguity II; we disregard this type of global problems here. 
In adapted coordinates, Fa a = 0, and Fa a is nondegenerate; 
therefore, an equivalent set of primary constraints is 1Tii ::::;0. 
Since {7p a,1Tp } = tJiip , 7p ii are indeed good gauge conditions 
in the sense of Dirac's theory. The constraints 7pii::::;O and 
1Tii::::;O define locally a submanifold of the phase space 
T * PJ NSM, which can be identified with the phase space of 
the intrinsic formulation, T * !l2 NSM. On this submanifold, 
D,., 7p ii ~ 0 and D,., 7p a = a,., q:J a. Since the restriction of the 
metric h to the horizontal spaces coincides with the metric h, 
one finds that on the constrained submanifold the Hamilto
nian (4.6) is identical to the Hamiltonian (2.10). This 
proves that the two formulations of the NSM are equivalent. 

v. THE GAUGED NONLINEAR SIGMA MODEL 

We now consider the minimal coupling of a G / H-valued 
NSM to a G-Yang-Mills field. We call the dynamical system 
obtained in this way a gauged NSM (GNSM). The kinema
tical and topological aspects of this system have been dis
cussed within the Lagrangian formalism in Ref. 4. In this 
paper, we disregard global problems and consider only the 
local dynamics. In order to avoid unnecessary complica
tions, we begin by giving a minimal description of the 
GNSM, i.e., the scalar fields will be as in Sec. II. The 
canonical configuration space is !l2 GNSM 

= C(; X r(Rn,2" (G»X r(Rn,G / H), where C(; denotes the 
space of the "magnetic" potentials A f (the space of connec
tions in some principal Gbundleover Rn), and r(Rn,2" (G» 
is the space of the "electrostatic" potentials A g. Then, the 
minimal coupling consists simply in replacing the deriva
tives a,.,q:J a with the covariant derivatives V,., q:J a, which are 
defined by 

(5.1) 

To see that this is really a covariant derivative, consider an 
infinitesimal gauge transformation u = uaTa: Rn + I 

-+ 2" ( G); we have 

q:J a-+q:J a _ uaKa a(q:J), 

A~-+A~+V,.,ua, 

and, therefore, 

(5.2a) 

(5.2b) 

(5.3 ) 

The total Lagrangian is 2" (q:J,A) = 2" YM (A) 
+ 2" GNSM (q:J,A ), with 
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2"YM(A) = - (1I4e2)Fl'vaFl'va, (S.4) 

2" GNSM (cp,A) = - (l/2j2)hafJ (cp)V I'cp «VI'CP fJ. (S.S) 

The canonical momenta conjugate to A ~ and cP a are 

P i __ 82" = 1 Ea (S 6) 
a 8JoA ~ - e2 i' • 

- 82" =~h V fJ (S.7) 1T a - 8J
o

cp a j2 afJ oCP , 

where E~ = F';o = - JoA f + ViA g. The canonical mo
menta conjugate to A g vanish: 

po = 82" = O. 
a 8JoA g , (S.8) 

these are the primary constraints of the theory. (Note that, 
with our metric, P ~ = P ~ and P g = - p ~.) The canonical 
Hamiltonian 

He= f dX[1TaJo'Pa+p~JoA~-2"] 
can be written in the form 

He =Ho- f dxAgGa, 

where 

(S.9) 

R -fd [~pip; 1 Fa Fa j2 hafJ 
0- X - a a +-2 ij ij+- 1Ta1T{3 

2 4e 2 

and 
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Ga = ViP~ + Ka a1Ta · 

The canonical Poisson brackets are (2.7) and 

{A g (x),A g (y)} = 0, 

{A g (x),P~ (y)} = 8%8(n) (x - y), 

{p~ (x),P~ (y)} = 0, 

{A ~(x),A J(y)} = 0, 

{A f(x),Pt (y)} = 8%818(n)(x - y), 

{p~ (x),Pt (y)} = O. 

(S.lO) 

(S.11 ) 

( S.12a) 

(S.12b) 

(S.12c) 

(S.12d) 

(S.12e) 

(S.120 

With these, we can derive Hamilton's equations: 

(S.13a) 

(S.13b) 

dcpa _ { aH} _j2hafJ A bK a -. - - cP , e - 1T{3 - 0 b' 
dt 

(S.14a) 
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d1Ty { } 
--= 1Ty,He 

dt 

- 2~2 JyhafJ ViCP«ViCP fJ + )2 Ji (hy{3ViCP fJ) 

- )2ha{3JyKa aA fV;cp fJ + eA gJyKa {31T{3' 

(S.14b) 

Equations (S.13a) and (S.14a) simply reproduce the 
relations (S.6) and (S.7) between velocities and momenta. 
From Eqs. (S.13), we get 

(S.IS) 

which is the ith component of the YM equations. Similarly, 
from Eqs. (S.14), we get, after contracting with h a{3 and 
after some algebra, 

which is just the equation one gets by varying the Lagrangian 
(S.S) with respect to cP a. It can be shown that this equation 
is equivalent to the statement that the current of the scalar 
fields 

III = - 82" = ~ K V I' a 
a 8A~ p aa cP ( S.17) 

is covariantly conserved.4 Therefore, (S.16) is a conse
quence of the YM equations. 

The time component of the YM equations (Gauss' 
law), given by 

(S.18 ) 

is not obtained in the Hamiltonian formalism as an equation 
of motion, but rather as a constraint. In fact, if we define as 
usual the primary Hamiltonian by 

Hp = He + f dXllap~, 
then consistency of the primary constraints under time evo
lution requires that 

dP~ {o } 0::::;- = P a,Hp = Ga. (S.19) 
dt 

Therefore, Ga are the secondary constraints. It is easily 
seen using Eqs. (S.I1), (S.6), and (S.7) that the constraint 
(S.19) is equivalent to the Lagrangian equation (S.18). The 
algebra of the constraints is given by (S.12c) and by 

{Ga(x),P~(y)}=O, (S.20) 

(S.21 ) 

A rather lengthy calculation which makes repeated use 
ofEqs. (2.4) and (2.S) shows that 

(S.22) 
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so, using (S.20) and (S.21), 

dGa { } f b C --= Ga,Hp = dxp 'fab Gc ;::::0. 
dt 

(S.23 ) 

This shows that there are no further constraints, and that all 
constraints are first class. 

For every time-independent infinitesimal gauge trans
formation u: R"-+2'(G), we define a functional Gu on 
T*(~ X r(R",G IH» by 

Gu (A ~,P~,q; a,1Ta ) = f dx ua(x)Ga (x). 

From (S.21), we find 

(S.24) 

The non vanishing Poisson brackets of G u with the ca
nonical variables are 

{Gu,A ~(x)} = VjUQ(x), 

{Gu'P~ (x)} = -labcUb(X)P~ (x), 

{Gu,q; a(x)} = - ua(x)K~(q;(x», 

{Gu,1Ta (x)} = ub(x)aaK ~(q;(X»1Tp (x). 

(S.2Sa) 

(S.2Sb) 

(S.2Sc) 

(S.2Sd) 

Therefore, G u generates the infinitesimal gauge transforma
tion with parameter u. 

Having found all constraints, we define the total Hamil
tonian 

(S.26) 

where pa and v" are Lagrange multipliers, and we have reab
sorbed the last term of the canonical Hamiltonian (S.9) in 
the definition of v". Since all constraints are first class, the 
conditions that they be preserved by the time evolution gen
erated by H T does not determine any of the Lagrange multi
pliers. In order to have a uniquely defined dynamics, it is 
necessary to fix a gauge condition for each constraint. 
Further analysis requires that we distinguish between the 
generators of 2' (G), which are in 2' (H), from those in the 
complementary space &' [see (2.2) and following]. We 
choose the unitary gauge, in which the scalar field is con-

I 

pz Gi> pQ 
b ~ 

! ! ! ! 
p~~o 0 0 0 
Gii~O 0 0 0 
P~~O 0 0 0 
Ga~O 0 0 0 
f{Ja~o 0 0 -eK;,a 

stant. Without loss of generality, we can assume that this 
constant is the origin of G I H: 

q; a(x) = o. (S.27) 

Looking at the form ofEq. (S.7), it is seen that the preserva
tion of this constraint under the time evolution generated by 
He requires that 

(S.28) 

This suggests that we should take 4>a = 0 as gauge condi
tions on the momenta supplementing the conditions q; a = 0 
on the coordinates. As is well known from the Lagrangian 
treatment of the theory, the unitary gauge condition is not 
sufficient to provide a complete gauge fixing; the subgroup H 
remains unbroken. In fact, we have given so far only 2d 
gauge conditions; in order to have a complete gauge fixing, it 
is necessary to fix further 2 dim H constraints X a and tPa. We 
will not need to specify these functions at all; it suffices to 
observe that we could choose them to be functions of 
A g, A?, P~, and P~ only. 

The Poisson brackets of the gauge conditions (S.27) 
and (S.28) with the constraints are 

{p~(x),q;a(y)}=o, (S.29a) 

{p~ (x),4>a (y)} = (1/P)K~(q;(x)~(")(x - y), 
(S.29b) 

{Ga(x),q;a(y)}= -K~(q;(x)~(")(x-y), (S.29c) 

{Ga (x),4>a (y)} = (aaK~ 4>p(x) 

- (1/f2)fab cA ~Kcp)l)(") (x - y). 

(S.29d) 

Note that (S.29c) is weakly zero when a = fl, since 
K ~ (0) = 0, and is weakly nondegenerate when a = a. Thus, 
on the subspace defined by all constraints except X a and tPa, 
we have the following matrix of Poisson brackets of con
straints [a common factor l)(")(x - y) has been dropped for 
notational simplicity] : 

f{JfJ t/JfJ Xi> rPi> 
j j j 

0 0 x X 
0 - {1/f2)fiib 'A gKcfJ X X 
0 (l/f2)KafJ 0 0 

eKa fJ - (l//')J..b 'A gKcfJ X X 
0 ~a fJ 0 0 

t/Ja~O (l/f2)fi>c dA ~Kda (l/f2)Kba (l/f2)i-bc dA ~Kda ~~ (l/f2)A ~ (aaKafJ - afJKaa) 0 0 
Xii~X X 0 X 

rPii~X X 0 X 

where X means that the Poisson bracket will be generally 
nonzero but its explicit form is not known until X a and tPa are 
given. If these constraints are good gauge conditions for the 
subgroup H, then the determinant of the 4 X 4 matrices in the 
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0 0 x X 
0 0 x x 

upper right and lower left corners are nonzero. In this case, 
also the determinant of the full matrix is nonzero. This 
shows that q; a and 4>a are good gauge conditions. The La
grange multipliers pa and v" can be determined by requiring 
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that the gauge conditions be preserved by the time evolution 
generated by H T • We have 

(5.30a) 

d¢ a {A. H } 1 K a A b 1 oK 0=--= 'l'a' T :::::; -2 ba(O) ; ; -2P oa(O) 
dt I I 

(5.30b) 

0= dX" = {x",HT}:::::;{X",Ho} + J dXpb{X",pn 
dt 

+ J dx ,J'{X",Gb }, (5.30c) 

0= dtP" = {tPli,HT}:::::;{tPli,Ho} + J dxpb{tPa,pn 
dt 

+ J dx ,J'{tP",Gb }· (5.30d) 

From these equations, one can in principle determine the 
Lagrange multipliers. In particular, we have 

",a = - A g, (5.31a) 

pO= -a;Af+fabc v"A"6. (5.31b) 

The Lagrange multipliers pli and v" cannot be determined 
unless Xli and tPli are explicitly known. Using Eqs. (5.31), 
the total Hamiltonian can be rewritten in the form 

Jd a 0 0 J 0 H T = Ho - x;A ;P 0 - dx A 0 Go 

where 
- c b 0 
G" = Gli +lab AoPc 

are first-cla!is constraints satisfying the algebra 

(5.32) 

(5.33 ) 

(5.34) 

At this point, it can easily be seen that the GNSM is 
equivalent to a massive YM theory (the constraint analysis 
of the massive YM theory is given in the Appendix). Consid
er the subspace..#' of the phase space, which is defined by the 
constraints (5.27) and (5.28). Clearly, the map T*C(f ->..#' 
defined by (A goA r,p~,p~) I--+(A goA r,p~,p~,0,(1/12) 
XKbaA g) is a diffeomorphism. Therefore,..#' can be identi
fied with the phase space of a YM theory. Then, it can easily 
be seen that on..#' 

(5.35a) 

(5.35b) 

[where - means that only the constraints (5.27) and (5.28) 
are being used] and, therefore, the Gauss law constraints 
(5.19) are weakly equivalent to the constraints (A7). Fur
thermore, 

2959 J. Math. Phys., Vol. 30, No.12, December 1989 

(5.36) 

So, if we identify M = I-I, the restriction of the total Hamil
tonian (5.32) to..#' is identical to the total Hamiltonian 
(AI5). In conclusion, the restriction of the GNSM to the 
submanifold..#' has the same constraints and the same Ham
iltonian as a massive YM theory, and, therefore, the two 
theories are equivalent. 

VI. OTHER FORMULATIONS OF THE GAUGED SIGMA 
MODEL 

In the previous section, the scalar sector of the GNSM 
was presented in the intrinsic formulation. This has the ad
vantage of minimizing the number of the constraints, since 
all constraints come from the gauging of the group G and, 
hence, are equal in number to the constraints of a pure YM 
theory. On the other hand, there may be reasons to prefer 
other formulations for the scalar sector. In the reSUlting for
mulations of the GNSM, the constraints that appeared in 
Secs. III and IV are present in addition to those discussed in 
Sec. V. There is not much interference between these sets of 
constraints, so we give only a brief discussion of these formu
lations. The interested reader can easily work out all the 
details following the pattern of the previous sections. 

The GNSM in the embedded formulation is obtained by 
replacing the fields <p a of Sec. V with the fields ¢m and A a of 
Sec. III. The configuration space is !!2 ::'NSM 

= C(f X r(Rn,.2'(G»X r(Rn,RN
) Xr(Rn,RN

-
d

). Instead 
of (5.5), we have 

.2' GNSM (A,¢) = - ~ v,",¢mv '"' ¢m 
2f 
N-d 

+ L A aza(¢), 
a=1 

where 

V'"' ¢m = a,", r + A ; ( Ta ) m n (pn. 

(6.1 ) 

(6.2) 

When this covariant derivative acts on fields satisfying the 
constraints Z a (¢) = 0, it can be identified with the covar
iant derivative (5.1). More. precisely, using (3.2), we have 

V U0<p)m = ar V <pa. (6.3) 
'"' aya '"' 

The canonical momenta are 

pO = 8.2' = 0 
a 8aoA g , 

p; _ 8.2' _ 1 Ea 
a - 8aoA r - - e2 i> 

II - 8.2' _ 1 V A.m 
m - 8a

o
¢m - 12 0'1' , 

8.2' 
A =--=0. 

a 8aol{ a 

The canonical Hamiltonian is 
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(6.5) 

(6.6) 

(6.7) 
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He =Ho+ f dxA~Ga - f dXAaz a, 

where 

(6.8) 

(6.9) 

and 

(6.10) 

The primary constraints of this theory are (6.4) and 
(6.7). Upon defining as usual the primary Hamiltonian H p, 

we get, from (6.4), the secondary constraints 

Ga = 0, (6.11) 

while from (6.7), we get the sequence of constraints 

( 6.12a) 

(6.12b) 

( 6.12c) 

where M ab is as in Sec. III. It is easily seen that the con
straints (6.7) and (6.12) are all second class. The constraint 
(6.4) is obviously first class. As for (6.11), consider the 
Poisson brackets with the constraints (6.12): Using Eq. 
(3.4), we get 

{Ga,tPn= - (Ta)mn(r~Zb=O. (6.13) 
a</Jm 

Using the Jacobi identity and (6.13), we find 

{Ga,tPn = {Ga,{tM,Hp}} 

= - {tM,{Hp,Ga}} - {Hp,{Ga'tP~}} = O. 
(6.14 ) 

Similarly, using the Jacobi identity and (6.14), 

{Ga,tP!} = {Ga'{tP~,Hp}} 

= - {tP~,{Hp,Ga}} - {Hp,{Ga,tPn} =0. 
(6.15 ) 

Therefore, also Ga are first class. Using the same methods as 
in the end of Sec. III, it is then possible to prove that the 
embedded formulation of the GNSM is equivalent to the 
ones presented in Sec. V. 

The GNSM in lifted formulation is obtained by replac
ing the fields f{J a of Sec. V with the fields 7p Ci as m 
Sec. IV. The canonical configuration space IS 

.@GNSM = 'G'Xr(Rn,.2"(G»Xr(Rn,GIH). Instead of 
(5.5), we have 

.2" GNSM (A,7p) = - (1I2j2)hCip g; fl7pCi g; fl7p P, (6.16) 

where g; fl7pCi is the "doubly covariant" derivative, defined 
by 
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g; JJ7pCi = DJJ 7pCi + A ;Ka Ci(7p). ( 6.17) 

The momenta conjugate to A f and 7pCi are 

(6.18 ) 

11'- = 6.2" = 2. h-p- g; ~m p. 
a 6ao7pCi /2 a <rr 

( 6.19) 

The primary constraints are 

pO = 6.2" :::::0, 
a MoA ~ 

(6.20) 

tPa = Fa Ci11'ii :::::0, (6.21 ) 

and the canonical Hamiltonian is 

He =Ho+ f dxBgtPa - f dxA~Ga, (6.22) 

whereB! is as in (4.3),and 

H. -fd [e2pipi + 1 FaFa /2-hCiP--0- X - a a -2 ij ij + - 1TCi1Tp 
2 4e 2 

1 h- _ r;}f -Cir;}f - p] + -2 Cip;;Z; i f{J ;;z; i f{J , 
2/ 

(6.23 ) 

and 

(6.24) 

Following, once again, the standard procedure, one 
finds that (6.20) gives rise to the secondary constraints 
Ga = 0, whereas (6.21) does not give rise to any secondary 
constraints. 

As in Secs. IV and V, it can be checked that the con
straints generate the gauge transformations for the groups G 
and K. The nonvanishing Poisson brackets of the constraints 
are as in (5.21) and (4.9) and, therefore, all constraints are 
first class. 

The equivalence of this formulation to the intrinsic one 
can be shown in the same way as in Sec. IV. 

VII. CONCLUDING REMARKS 

In this paper, we have considered the local dynamics of 
the NSM without paying much attention to global proper
ties. We would like to conclude with some remarks on this 
point. 

First of all, we observe that even in the intrinsic formula
tion the fields f{J a(x) are only defined when the image of the 
map f{J lies within the domain of the chosen coordinate sys
tem on N. In general, several charts will be needed to coor
dinatize N (e.g., at least two if N is a sphere), and questions 
of compatibility could, in principle, arise. However, for the 
classical case considered in this paper, this poses no real 
problem. Indeed, it is a property of the tensorial formalism 
that we have been employing, that all the formulas we have 
written are the local coordinate expression of globally valid 
ones . 

At the quantum level, however, the problem is more 
subtle. As is well known, even for a one-dimensional quan
tum mechanical system (corresponding to the case when M 
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is a point and N = R), coordinate transformations lead to 
unitarily inequivalent quantum theories. Therefore, it is 
doubtful that a naive quantization procedure based on re
placing Poisson brackets (or Dirac brackets) of the fields lP a 

by commutators could reflect the global properties of the 
classical theory correctly. An attempt to overcome these dif
ficulties has recently been proposed. 13 

By the same token, even if we were successful in quantiz
ing the different formulations of the NSM, which we have 
discussed, they should not be a priori expected to yield uni
tarily equivalent theories, and the NSM in embedded formu
lation should not a priori be expected to be equivalent to a 
limiting case of a Higgs model (for a discussion of this point, 
see Ref. 14). 

Finally, let us note that in our discussion the topology, 
and even the dimension, of the space M and the internal 
manifold N were largely immaterial. For the sake of genera
lity, we have chosen to work with a Lagrangian that does not 
depend on these choices. However, the NSM exhibits rich 
topological structures, which depend crucially on the di
mension. These properties are reflected by the presence of 
"topological terms" in the Lagrangian, which, in turn, give 
rise, in the Hamiltonian treatment of the theory, to modifica
tions of the canonical symplectic structure. A Hamiltonian 
analysis of these topological properties has to be done on a 
case by case basis (see, for example, Ref. 15). 

APPENDIX: MASSIVE YANG-MILLS THEORY 

We consider a YM theory with gauge group G such that 
the components of the gauge potentials in the subspace f!Jl, 
defined as in (2.2), have mass M. The Lagrangian is 

U' (A) _ (1/4-2)Fa FJlva_lM2AiiAJlii 
oZ MYM = f: JlV 2 Jl . 

(AI) 

The case when all components are massive can be recovered 
by letting H = {e} and f!Jl = 2" (G) (Ref. 12). The canoni
cal momenta are 

pO = 02" =0, 
a oJoA g 

pi _ 02" _ I E a 
a - oJoA f - - f2 i' 

(A2) 

(A3) 

Equation (A2) gives the primary constraints. The canonical 
Hamiltonian is 

He =Ho- f dxAgGa, 

where 

and 

2961 

H fd [
e2 pipi I FaFa 0= x - a a +-2 ij ij 
2 4e 

+ ~M2(AaAii+AaAii)] 2 I I 0 0 , 
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(A4) 

(AS) 

(A6a) 

(A6b) 

From the consistency of the primary constraints (A2), we 
get the secondary constraints 

(A7) 

The non vanishing Poisson brackets of the constraints are 

{p~ (x),G]; (y)} = - M 20ii];0(n) (x - y), 

{Ga (x),Gb (y)} = hb cGc (x)o(n)(x - y), 

(ASa) 

(ASb) 

{Ga (x),~ (y)} =h];e(Ge (x) - M2A ~ (x»o(n) (x - y), 
(ASc) 

{Ga(x),~(y)} 

= [fii];cGc(X) +/a];e(Ge(x) 

- M2A ~ (x»]o(n)(x - y). (ASd) 

We define the total Hamiltonian 

HT = Ho + f dXJ-lap~ + f dx v"Ga, (A9) 

where we have reabsorbed - A g in the Lagrange multiplier 
v". Consistency of the constraints requires that 

dP~ {O } 0= dt = Pa,HT ::::;0, (AlOa) 

dP~ {O} 2 - 2 -0=--= Pii,HT ::::; -M Ag -M v", 
dt 

(AlOb) 

dGa { } 2.]; - -0=--= Ga,HT ::::; -M v%];cA~, 
dt 

(AlOc) 

dGii { } 2 ii 2 ii 2 ~ h -0=--= Gii,HT ::::;M JiAi +M J-l -M v%beA~. 
dt 

(AlOd) 

This shows that there are no further constraints. From 
(AS), we see that all the constraints are second class except 
for P ~. Since the first-class constraints always occur in pairs 
and since the dimension of H may well be odd, one expects 
that there are linear combinations of the second-class con
straints which are first class. In fact, consider the functions 

- - ]; 0 
Ga = Ga + h];cA OPe' 

From the Poisson brackets, 

(All) 

(A12a) 

{Go (x),P~ (y)} = -h];ep~(X)o(n)(x - y), (A12b) 

{ - - } c- (n) Ga(x),Gb(y) =hb Gc(x)O (x-y), (A12c) 

{Ga (x),~ (y)} = fa];eGe (x)O(n)(x - y), (A12d) 

one sees that the constraints (A 12) are first class and pair up 
with the constraints P~. These constraints generate the 
gauge transformations for the unbroken group H. From 
(AIO), we get relations that determine the Lagrange multi
pliers relative to the second-class constraints: 

vii=-Ag, 

J-lii = - JiA ~ + /abc yh A ~. 
The total Hamiltonian can now be rewritten: 

N. K. Pak and R. Percacci 
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fd a a 0 f a HT=Ho- x jAjP a - dxAoGa 

+ f dXf.1/7P~ + f dx v"G". (A14) 

The Lagrange multipliers relative to the first-class con
straints have remained undetermined. In order to fix com
pletely the form of the Hamiltonian, it is necessary to choose 
2 dim H gauge conditions X" and 1/1". 
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Singular indecomposable representations of sl{2,C) and relativistic wave 
equations 
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A detailed summary is given of the structure of singular indecomposable representations of 
sl(2,C), as developed by Gel'fand and Ponomarev [Usp. Mat. Nauk 23,3 (1968); translated 
in Russ. Math. Surveys 23, 1 (1968)]. A variety of four-vector operators r I" is constructed, 
acting within direct sums of such representations, including some with nonsingular r o· 

Associated wave equations of Gel'fand-Yaglom type are considered that admit timelike 
solutions and lead to mass-spin spectra of the Majorana type. A subclass of these equations is 
characterized in an invariant way by obtaining basis-independent expressions for the 
commutator and anticommutator of r I" and r v. A brief discussion is given of possible 
applications to physics of these equations and of others in which nilpotent scalar operators 
appear. 

I. INTRODUCTION 

Many authors have studied first-order linear relativisti
cally invariant wave equations of the type 

(rl" al" + iK)t/J(X) =0, (Ll) 

in which the wave function t/J takes its values in a vector 
space V carrying a representation 1T of the Lorentz group 
SL(2,C), therl" (for,u = 0,1,2,3) and K are linear operators 
on V, and al" = a /axw The first systematic treatment was 
that of Gel'fand and Yaglom, I who gave detailed formulas 
for the structure of possible r I" in the case where 1T is a direct 
sum of irreducible representations ofSL(2,C). These repre
sentations mayor may not be infinite dimensional. 

The results of Ref. 1 were obtained in a particular basis 
for V, but various authors have later emphasized the impor
tance of invariant properties of wave equations. These are 
the properties that do not depend on the choice of basis in V 
or on the corresponding explicit form of the r I" and K. In 
particular, starting with the early work on wave equations 
(see, for example, Lubanski2 and Harish-Chandra3

), there 
has been great interest in what we shall refer to as their alge
braic structure, by which we mean especially the algebras 
generated by the vector operator r 1". This involves, in partic
ular, a description of the commutator [r I",r v] and the anti
commutator {r I",r v}. Representations of such algebras 
lead to entire families of equations, giving us a systematic 
way of classifying some of the vast number of relativistic 
wave equations. Lubanski concentrated on the case where 
the commutator [r I",r v] is a nonzero mUltiple of the gener
ator JI"V ofSL(2,C), so that the complex Lie algebra genera
ted by the r I" is just soC 5,C). An analysis of the possible Lie 
algebras generated by the r I" was later carried out by Cant 
and Hurst,4 who showed that arbitrarily large simple Lie 
algebras can be obtained. This contradicted earlier claims 
that had been made (see, for example, Refs. 5 and 6). It was 
also shown in Ref. 4 how a knowledge of the Lie algebra can 
help in deriving the mass and spin spectra associated with 

.) Present address: Department of Industry, Technology and Commerce, 
GPO Box 9839, Canberra, Australia. 

Eq. ( 1.1). Bracken 7 also used algebraic properties to charac
terize a class of wave equations, and to determine the asso
ciated mass and spin spectra, in a study of the family with K a 
multiple of the identity operator on V, and 

1T=[Vdal[!,-/d, IIEC. (1.2) 

[We use the standard notation I for the irreducible represen
tations ofSL(2,C).] In fact, it has been shown8 that an infi
nite-dimensional Lie algebra is generated in this case, except 
when II = 0, where we recover one of the Majorana equa
tions, or 2(11 - 1 )EN, where 1T is finite dimensional and the 
Lie algebra generated is sp(2 (II) 2 - n. A further study of 
algebraic structure, concentrating on the role of real Lie al
gebras in wave equations, was carried out by Cant. 9 

Such algebraic properties will, we believe, be especially 
useful when one considers variations on the classical theme 
of wave equations based on direct sums of irreducible repre
sentations. For example, wave equations of the form (1.1), 
with the added property that V carries a representation of 
the larger group SL ( 4,R), have been studied and applied to 
the problem of describing the gravitational interactions of 
hadrons.1O Such equations are infinite dimensional and 
SL(2,C) invariant, although not fully SL(4,R) invariant. 
The results of Ref. 9 were particularly useful in this work. 
Infinite-dimensional equations associated with representa
tions ofSO( 4,2) have also been widely discussed in the liter
ature. 11 

In this paper we shall be concerned with a different di
rection of generalization: we consider the case where 1T is a 
direct sum of reducible but indecomposable representations 
of the algebra l2 sl(2,C). All such representations are infinite 
dimensional, and they can be very complicated objects. The 
first examples presented were the "expansors" described by 
Dirac, 13 who more recently emphasized the potential impor
tance of indecomposable representations for physics. 14 A 
class of indecomposable representations was studied by Gel
'fand and Ponomarev,15 and divided into two subclasses, 
called singular and nonsingular. Bender and Griffiths, 16 in a 
study ofthe transformation properties of massless fields, ex
amined the composition series for the tensor product of the 
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four-vector representation of SL(2,C) with an infinite-di
mensional irreducible representation, and found that it can 
contain indecomposable representations. Hlavaty and Nie
derle l7 applied the results of Ref. 15 in constructing some 
examples of wave equations based on indecomposable repre
sentations. Their work describes the general structure of r J.t 

associated with a representation 1T, which is a direct sum of 
nonsingular indecomposable representations, but their re
sults are slight in the more complicated, and possibly more 
interesting case, when singular indecomposable representa
tions are involved: there they gave only one example of a 
wave equation ( 1.1 ), associated with a direct sum of particu
larly simple singular indecomposable representations that 
are in fact operator irreducible. Operators r J.t associated 
with such representations, sometimes called "integer-point" 
representations in the literature, 18 had been constructed ear
lier by Ruhl. 19 Hlavaty et al. showed for their example that 
no timelike solutions exist. 

A different approach to indecomposable representa
tions of sl(2,C) and associated four-vector operators has 
been developed by Gruber and his associates.20 To our 
knowledge, the relationship of the representations con
structed there to those of Gel'fand and Ponomarevl5 has not 
been fully elucidated. 

Our object in the present work is twofold. First, to sum
marize the results of Gel'fand and Ponomarev on singular 
indecomposable representations ofs1(2,C), in a form more 
readily accessible to physicists, and second, to give some ex
amples of wave equations based on such representations, 
especially ones that do admit timelike solutions, unlike the 
example given in Ref. 17. 

We shall show further that a subclass of these equations 
can be characterized in an invariant way, at least partly, by 
virtue of the simple form taken by the commutator and anti
commutator of r J.t and r v' This subclass is a direct general
ization of that considered in Ref. 7, which includes one of 
Majorana's equations,21 and indeed the subclass of wave 
equations we discuss does lead to mass-spin spectra of the 
Majorana type. 

II. SINGULAR INDECOMPOSABLE REPRESENTATIONS 
OF 81(2,C) 

Let 9' ~ s1( 2, C) denote the real Lie algebra of the homo
geneous Lorentz group, and h ~ su (2) its maximal compact 
subalgebra. We take the standard basis {h l ,h2,h3,f.,/z,h,} 
for (the complexification of) 9'; {h l ,h2,h3 } for h. The defin
ing Lie product relations are 

[hp,hq] = - [J;,,/q] = iEpqrh" 

(2.1 ) 

where p,q,r run over 1,2,3, repeated subscripts are summed 
over those values, and Epqr is the usual alternating symbol. 
We work with h3,h" h ± = hI ± ih2, and I ± =11 ± ifz in 
what follows. A representation rof 9' is said to be h finite or a 
Harish-Chandra representation if in the direct sum decom
position of the restriction of r to h, equivalent irreducible 
representations of h occur with finite multiplicities only. 
Thus 
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(2.2) 

where Y is a subset ofN/2={0,p,~, ... }, and each TI is the 
direct sum of a finite number of copies of the (21 + 1 )-di
mensional irreducible representation IPI of h. Such a T is 
called indecomposable if it cannot be decomposed into a di
rect sum of representations of 9" The indecomposable Har
ish-Chandra representations of 9' have been classified by 
Gel'fand and Ponomarev,15 and we now summarize their 
results. 

Let T be such a representation, V the associated 9' mod
ule,andH3 = T(h3),F3 = T(f3),etc. The Casimir operators 
are given, as usual, I by 

a l = !(H_F+ + F_H+) + H 3F3, 

a2 =H_H+ -F_F+ 

+ (H3f - (F3)2 + 2H3, (2.3 ) 

and commute with H 3 , H ± ' F3, and F ± on V. If T is in fact 
irreducible, then a I and a2 are multiples of the identity oper
ator on V. This is a necessary but not sufficient condition for 
subspace irreducibility. More generally, it is only true that 
a l and a2 each have on Vexactly one eigenvalue AI' A2 , of 
the form 

(2.4 ) 

with 10EN12 and IIEC. If/I - 10 is a nonzero integer, then Tis 
called singular; otherwise Tis nonsingular. The structure of 
nonsingular indecomposable representations of 9', as deter
mined in Ref. 15, has been summarized by Hlavaty and Nie
derle. 17 In the present paper, we shall concentrate on the 
more complicated case of singular indecomposable repre
sentations. 

Given such a representation r then, with AI' A2 , as in 
(2.4 ), we choose 10 and II without loss of generality, such 
that O<Jo< 1/11. Then l5 the set Y in (2.1) is given by 
Y = {lo'/o + 1'/0 + 2, ... }. Corresponding to (2.2) we can 
write Vas an algebraic direct sum 

(2.5) 

where each VI is an eigenspace of the Casimir operator 
(H3)2 + H_H+ + H3 of h, with eigenvaluel(/ + I). Each 
VI can in turn be written as a direct sum 

(2.6) 

of eigenspaces Vim of H3 with eigenvalue 
mE{l,I- 1, ... , - n. The subspaces Vim for 
1= 10'/0 + 1, ... ,1/11 - 1 all have dimension no, while the Vim 
for 1= 1/11, 1II1 + 1, ... all have dimension nl, for some pair 
(no,n,) of non-negative integers, not both of which are zero. 
If n l = 0 we must have no = 1, in which case T is the finite
dimensional irreducible representation labeled' [/0'/.1. If 
no = 0 and n, = 1, T is the infinite-dimensional irreducible 
representation [l/11,sgn(/I)/o], sometimes l8,19 called the 
"tail" of [/0,/1], In all remaining cases, with no = O,n, > 1 or 
no> 0, n I > 0, T is subspace reducible, i.e., V contains a prop
er subspace invariant under the action of H 3, F3, etc. Such a T 

can loosely be thought of as no copies of [/0 ,/,] and n, copies 
of its tail "glued indecomposably" together. '6 However, Tis 
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not in general determined to within equivalence by giving 10, 
II' no and nl alone. It is necessary to specify the action of H 3, 

F3, etc., in a suitably chosen basis for V. In Ref. 15, it is 
shown that a basis of vectors Sima can be found, with 
1= 10,/0 + 1, ... ; m = 1,1- 1, ... , - I; a = 1,2, ... ,no for 
10<1< 1/11; and a = 1,2, ... ,n l for 1>1/11, such that (adapting 
the notation of Ref. 17) 

H ± Sima = [(I ± m + 1) (/ + m) ] 1/2 Sim ± la' 

F3SIma = [[2 - m2] 1/2(MDapSI_ImP - m(ZDapSlmP 

- [(I + 1)2 - m2] 1/2(PDapSI+ Imp' 

F±Slma = ± [(l +m)(l +m-l)]1/2 

X (MDapSI-Im± IP 

- [(l +m)(l±m+ 1)]1/2(ZJ)apSlm±IP 

± [(l±m+ 1)(I±m+2)]1/2 

X (PDapSI+ Im± IP' (2.7) 

Here repeated subscripts {3 are to be summed over the values 
1 to no or n I' as appropriate. Note that certain vectors on the 
right-hand sides in (2.7) are undefined, e.g., SI-lmP when 
m = I, but these can be ignored because they always appear 
with vanishing coefficients. The matrices M r, Z r, and P r, 
whose elements are (MDaP' (ZDaP' and (PDaP' respec
tively, have the appropriate dimensions. Thus P r is no X no 
for 10<1<1/11-1; nlXno for 1= 1/11-1; and nlXn l for 
1>1/11. Similarly, Mr is noXno for 10<1< 1/11; noXnl for 
1= 1/11; and nlXn l for I> 1/11, while Zr is noXno for 
10<1<1/11 and nlXn l for 1>1/11. These matrices have the 
following form: 

{

Io, 
pr = d+, 

II' 

10<1< 1I11 - 1, 

1= 1/11-1, 

1>1/11, 

(2.8a) 

{

[ ([2 -/~) (Ii - [2)/(4/ 2 - 1)[2] (10 + (lV(li -/ 2»ao], 

M r = ~ (; 2 _ I ~ ) (I i _ 12) 1 (41 2 _ I) 12]( II + (l V (I i - 12»a I + (I ~ 1 (I ~ - [2»0] , 

T _ {[ilo/lll(l + 1 )]~Io + ao, 10<1< 1/11, 

10<1< 1/11, 

1= 1/11, 
I> 1/1 1, 

(2.8b) 

ZI-
[ilo/lll(l + I) ]~II + al + 0, 1>1111, 

where 10 and II are the unit matrices of dimension noXno 
andn l Xn l, whiled+ is nl X no, d_ isnoXnl' andoisn l Xnl> 
such that 

d_o=Od+=O 

o and d+d_ (and hence d_d+) are nilpotent. 
(2.9) 

(The matrices Z rand M r, in cases with 10 = 0, should be 
interpreted as vanishing when I = 0, as should M r when 
1= 10 = !.) In addition, we have set 

ao= [(4n -l)l(li -/~)]d_d+, 
(2.10) 

al = [(4n - l)/(li -/~) ]d+d_. 

Each matrix square root in (2.8c) is of the form ~I + A , 
with I a unit matrix and A nilpotent (say A K + I = 0, A K =1= ° 
in a particular case), and is to be interpreted through the 
binomial expansion as22 

~I+A =I+!A+'" 

+ [( _I)K+I(2K)!!(2K-1)(K!)222K ]A K. 
(2.11) 

From the formulas (2.6)-(2.9) it can be deduced that 
the Casimir operators (2.3) leave each Vim in (2.6) invar
iant, and act on Vim as 

A _ { - ilo/l~Io + ao, 10<1<1/11, 
'-J.1l -

- ilo/l~II + al + 0, 1>1/11, (2.12) _ {(l~ +n -l)Io+nao, 10<1<1/11, 

6.
21 

- (l~ + n - 1)/1 + I~o + nal, 1>1/11, 

and it can be seen that they do indeed have one eigenvalue 
each, of the form (2.4), because of (2.11) and the nilpotency 
of ao, a I' and o. 

2965 J. Math. Phys., Vol. 30, No. 12, December 1989 

(2.8c) 

To complete the description of a singular indecompos
able representation 'T, it remains to complete the description 
of the matrices d +, d _, and 0 subject to (2.9). Gel'fand and 
Ponomarev l5 have shown that inequivalent indecomposable 
sets of such matrices are in one-to-one correspondence with 
certain diagrams, which are therefore also in one-to-one cor
respondence with inequivalent indecomposable representa
tions 'T having the same values of 10 , II' no, and n l • In other 
words, each such diagram may be regarded as providing the 
remaining labels necessary to characterize a corresponding 
'T, up to equivalence. 

There are two categories of diagrams, of so-called 
"open" and "closed" types, and, correspondingly, there are 
singular indecomposable representations of type I and type 
II. 

Definition 2.1: An open diagram is a finite set M of 
points in the lattice Z2, arranged as an unbroken staircase 
descending from left to right. Thus M contains one point 
[which can be taken without loss of generality to be the ori
gin (0,0) in Z2], starting from which we can generate all of 
M by going successively either right or down to the nearest 
neighboring lattice point. Each point is colored black or 
white, with the restriction that nearest neighbors in Mare 
both black if they are vertically adjacent, and are opposite in 
color if they are horizontally adjacent. (This implies that the 
length of each horizontal part of the staircase must be an 
even integer, unless that part includes the first or last point, 
when its length may be even or odd. ) • 

For the corresponding indecomposable representation 'T 

of 9', no equals the number of white points and n I the number 
of black points in the diagram. 

The simplest diagrams are as follows: 
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no + n l = 1: 0 

• 
no + n l = 2: o----e, 

e---o ' 

I 
no + n l = 3: 0 • o ' 

......-o---e ' 

i , 

L, 

(2.13a) 

(2.13b) 

(2.13c) 

(2.13d) 

(2.13e) 

(2.13f) 

(2.13g) 

(2.13h) 

(2.13i) 

(2.13j) 
To obtain from a given diagram the corresponding ma

trices d ± ,8 of (2.7)-(2.9), we first associate with each of 
the points (i,j)EM, a basis vector e(i,j) in an (no + n l )

dimensional complex vector space P. The basis vectors 
e(i,j) corresponding to white points (i,j) span an no-dimen
sional subspace Po of P, while those corresponding to black 
points span an nl-dimensional subspace PI of P; evidently 

P=PO(f)PI. (2.14) 
Next we define linear operators a and b on P by 

( .. ) {e(i + l,j), (i + l,j)EM, (2.15) 
ae l,j = 0, otherwise, 

be(i,j) = {e(i,jo+ 1), (i,j + 1)EM, (2.16) 
, otherwise. 

Then a and b are nilpotent, with 
ab = ba = 0, 

aPoc;;;"pl , aPI c;;;"po 

bPo = {O}, bPI c;;;"PI· (2.17 ) 

Ifwe now identify Pwith C" + n" choosing the e(i,j) in such 
a way that vectors in Po have their bottom n l components 
zero, and vectors in PI have their top no components zero, we 
obtain a matrix realization of a and b with the form 

a=[~ ~-], b=[~ ~], 
+ 

(2.18 ) 

where d+, d_, and 8 have dimension nlXno, noXnl' and 
n l X n l, respectively, and satisfy (2.9). 

For example, for the diagram (2.13h) we can take the 
points to be at (0,0), (1,0), and (1, - 1) in 1:2, and set e( 0,0) 
= (1,O,O)T, e(1,O) = (O,I,O)T, and e(1, -1) = (O,O,1)T. 

Then (2.15) and (2.16) imply 

a ~ [! ~ ~l h [~ ~ !l, (2.19) 
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so that 

T [0 1] d+ = [1 0], d_ = [0 0], 8 = ° ° . (2.20) 

In this way the matrices d ± ,8 are determined by a given 
open diagram and, together with 10 and II, complete the spe
cification of a representation T of type I. Note that for given 
10'/1' the diagrams (2.13a) and (2.13b) correspond to the 
irreducible representations [/0,/1] and [Il11,sgn(l1 )/0 ], 

Our treatment of an open diagram differs slightly from 
that of Ref. 15, in that we color the points to show explicitly 
the grading Po (f) PI' Apart from making the structure 
clearer, this is in fact necessary to distinguish between those 
inequivalent representations which would otherwise have 
the same "straight-row" diagram, consisting of n points in a 
horizontal line. 

For example, (2.13c) and (2.13d) lead to 

d + = 1, d _ = 8 = 0, 

d _ = 1, d + = 8 = 0, 
(2.21 ) 

respectively. For given 10 and II' the corresponding inequiva
lent representations of ~ in this case are the well-known "op
erator-irreducible" indecomposable representations. For 
these the Casimir operators 6. 1 and 6.2 of (2.3) are multiples 
of the identity by A I and A2, as in (2.4), as follows from 
(2.21), (2.10), and (2.12), but the representations are nev
ertheless subspace reducible. In Ref. 23 they are denoted, 
respectively, by {l0 ..... /1} and {lo-/I}' this notation being 
intended to indicate that in the first case the subspace ~/,I 
(f) VII,I + I (f) ••• of Vis invariant, while in the second case VI" 

(f) VI" + I (f) ••• (f) VII,I _ I is invariant. In Ref. 17 they are de
noted by (/0'/1' + ) and (/0'/1' - ). 

Definition 2.2: A closed diagram is obtained from any 
open diagram M that begins with a white point and ends with 
at least two successive black points. A line is drawn connect
ing the first and last points of M and the diagram is supple
mented by a pair oflabels (q,ll) , qEN, IlEC\..O. • 

The simplest example has three points: 

(q,Il)' (2.22) 

When q = 1, the procedure for constructing a and b, and 
subsequently d ± and 8, is just as before, except that the 
definition (2.15) of a is supplemented by requiring 

ae(k,/) = lle(O,O), (2.23 ) 

where (k,/) is the final and (0,0) the initial point of M. 
Again this leads to matrices a and b with the general form 
(2.18), from which d+, d_, and 8 can be determined in 
order to complete the description of a singular indecompos
able representation of ~ of type II. This representation is 
labeled (up to equivalence) by 10 , II' and the closed diagram 
[including the pair (I,ll) ] . 

For example, diagram (2.22) with q = 1 leads to 

a~ [! ~ n b~ [~ ~ !l (2.24) 

and hence to 
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d+=[1 O]T, d_=[O Il], £5=[~ ~]. (2.25) 

[Note that these matrices reduce to those in (2.20), corre
sponding to the open diagram (2.13h), if Il is set equal to 
zero. In fact, it is obviously true, in general, that the closed 
diagram with q = 1 and Il set equal to zero, reduces in this 
sense to the corresponding open diagram.] 

More generally, for q> 1, a representation of type II is 
obtained by associating with each point (ij) of a closed dia
gram, a q-dimensional subspace vU,j) rather than a single 
vector e (i, j) (as in the case q = 1). The definitions of a and 
b are generalized accordingly. Thus 

av(i,j) --+v(i + l,j) (2.26) 

is an isomorphism if (i + l,j)EM (with a qxq matrix, 
which can be taken to the identity Iq); otherwise 
avU,j) = 0, except that if (0,0) is the first and (k,/) the last 
point of M, then a maps v(k,l) into v(O,O) with aqX qmatrix 
Ilq , which can be taken to be a single Jordan block with 
eigenvalue Il. The mapping 

bv(i,j)--+v(i,j+ 1) (2.27) 

is an isomorphism (with matrix Iq) if (i,j + 1)EM, and 
bv(i,j) = o otherwise. In this case the subspaces Po and P, of 
P are of dimension no = qmo, n, = qm" respectively, where 
mo and m, are the numbers of white and black points in the 
diagrams. Associating P with Clio + II, as before, we read off 
the matrices d ± and £5 from the matrices of a and b in the 
same way. The corresponding indecomposable representa
tion of Y' oftype II is labeled by 10,/" and the closed diagram 
[including (q,Il)]. 

For example, taking the diagram (2.22) with q = 2, the 
matrices can be obtained from those for the case q = I, as in 
(2.24), (2.25), by replacing each zero by a 2X2 block of 
zeros, each 1 by the 2 X 2 unit matrix, and each Il by the 2 X 2 
matrix 

(2.28) 

III. VECTOR OPERATORS: GENERALITIES 

Suppose that f/!( x) in (1.1) is, for each x, an element of 
the Y' module V". ofa Harish-Chandra representation 1Tof Y" 

(3.1 ) 

where each 1", is (singular) indecomposable. Suppose 
further that r JL and K in (1.1) are linear mappings (opera
tors) from V". into itself. Let H3 = 1T(h3), F3 = 1T( J;), etc. 
Generalizing well-known results, ',24 we know that a suffi
cient condition for (1.1) to be locally'2 invariant under ho
mogeneous (and, indeed, inhomogeneous) Lorentz trans
formations is that K commutes with H 3, F3, etc., on V". and 
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[ro,H ± ] = [rO,H3] = 0, 

ro= [[F3,rO],F31. 

r3 = i[F3,rO ]' r, ± ir2 = i[F ± ,ro], 
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(3.2a) 

(3.2b) 

(3.2c) 

on V".. Then we say that K is a scalar operator and r JL a four
vector operator on V".. In searching for possible locally in
variant equations, we therefore seek representations 1T for 
which K and r JL can be found with these properties. If we 
restrict attention to equations for which K is invertible on V"., 
then24 there is no significant loss of generality in supposing K 

to be a nonzero numerical multiple of the identity operator 
on V".. Then the problem reduces to finding representations 
1T for which a four-vector operator r JL can be found. It is 
sufficient to search for ro satisfying (3.2a) and (3.2b), as 
r " r 2' and r 3 can then be defined by (3.2c). We shall con
centrate on this problem here, but make some remarks about 
wave equations with noninvertible K at the end of the paper. 

Let 1" and 1"' denote any two of the indecomposable rep
resentations (or possibly one and the same representation) 
contained in 1T, and let P T, P T' be the operators projecting V". 

onto the corresponding subspaces VT, VT'in (3.1). Define 

r~'T = pT'r JLpT (3.3) 

and note that, since P T and P T' commute on V". with H 3, F3 , 

etc., r~'T is a four-vector operator whenever this is true of 
r JL' We concentrate on the determination of r~' T, in effect 
restricting attention to the case when 1T = 1" $1"' (or 1T = 1", if 
1"' = 1"). The r JL in a more general case can evidently be built 
up from such r~'T. 

Decomposing VT and VT' as in (2.5) and (2.6), and 
introducing bases, as in Sec. II, we see from (3.2a) and (3.3) 
that r~'T carries Vrm into Vr~. Let X(T denote the corre
sponding matrix; it is independent of m, again because of 
(3.2a). Expressions for the matrices r;;;;", defined by the 
action of the operators r;'T,p = 1,2,3, on Vrm, can then be 
written down. For example, we find, using (2.7) and (3.2c), 
that 

irI;Jm = [/2 - m2] '/2(Xr~ ,Mr - M(X(T) 

- m(X(TZr - Z(X(T) 

- [(I + 1)2 - m2
] "2(X(;, pr - p(X(T). 

(3.4 ) 

The heart of the problem then is to determine the X (T 
from the remaining condition (3.2b), for the appropriate 
range of I values in the representation 1". This condition leads 
to the following system of coupled matrix equations, essen
tially the same as Eqs. (3.6) of Ref. 17, in whichZr,Mr, pr, 
and the corresponding primed variables are to be regarded as 
given, and the X(T are unknowns: 

2p T' XT'T p T pT' PT'XT'T XT'T pT pT - 0 
1+' 1+' 1 - 1+' 1 1 - 1+2 1+' 1 - , 

(3.5a) 

2Mr~,Xr~,Mr -MC,M(X(T -Xr~2Mr_,Mr=0, 
(3.5b) 

- 2P(X(TZr - 2Zr~ txt; ,P'i = 0, 

Xi~, [Zi_,Mi + MiZI] 

+ [Z(_,M( +M(Z[']X(T 
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- 2Z;-~ IX;-:::-IM;-- 2M;-'X;-"Z;- = 0, 

X;-'T[P;-_IM;- +M;-+IP;- +Z;-Zn 

+ [Z;-,Z;-' +P;-~IM;-' +M;-~lpnX;-'T 

- 2P;-~ IX;-:::-IM;-- 2M;-~ IX;-~ IP;-

- 2Z;-'X;-'TZ;- = 0, 

(/+ 1)2[X;-'TM;-+IP;-

- 2M;-~ IX;-~ IP;- + M;-~ IP;-'X;-'T] 

+ 12[XT'TpT MT 2p T' XT'T MT 
I I-I 1- I-I I-I I 

(3.5d) 

(3.5e) 

+ P;-~ IM;-'X;-'T] = X;-'T. (3.5f) 

These equations must hold for each allowed I value in the 

representation r, and XJ'T must be set equal to zero unless 

both V;- and vI' are non-null. 
Ifrand r' are irreducible [so that each matrix in (3.5) is 

a single number], it is well known I that a necessary and 
sufficient condition for the existence of a nontrivial solution 
is that the labels (/0,11) and (/ U ; ) of rand r' (which serve 
to characterize the representations completely in such a 
case) satisfy the "interlocking" condition that one of the 
pairs (/ b ,I ; ), ( - I b, - I ;) is equal to one of the pairs 
(/0,/1 + 1), (/0,11 - 1), (/0 + 1,11)' or (/0 - 1,11)' Moreover, 
the structure of the solutions is known for all such cases. I 
Hlavaty and Niederle17 have in fact extended these results to 
the case where rand r' are nonsingular indecomposable rep
resentations. 

In the singular case, we expect that it is still true that the 
labels (/0,11), (/ b,l; ) of rand r' (which now are not suffi
cient to characterize rand r' completely) must satisfy the 
interlocking condition if a nontrivial solution is to exist, al
though we have no general proof. On the other hand, it 
would be surprising if this condition is sufficient for exis
tence, with no restriction on the diagrams for rand r', but 
this too remains an open question. 

IV. VECTOR OPERATORS: EXAMPLES 

For a given pair (r,r') of singular indecomposable rep
resentations,25 it is not, in general, easy to determine if Eqs. 
(3.5) admit a nontrivial solution. The only solutions pre
viously presented (apart of course from those corresponding 
to irreducible rand r') seem to have been those correspond
ing to the case of interlocking rand r' of the operator-irredu
cible type, with diagrams of the form (2.13c) or (2.13d). 
Then no = n I = 1, so that all the matrices in (3.5) are simply 
numbers, and the problem of finding solutions is not sub
stantially more difficult than in the irreducible case. 

In Ref. 17, a nontrivial solution is found in a case of this 
type, where rhas labels (VI) and r' has labels (!, -II)' with 
IIE{~, ~, ... }, and the diagrams for rand r' are (2.13c) and 
(2.13d), respectively. (These are the operator-irreducible 
representations [! ..... ltl and [!- -II] described earlier.) It 
was shown, however, that this leads to an operator r 0 with 
no nonzero eigenvalues, so that (1.1) has no timelike solu
tions in this case. 17 In fact, four-vector operators in the case 
of interlocked operator-irreducible rand r' were described 
earlier by Ruhl. 19 
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In seeking to find, for representations with arbitrarily 
complicated diagrams, examples of four-vector operators 
that lead in at least some cases to wave equations with time
like solutions, we shall make the following simplifying as
sumptions: (1) rand r' have labels (V I) and (!, - II)' 
where IIE{~, ~, ... } (note that the interlocking condition is 
then satisfied); and (2) rand r' have the same diagram. 

Note that condition (1) but not condition (2) is satis
fied by the example of Ref. 17. The matrices d ± ' 8 (and 
hence ao, a I) can now be taken to be the same for r' as for r, 
and we obtain 

Z;-' = - Z r; P t = P r; M t = M;-, (4.1 ) 

and, for the matrices of the Casimir operators (2.12), 

arl = - ar;, 
a;1 = a;;. (4.2) 

Under these conditions, X t T q < l< II) and ao are 

noXno matrices, whileXtT (/>/1 ), aI' and 8 are n l Xn l ma
trices, where no and n l are determined by the number of 
white and black points in the (common) diagram for rand 
r', as described in Sec. II. In order to simplify ordering prob
lems in (3.5), we limit ourselves further by seeking only 

solutions such that (3) XtT commutes with ao for !<J < I., 
and with a l and 8 for 1>/ •. 

It follows from (2.12) and (4.2) that condition (3) is 

equivalent to requiring that r;'T satisfies 

(4.3) 

on VT ffi VT'. Equations (4.3) are known7 to hold for all solu
tions in the case that rand r' are irreducible [given condi
tions (1) and (2)], when a2 is a multiple of the identity 

operator (on VTffi VT') and a. is a (generalized) Dirac Y5 
matrix, but it is not clear if the imposition of condition (3) 
places a nontrivial restriction on the solution of (3.5) in the 
present situation. 

Having imposed conditions (1)-(3), we now consider 
(3.5a) and find using (2.8) that 

for !<I < I. - 2, and for 1>/1' so that 

X(T= {IA + C, !<I</I' 
lB + D, 1>/1' 

( 4.4) 

(4.5 ) 

where A, B, C, and D are matrices independent of I. Accord
ing to condition (3), A and C commute with ao, and Band D 
commute with a l and 8. Use of (4.1) and (2.8) in (3.5c), 
with 10<1 < II - 1, then gives 

[(2/-1)A +2C]prZr 

(4.6) 

But Eqs. (2.8) imply that IPrZ r = (I + 2)Z r+ • pr, so that 

(/ + 2) [(21- I)A + 2C]prZr 

= I [(21 + 3)A + 2C ]prZr, (4.7) 

and since P rZ r is nonsingular, we obtain C = !A. In a simi
lar way, using (3.5c) with 1>/1' we obtain D = !B. Thus 

A. J. Bracken and A. Cant 2968 



                                                                                                                                    

X(T={(l+!)A, !<k/l' (4.8) 
(l + !)B, t;?/I' 

Then (3.5a) with I = II - 2 or I = II - 1 implies 

d+A = Bd+. (4.9) 

Equation (3.5b) yields no new condition for ~<k/l or 
i> II + 2, but for I = II + lor I = II we obtain 

Ad_ = d_B. (4.10) 

The remaining equations (3.5) require just one more condi
tion, that 

Bo=oB=O. (4.11 ) 

Since (4.9) and (4.10) imply, with (2.10), that A commutes 
with ao and B commutes with ai' the problem reduces to the 
following: for a given diagram and hence for given d ± ' 0, 
find matrices A and B such that (4.9)-(4.11) are satisfied. 

For small values of no and n I' we can now easily con
struct all solutions subject to the conditions (1)-(3). For 
example, the diagram 

( 4.12) 

leads to 

d+ = [~ ~], d_ = [~ ~], 0 = [~ ~] (4.13) 

[and hence to ao = a l = [g g]], and it follows 
from(4.9)-(4.11) that 

A = [0 0] B = [0 P] 
a 0 ' 0 0 ' (4.14 ) 

where a and P are arbitrary constants. Similarly, for dia
gram (2.22) with q = 2 andw;t=O, we find that A equals the 
2 X 2 zero matrix and B is a 4 X 4 matrix with an arbitrary 
2 X 2 block in the upper right-hand corner, and zeros else
where. 

Of more interest is the observation that a class of solu
tions (A,B) can now be determined as follows, whatever the 
common diagram of l' and 1". Since (2.9) and (2.10) imply 
that 

d+ao = ald+, aod_ = d_aJ> 

oa l = aiD = 0, (4.15 ) 

we can satisfy (4.9) and (4.10) by taking 

A = aolo + alao + a2a~ + ... + aNa~, 
B = aoIl + alai + a2ai + ... + aNaf + COM, (4.16) 

where c and the aj> i = 0, 1,2, ... ,N are arbitrary complex con
stants, N is the largest non-negative integer such that at least 
one of a~, af is nonzero, and M is the largest non-negative 
integer such that OM is nonzero. 

If 0 = 0, then (4.11) is satisfied trivially, and (4.16) 
defines a class of solutions (4.8) parametrized by 
aO,al, ... ,aN • The vanishing of 0 is easily seen to require that 
the diagram of l' and 1" be a straight row: we discuss this case 
further in the next section . 

If 0 # 0, we must set a o = 0 in (4.16) in order to satisfy 
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( 4.11 ). We then still obtain a class of solutions (4.8), para
metrized by a l ,a2, ... ,aN and c, but note immediately that 

X(T is then nilpotent for each I, and that the same will be 

true of r~' T. The corresponding wave equation ( 1.1 ) with r Il 
= r~'T [or with r

ll 
= r~'T + r~T' as in (4.17) below] will 

not admit timelike solutions in such a case. The question 
arises as to whether or not (4.8) and (4.16) give in the way 
described, all solutions of (3.5) under conditions (1 )-( 3). 
That the answer is no, at least when 0;t=0, is shown by the 
counterexample (4.12)-( 4.14), with a;t=O. 

We attempted to find other solutions to (3.5), satisfying 
conditions (1) and (2), but not (3), with the help of the 
symbolic manipulation computer package26 MUMATH, but 
were unsuccessful. Furthermore, for all diagrams leading to 

o;t= 0, we found only nilpotent solutions X (T. We conjecture 
that this is a general rule, at least when conditions (1) and 
(2) hold. 

We also found only nilpotent solutions in cases like that 
considered in Ref. 17, where condition (2) does not hold. 
This was in fact our motivation for imposing that condition. 

Note that if the roles of l' and 1" are interchanged in 
(3.5), then Xr' satisfies the same equations as X(T, as a 
consequence of (4.1). Therefore we have also found solu

tionsX,T' ofthesamegeneralform (4.8), (4.16), and we can 
consider 

r = p'T + pr (4.17) 
Il Il Il 

in ( 1.1 ). This will, in general, be necessary if equations pos
sessing timelike solutions are to be obtained, as is familiar 
from the case of the Dirac matrices r Il' which couple the 
irreducible representations l' = [!,~], 1" = [!, - ~] ; here 

r~'T = arll (1 + r5), r~T' = Pr Il (1 - r5), 

r = rT'T + rrr' 
Il Il Il 

(4.18 ) 

(choosing a = P = !). 

V. A CLASS OF WAVE EQUATIONS 

We consider the case when l' and 1" have the straight row 
diagram 

(5.1) 

with 2k points and, as in Sec. IV, condition (1) holds. Fol
lowing the prescription outlined in Sec. II we obtain 

d+=Ik' 0=0, and 

o 
o o 

o 

o 
o 

(5.2) 

each being a k Xk matrix. Then from (4.8) and (4.16) we 
have 
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k-I 

X;'T = (l +~) I ;j (d_)j, 
j~O 

where the;j are arbitrary constants. Similarly, 
k-I 

(5.3 ) 

Xr' = (/+D I1]j(d_)j, (5.4) 
j~O 

with arbitrary 1]j. We restrict our attention to cases where 1]0 

and;o are nonzero, so that X;'T and XrT' are not nilpotent; 
because we can multiply (1.1) throughout by an arbitrary 
constant, there is no significant loss of generality in assuming 
then that 

(5.5) 

On each 2k-dimensional subspace Vim of V ( = VT 
EB V T

'), 

[ V~m] Vim = T' , mE{/,I- 1, ... , -I}, 
Vim 

(5.6) 

the matrix of r 0 ( = r~' T + r~T') is 

[
0 Xr'] 

rOI = xtr ° ' (5.7) 

where the zeros represent k X k blocks. It follows from 
(5.3 )-( 5.5) that r 01 has only ± (l + ~) as eigenvalues, but 
is not, in general, completely diagonalizable, depending on 
the values of the ;j and 1]j. 

For example, in the case that k = 3, we can take 
;0 = 1]0 = 1, ;1 = 1]1 = ;2 = 1]2 = 0, and find that for each 
eigenvalue ± (I + !) of r 01 (and for each value of m) there 
are three linearly independent eigenvectors, and r 01 is dia
gonalizable; or take ;0 = 1]0 = ;2 = 1]2 = 1, ;1 = 1]1 = 0, 
and find only two linearly independent eigenvectors for each 
eigenvalue; or take ;0 = 1]0 =;1 = 1]1 =;2 = 1]2 = 1 and 
find only one eigenvector for each eigenvalue. In these last 
two cases, r 01 is not diagonalizable and does not have a com
plete set of eigenvectors. 

It follows that ( 1.1 ) will admit timelike solutions corre
sponding to at least one set of positive and one set of negative 
energy particles with a Majorana-type mass-spin spectrum 

m l = K/(I + n, I = !,~, ... , (5.8) 

but that there will, in general, be enough linearly indepen
dent solutions to describe n such sets, 1 <n<k. We can expect 
that, in general, there will also be lightlike and spacelike 
solutions of (1.1), as for the case27 of infinite-dimensional 
irreducible representations rand r'. 

"Similar results hold in the case that the black and white 
points in (5.1) are interchanged. This simply leads to an 
interchange of d _ and d + in (5.2 )-( 5.4). 

Slightly more complicated are the cases corresponding 
to the diagrams 

0---+--<>-- ... ~ , (5.9a) 

~ ... o----e (5.9b) 

each with 2k + 1 points. For the diagrams (5.9a) we obtain 

[ ~] [0 0·· .0] d+ = Ik ~ , d_ = Ik ,8=0; (5.10) 

d + is k X (k + 1), d _ is (k + 1) X k, and 8 is k X k. Then lao 
and!a I have the same form as the matrix d _ in (5.2), with ao 
being (k + 1) X (k + 1), and a I being k X k. Our solution 
(4.8),(4.16) now gives 

{(/+~)±;j (~aoY, ~<i</1 
XT'T_ 2 J~O 4 2 (5.11) 

I - (I +~) kil ;j (~al)j, 1;;./1. 
2 J~O 4 

We get a similar expression for X ~T', with further arbitrary 
constants 1]j replacing the ;j of (5.11). Again we suppose 
;0,1]0 are nonzero, set 1]0;0 = 1, and find that r OI has only 
± (/ + !) as eigenvalues. For some choices of arbitrary con-

stants ;j and 1]j' r 01 is diagonalizable (for every I), but for 
most it is not. A new feature that emerges is that for a given 
eigenvalue ± (/ + D, rOI may have a different number of 
linearly independent eigenvectors for 1< II than for 1;;./1• For 
example, if we set;o = 1]0 = 1, all other;j and 1]j being equal 
to zero, then r 01 is diagonalizable, with (k + 1) linearly in
dependent eigenvectors for I < II' and k for 1;;./1• The corre
sponding wave equation (1.1) would admit timelike solu
tions capable of describing (k + 1) positive (or negative) 
energy particles with spins !,~, ... ,/I - 1, and k with spins 
II,!I + 1, .... Again the mass-spin spectrum is of the Major
ana type. 

Similar remarks apply in the case of the diagram (5. 9b); 
in this case r 01 will be 2k X 2k for i< II, and 
2(k+ 1)X2(k+ 1) forl;;./l. 

For any of these straight row diagrams, we can restrict 
attention to the diagonalizable cases by requiring that (5.5) 
holds and 

X(TXr' = (/ + !)2II' (5.12) 

where II is the unit matrix of the appropriate size. Then 

(rO/ )2 = (/ + p2(/1 EBII ). (5.13) 

Some important algebraic properties of the corresponding 
operators r JL can now be determined. It follows from (3.4) 
that, quite generally, the matrix of the operator i [r~T'rr'T 

± r~T'r~'T] on the subspace Vim of Vis given by 

[/ 2 m2] 1/2{X TT' (XT'T MT MT'XT'T) + (XTT' M T' MTXTT')XT'T} _ m{XTT'(XT'TZT _ ZT'XT'T) - I-I I-I I - I I _ I-I I - I I I I I I I I 

2970 

± (XrT'Z( - Z~Xr')X(T} - [(/ + 1)2 - m2] 1/2{Xr;: I (X~:; IP~ - p(X(T) ± (Xr;: IP( - prXr')X(T}. 
(5.14) 
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In the present context, this reduces, with the help of (2.7), 
(2.8), and (S.12), to 

i[rO,r3 Lm = (F3 - 4H3 al)lm' 

i{rO,r3}lm = (F_H+ -H_F+)lm' 
(S.lS) 

Since (S.13) also holds, it is then easy to verify from (3.2) 
that we have the following identities on V: 

[r ,.,r v] = - iJ,.v + 4U,.v al> 
{r,.,rv} = 2g,.v(a2 + !1) - {J,.u,Jvu}, 

where, as usual, 

Jpq = EpqrHr, Jop = - JpO = Fp, 

(S.16a) 

(S.16b) 

J,.v = !E,.vpuJPU. (S.17) 

(Here latin subscripts run over 1,2,3; Greek over 0, 1,2,3. We 
use the summation convention and set JPu = r~P Jap • The 
metric tensor g,.v = g"v is diagonal, with goo = - gll 

- g22 = - g33 = 1; and the alternating tensor has E0123 
= - 1.) 

It is noteworthy that the indentities (S.16) are exactly 
those proved by Bracken 7 for the family of four-vector oper
ators based on the direct sum of the irreducible representa
tions [!Jd and [!, -/d, IIEC. These identities have some 
interesting consequences. Since a I can never vanish in the 
present context (as loll #0), it follows that we never obtain 
the so(S,C) commutation relations 

(S.18 ) 

In fact, an analysis similar to that of CantS shows that an 
infinite-dimensional Lie algebra will be generated by the r I' 
in the present situation. 

Supposing that ( 1.1) holds (with K a number), the iden
tity (S.16b) implies that, for sufficiently smooth t/J, 

(!a"a,. + {tj'w,.)t/J= -x2t/J, (S.19) 

where wI' = fJllv a v is the Pauli-Lubanski vector operator, 
so that 

{tj'w,. = ~J,.vJ,.vau au -J,.uJvu a"a v 

= a2 au au - HJ,.u,Jv u}a" avo (S.20) 

If t/J is a wave function for a particle with mass m I and spin I, 
then we will also have 

a"a,.t/J= -myt/J, 

wI' w,.t/J = - I (l + 1) myt/J, 

and (S.19) then implies that 

my = K/(l + !)2, 

( S.21a) 

(S.21b) 

(S.22) 

in agreement with (S.8). Equation (S.19) also determines 
the nature of generalized mass-spin relations for lightlike 
and spacelike solutions of (1.1). In this connection we re
mark that it can be seen from (S.16b) that (ro + rp) and 
r p (p = 1,2,3) are not diagonalizable, unlike r o. 

VI. CONCLUDING REMARKS 

The structure of indecomposable representations of 
sl(2,C) is rich and interesting from a mathematical point of 
view. Because of the central role played by this Lie algebra 
and associated group in relativistic physics, we might expect 
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that the theory of its indecomposable representations should 
be of relevance to applications as well. However, it must be 
said that, following the present work and that of Ref. 17, it is 
by no means clear that relativistic wave equations of the 
form (1.1), based on such representations, are likely to 
prove useful in physics. 

In the case of singular indecomposable representations, 
we have shown that a variety of four-vector operators and 
corresponding wave equations can be constructed, corre
sponding to the great variety of such representations, labeled 
by ladder diagrams as in Sec. II, and we do not claim to have 
exhausted the possibilities, even under the restrictive condi
tions (1 )-( 3) imposed in Sec. IV. Our main objective has 
been to produce illustrative examples. Only for a very re
stricted subclass of representations (corresponding to 
straight row diagrams) did we find examples with r 0 not 
nilpotent, although even then there is a considerable variety 
of possibilities, as we have seen in Sec. V. However, these all 
lead to mass-spin spectra of the Majorana type, a dissap
pointing result from the point of view of potential applica
tions. 

It could be that the solutions of ( 1.1 ), in cases based on 
indecomposable representations, ought to be interpreted, in 
general, in a different way than in cases based on irreducible 
representations. For example, we could consider t/J to belong 
to the representation [~-+ ~] EB [~-+ - ~] . (See Sec. II.) The 
subspace U C V, 

is then invariant under the action of the sl(2,C) algebra. 
Moreover, since r 0 leaves each VI invariant, U is also invar
iant under the action ofro and therefore, by (3.2), of all r,.. 
It is also invariant under the action of K if that is a multiple of 
the identity operator on V. The component in U of each t/J 
satisfying (1.1) could then be "factored out" in order to 
construct an unusual "gauge description" of a massive spin-~ 
particle, i.e., we could regard as physically equivalent two 
t/J's that differed only on U. Whether this would lead to new 
physics would depend on how the infinite component wave 
function (field) could be coupled to other fields. 

Another possibility is that the equations (1.1) of inter
est here are not those with K nonsingular, as usually consid
ered, but rather ones with singular K, associated with gauge 
descriptions of massless particles. Singular scalar operators 
arise naturally in the present context. For example, it follows 
from (2.12) that the operator whose matrix on VIm is ao for 
1< II1I and a l for I> 1/11, is a nilpotent sl(2,C) scalar, as is the 
operator whose matrix is zero for 1< II1I and 8 for I> 1/11. 

Alternatively, these interesting representations of 
s1(2,C) may of course have applications to physics, not in
volving relativistic wave equations ( 1.1) at all. 13,14,16 In any 
event, we hope to have made their study more accessible. 
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It is known that the N = 2 Wess-Zumino supersymmetric quantum mechanical model has 
p - 1 degenerate zero-energy ground states consisting of only bosonic states, where p-;P 3 is the 
degree of the polynomial superpotential V(z) (ZEC) of the model [Jaffe et af. Ann. Phys. (NY) 
178, 313 (1987)]. In this paper, the mathematical structure ofthe degenerate ground states is 
analyzed in the special case V(z) = AZP (A> 0). The following facts are discovered: (i) there 
exists a strongly continuous one parameter unitary group acting as a symmetry group in the 
quantum system under consideration; (ii) the generator of the symmetry group has infinitely 
many eigenspaces Jrm , mEZ, and the bosonic part H + of the Hamiltonian of the model is 
reduced by each of them; and (iii) there exist exactly p - 1 Jrm 's in each of which the 
reduced part of H + has a unique zero-energy ground state. It is noted also that H + has 
infinitely many generalized eigenfunctions with eigenvalue zero. Moreover, a family of 
operators interrelating the zero-energy ground states is constructed. The coupling constant 
dependence of the nonzero eigenvalues of H + is exactly found. 

I. INTRODUCTION 

The N = 2 Wess-Zumino supersymmetric quantum 
mechanics (SSQM) describes the interaction between a 
complex bosonic degree of freedom and two fermionic de
grees of freedom, 1-4 and serves as a toy model of a supersym
metric quantum field theory.5-8 It has been shown that the 
model with a polynomial superpotential V(z) (ZEC) of de
greep-;p2 has exactlyp - 1 zero-energy ground state(s) con
sisting of only bosonic state(s) and hence, if p-;p3, then the
ground state is degenerate (see Refs. 1 and 2 for formal 
discussions and Ref. 3 for a mathematically rigorous analy
sis). However, the origin of this degeneracy has not been 
clarified. The present work resulted from an attempt to un
derstand the degeneracy in the ground state. 

In SSQM, supersymmetry is said to be broken ifno zero
energy states exist. It is well known that, if supersymmetry is 
broken, the ground state is always degenerate (e.g., Refs. 1, 
3,7, and 9). In the present case, however, supersymmetry is 
unbroken and hence the degeneracy in the ground state is 
not due to supersymmetry breaking. Therefore we infer that 
any mechanism different from supersymmetry breaking 
should exist to give rise to the degeneracy in the ground 
state. In Ref. 1, the following conjecture was given: The po
tential laV(z) 12

, which appears as a potential term of the 
Hamiltonian of the model, will, in general, have p - 1 wells; 
this leads to the (p - 1) -fold degeneracy in the ground state. 
However, as pointed out there also, this reasoning cannot be 
applied, e.g., to the case V(z) = zP, since in this case 
lav(z) 12 has only a single well. It seems that the structure of 
the degeneracy is not so simple and may vary according to 
the "fine structure" of the superpotential. 

In this paper, as a first step towards the understanding 
of the degeneracy in the ground state of the Wess-Zumino 
model, we present a mathematically rigorous analysis of the 
model with V(z) = AzP, A> 0, concentrating our attention 
on the mathematical structure of the degenerate ground 

states. We discover the following facts: (i) there exists a 
strongly continuous one parameter unitary group 
{R t = eitL 

1 tER} acting as a symmetry group in the quantum 
system under consideration and the generator L has infinite
ly many eigenspaces JIi'" m (mEl) decomposing the Hilbert 
space of bosonic states, so that the bosonic part H + of the 
total Hamiltonian of the model is reduced by each JIi'" m; (ii) 
there exist exactly p - 1- JIi'" m's in each of which H + has a 
unique ground state (see Sec. III). Thus we see that, in the 
present case, the degeneracy in the ground state is connected 
with the existence of a symmetry group. We note also that 
the generator L of R t is of a form similar to that of the usual 
two-dimensional rotation group with spin! and differ~ from 
it only in that the spin rotation part is p - 2 times of the usual 
one [see (3.5)]. This suggests that there exists a degree of 
freedom with spin s = (p - 2) /2 and hence any energy level 
of H + may be degenerate with multiplicity 2s + 1 = P - 1, 
which exactly coincides with the multiplicity of the degener
acy in the ground state of H +. We note also that H + has 
infinitely many generalized eigenfunctions with eigenvalue 
zero. In Sec. IV, we show that H + has a dilation covariance, 
which exactly determines the A (coupling constant) depend
ence of the nonzero eigenvalues of H +. In the last section, we 
construct a family of operators interrelating the degenerate 
ground states. These operators are related to the dilation 
unitary group given in Sec. IV and the rotation group in C. 

We begin with a brief review of the N = 2 Wess-Zumino 
model. 

II. REVIEW OF THE N= 2 WESS-ZUMINO SSQM1-4 

The Hilbert space of state vectors of the model is real
ized as 

JIi'" = L 2(C;~) = L 2(R2;~) = JIi'" + E!) JIi'" _, (2.1) 

where 
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and 

are the subspace of "bosonic" and "fermionic" states, re
spectively. 

The fermionic degrees offreedom in the model are given 
by the 4 X 4 matrices 

tPl = ~(O J + 0'3) , 
2 V - 0'3 0 

where O'j' j = 1, 2, 3 are the Pauli matrices and J denotes the 
2 X 2 identity matrix. It is straightforward to check that the 
tPj'S satisfy the anticommutation relations 

{tPj' tPt} = Djk' {tPj' tPk} = 0, j,k = 1,2. 

The self-adjoint supercharges of the model are defined 
by 

QI = HtP2 a + tP!a) + i{tPI(aV) - tPrcaV)*}, 

Q2 = tP2 a - tP!a + tPl (aV) + tPf(aV)*, 

where V(z) (ZEC) is an entire function on C, denoting the 
superpotential of the model, and (a V) * denotes the complex 
conjugate of a v. The operators Q I and Q2 are essentially self
abjoint on CO' (R2; ( 4 ).3.4 We denote their closures by the 
same symbols. 

The Hamiltonian H of the model is defined by 

H=Qi· 

It follows that 

Qi = Q~ 
and hence D(QI) = D(Q2) = D(H 1/2), where D(A) de
notes the domain ofthe operator A. Further we have 

{QI' Q2} 1= 0, IEC 0' (R2; ( 4
). 

On D(aa) nD( laVl2) nD(a 2V), H is expressed as 

H = - aa - ¢ftP2(a 2 V)* - tP!tPl a 2v + lavl 2. 

Corresponding to the decomposition (2.1), H is decom
posed as 

H=H+GJH_, 

where 

H_ = (- aa + laV12)J 

and 

H -H ( 0 
+ - - + i(a 2V)* (2.2) 

The operators H ± are essentially self-adjoint on CO' ( R2; 
( 2 ).3.4 
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The fermion number operator or the grading operator is 
given by 

NF = (~ ~J)' 
The quadruple {Jf", {QI' Q2}' H, NF } satisfies the axi-

oms of super symmetric quantum theory.9,10 
The following facts have been proved. 
(i) No fermionic zero-energy states exist, that is, 

Ker H_ = {O} 

(see Refs. 3 and 4). 
(ii) If V(z) is a polynomial of degree p>2, then 

dim Ker H+ =p -1, (2.3 ) 

and hence, if p>3, then the bosonic zero-energy state is de
generate. 3 As for the case of non polynomial superpotentials, 
we may conjecture that dim Ker H + = 00. It has 
been proved in Ref. 4 that, in the special case 
V(z) = Aeaz (AEC\ {O}, a> 0), this is true. 

III. GROUND STATES OF THE MODEL WITH A 
MONOMIAL SUPERPOTENTIAL 

In what follows, we shall use the polar coordinate repre
sentation 

Z = re ilJ
, rER+ = (0,00), OE[0,21T], 

and the canonical identification 

L2(C) =L 2(R+,d,u) ®L 2(0,21T), (3.1) 

where d,u(r) is the measure on R+ given by 

d,u(r) = rdr. (3.2) 

In this section we consider the case of the monomial 
superpotential 

V(Z) = Azi', A> 0, p>3, (3.3 ) 

so that H + given by (2.2) takes the form 

H+ = -~(~r~+~L) +A 2p2r (P-I) 
4r ar ar r ao 2 

on a suitable dense domain. 

_ ei(p-2)j 
,(3.4 ) 

o 

By (2.3), the zero-energy level of H + is degenerate with 
multiplicity p - 1>2. Our aim is to investigate the math
ematical structure of the p - 1 degenerate zero-energy 
ground states. 

We first show that there exists a symmetry group acting 
in the quantum system governed by the bosonic Hamilto
nian H +. Let a lao be the generalized derivative with the 
periodic boundary condition in [0,211']. Then, the operator 

L=i~+(p_2)·0'3 (3.5) 
ao 2 

is self-adjoint with D(L) = D(a laO) cJf" + and hence 

R t = eitL
, tER, (3.6) 

generate a strongly continuous one parameter unitary group 
on Jf" +. 

Lemmg. 3.1: For all t,sER, 
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(3.7) 

Proof Direct computations show that, for all tER, R, 
takes CO'(R2; (;2) intoD(H+) and 

H +R, \fl = R,H + \fl, \flEC 0' (R2; (;2). (3.8) 

Since CO'(R2; (;2) is a core of H+ (see Sec. II), (3.8) ex
tends to all \flED(H +) showing at the same time that R, 
takes D(H +) into D(H + ). Then it follows that the resol
vents, and hence the spectral projections of H +' commute 
withR,. Therefore we obtain (3.7). 0 

Lemma 3.1 is equivalent to saying that H + and L com
mute in the proper sense (e.g., Ref. 11, §VIII. 5) and shows 
that the unitary group {R J IE R is a symmetry group of the 
quantum system under consideration. We note that the gen
erator L is only different in the coefficient of the spin rotation 
part (73/2 from that of the usual two-dimensional rotation 
group with spin! (i.e., the case p = 3). Therefore, L may be 
regarded as the generator of a rotation group "distorted" 
with respect to spin degree of freedom. The form of L sug
gests that there exists a degree of freedom with spin 
s = (p - 2) /2 and hence that any energy level of H + may be 
degenerate with multiplicity 2s + 1 = p - 1, which exactly 
coincides with the multiplicity of the degeneracy in the 
ground state of H +. 

The spectrum (7(L) of L is purely discrete and given as 

(7(L) = {m - (p/2)lmEl}. (3.9) 

The eigenspace of L with eigenvalue m - (p/2) is given by 

{(
f®ep - 1 - m ) 2 } Km = lJ,gEL (R+, dJ-l) , (3.10) 

g®e 1 _ m 

where 

en (0) = ein(} /.,fIii, nEl. (3.11 ) 

The Hilbert space K + is decomposed as 

(3.12) 
m= - 00 

Lemma 3.1 implies that H + is reduced by each K m' We 
denote by H +.m the reduced part of H + to K m : 

H +.m =H+ ~ Km· 

We set 

Fa (r) = AyP-1KaIP (UyP), r> 0, aER, 

(3.13) 

(3.14 ) 

where K v (z) is the modified Bessel function of the third kind 
(e.g., Ref. 12,§7.2.2). Let 

<l>m =Fm®ep _ 1 _ m' mEl. (3.15) 

Proposition 3.2: For m = 1, ... ,p - 1, H +.m has a 
unique zero-energy ground state (up to constant multiples), 
which is given by 

( 
<l>m ) 0=. 

m _ '<1>* 1 p_ m 

( 3.16) 

Proof It follows from direct computations employing 
the formulas 

zK ~ (z) + vKv (z) = - zKv_ 1 (z) 

and 

Kv (z) = K _ v (z) (3.17) 

2975 J. Math. Phys .• Vol. 30. No. 12. December 1989 

(e.g., Ref. 12) that, for m = 1, ... ,p - 1, OmED(H +.m) and 

(3.18 ) 

Combining this fact with (2.3), we conclude that Om is a 
unique zero-energy state (up to constant multiples) of 
H+. m • 0 

Remarks: (1) Each component of the zero-energy state 
Om (m = 1, ... ,p - 1) is analytic in z and z*. In fact, we have 

1TA (p - m)lpzP - 1 - m 00 A 2nznpz·np 

<l>m(r,O) = L ---
2 sin (m1T/p) n~O n! 

x { 1 
r( - (m/ p) + n + 1) 

A 2mlpzmz·m } 

- r«m/p) + n + 1) , 

where r(z) is the gamma function. This follows from the 
expansion of Kv (x) in x (e.g., Ref. 12, §7.2.2). 

(2) Form:;;z!:I, ... ,p-l, Om is not inK+ because of 
the singularity at r = 0, but Eq. (3.18) still holds; that is, Om 
is a generalized eigenfunction of H + with eigenvalue zero. 
Hence H + has infinitely many generalized eigenfunctions 
with eigenvalue zero. This also is a remarkable phenomenon. 

IV. DILATION COVARIANCE AND THE COUPLING 
CONSTANT DEPENDENCE OF EIGENVALUES 

Before analyzing interrelations between the zero-energy 
states Om' we show that H + is dilation covariant. To express 
the dependence of H + on the coupling constant A, we write 
H+ as 

H+ = H+(A). 

Let 

(uJ)(r) = tj(tr), fEL 2(R+, dJ-l), f>O. 

(4.1 ) 

(4.2) 

Then, it is easy to see that, for all t> 0, u, is unitary on 
L 2(R+, dJ-l), strongly continuous in f, and satisfies 

u'~I=I, u,us =usu, =u,s, t,s> 0, (4.3) 

where I denotes identity. Hence {uJ,>o forms a strongly 
continuous unitary representation of the Abelian group (the 
"dilation group") R+. The operator u, naturally extends to 
K+as 

U, = (u, ®I) Ell (u, ®I). (4.4) 

Obviously {U,},>o has the same properties as those of 
{uJ,>o stated above. 

Lemma 4.1: For all A > ° and f> 0, 

(4.5) 

Proof This follows from the transformation properties 

U~U-l=~~ U U 1 0 , Jr' t Jr' ,r ,- = fr. 

It is known that the spectrum H + (A) is purely discrete.3 

Let 

0<E1(A) <E2(A) < ... <En (A) <En+ I (A) < ... 
(4.6) 

be the nonzero eigenvalues of H + (A). 
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Proposition 4.2: For each n> 1, there exists a constant 
an > 0 independent of A such that 

En (A) = anA 2/p, A> O. 

Proof By (4.5), we have 

o{H+ (A» = t -2o{H + (At P», 

and hence, for all n> 1, 

En (At P) = t2En (A), 

which gives 

En (A)/A 2/p = En (p)/p2/p , 

(4.7) 

for all p, A> O. Therefore an -=En (A)/A 2/p is a constant 
independent of A. Hence we obtain (4.7). 0 

Remark: The zero-energy states Om -=0m (A) are also 
dilation covariant: 

V. INTERRELATION BETWEEN THE ZERO-ENERGY 
GROUND STATES 

In this section, we construct a family of operators inter
relating the zero-energy states Om. 

For v> p > (v - 1) /2, the function 

a!-'v(t)=t P(l-V)-I/(t2P-l)I+!-'-v, t>l, (5.1) 

is integrable on (1,00 ) with respect to dt. Hence 

A!-'v = 1'0 a!-'v(t)u, dt (5.2) 

defines a bounded linear operatoronL 2(R+, dp), where the 
integral on the right-hand side of (5.2) is taken in the opera
tor norm topology. 

Let 

W{3 = {!: R+ ->IC measurableill f ll1 

-=fo (1+r){3lf(r)1 2dp(r)<00} (5.3 ) 

and 

W,,,, = n W{3 (5.4) 
{3>O 

with the Frechet topology generated by the norms 11'1I{3' We 
shall denote by !f ( W{3' Wy ) the family of all bounded linear 
operators from W{3 to W y. Let Mbe the multiplication oper
ator on L 2(R+, dp) given by 

(Mf)(r) = r fer). (5.5) 

Lemma 5.1: Let a>O and 

v>p> (v- 1)/2 - a/2p. (5.6) 

Then, for all.8>O, M a A!-,vE!f (Wa + {3' W{3). In particular, 
M U A!-'v takes continuously W"" into W "" . 

Proof It is easy to see that, for all t> 0, 
Ma u,E!f(Wa+{3' W{3) with 

2{3/2(1 + t 2{3) 1/2 
IIM

a
uJII{3<;;; a+{3 ,llflla+{3' f EWa+{3' 

t 

Under condition (5.6), we have 
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Therefore, ~ A!-'vE!f( Wa+{3' W{3)' 
We introduce the operator 

B = 2PA V-!-' MP(V-!-')A 
!-'v r(v-p) !-'v' 

which obeys the following composition law. 
Lemma 5.2: For all p < v <p, 

B!-,vBvp = B!-'p' 

Proof The operator B!-'v is written as 

(B!-,vf)(r) = L"" b!-,v(r,s)f(s)dp(s), 

with 

o 

(5.7) 

(5.8) 

_ 2PA v-!-, (s) p(v-!-')-2 b!-,v(r,s) - a!-'v - r X(r,,,,,) (s), 
r(v-p) r 

where X (r, "") is the characteristic function of the interval 
(r,oo ). Then, by direct computations, we can show that 

L"" b!-'v (r,s)bvp (s,t)dp(s) = b!-,p (r,t) 

holds. Therefore, (5.8) follows. o 
We note also that B!-'v is dilation covariant: 

B -1-tP(v-!-')B to U, !-'v u, - !-'V' >. (5.9) 

Lemma 5.3: Let Fa be given by (3.14). Then,FaEW"" 
, O<;;;a<p, and 

Fa = BaIP,{3lpF{3' O<;;;a <.8 <po (5.10) 

Proof The fact Fa E W"" follows from the asymptotic 
properties of the Bessel function 

K v(X)-(1T/2x)1/2e -x, as X->oo, 

Kv(x)-constx- V, as xW (v>O), 

Ko(x) -const log x, as xW 

(see, e.g., Ref. 12). To prove (5.10), we note that the follow
ing formula holds [Ref. 12, 7.14.2, formula (50) ] : 

2v-!-'-lr(v - ) 
___ -'-----!.-P..:..K!-' (ay) 

aV-!-,y!-' 

i"" 2(v-!-')-1 
= X 2 ,.2 12Kv(a~x2+y2)dx, 

o (x + y )V 
( 5.11) 

for Re v> Re p, a > 0, and y > O. By direct computations we 
see that (5.11) with a = 2A, Y = rl', P = alp, and v =.8 /p 
is equivalent to (5.10). 0 

Let u be the operator on L 2(0,21T) defined by 

(uf)(O) = e- ief(O), fEL 2(0,21T), (5.12) 

and T!-,~ be the operators on JI1' + given by 

T!-'+" = (B _!-,Ip, _ vip ® u!-' - V) 

G1(B(P_!-')IP,(p_v)/p®U!-'-V), p>v, (5.13) 

T !-'~ = (B!-'IP, vip ® U!-' - V) 

G1 (B(!-,_p)/P. (v-p)lp ® u!-,-V), p <v. (5.14) 

Proposition 5.4: For all m, n = 1, ... ,p - 1, m < n, 

On = T n;,,0m' Om = T ';;nOn' (5.15) 
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Proof: Property (3.17) implies that 

Fa=F_a· 

Obviously we have 

uem = em_I' mEl.. (5.16) 

Combining these facts with (3.15) and (5.10), we obtain 
(5.15). 0 

Equation (5.15) shows that T ~n are operators interre
lating the zero-energy states n m • It follows from (5.15) also 
that Ker H +has the following structures: 

Ker H+ = {(PI + :t~ PjTJt )nIIPjEC, 

j= 1, ... ,p - I} 

{(

P-2 

= .L PjT/:;'_1 
J= I 

+ Pp_1 )np _ I IPjEC, j = 1, ... ,p - I} . 
Finally we briefly discuss properties of T J1.~. By (5.16), 

we see that, if f.l - VEZ, then T J1.~:K m -+ K m + J1. _ v' mEl.. 
Further, T J1.~ are dilation covariant: 

UT±U- I =t p(V-J1.)T± t>O. 
t JlV t /-tV' 
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This follows from (5.9). 
Remark: We have not been able to clarify the commuta

tion relations of T J1.~ with themselves and H +. It seems that 
they are not so simple. 
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A Lagrangian for the superfield equations of motion for supersymmetric gauge theories with 
N = 3 extended supersymmetry is presented. A novel formulation of the previously 
constructed infinitely many spinorial continuity equations considerably clarifies their 
structure. 

I. INTRODUCTION 

The maximally supersymmetric gauge theories in four 
dimensions 1,2 with N = 4 (or equivalently N = 3) super
symmetry have, among their many remarkable properties, 
the feature of ultraviolet finiteness to all orders in perturba
tion theory. 3-5 The conjunction of conformal invariance and 
solubility is a familiar feature of many quantum field theo
ries and the strongly constrained dynamics implied by the 
ultraviolet finiteness suggests integrability of the field equa
tions as a possible underlying classical precursor. The finite
ness of maximal super-Yang-Mills therefore lends further 
promise to the notion that these are the appropriate theories 
for the realization of duality conjectures6 which generalize 
the duality between the Thirring model and the sine-Gor
don modef to four-dimensional gauge theories with mono
pole solutions. It is, however, clear that the equations of mo
tion for the N = 4 theory with Lagrangian2 

L = ( - !FpyFpy + !Dp <l>ijDP<I>ij 

- A a Aj,<I>ij] + H <l>ij, ,<I>kl][ <I> ij, <I> kl ]) (1) 

[where all fields are gauge algebra valued; i,j run from 1 to 4; 
<l>ij = !€ijkl<l> kl and the spinors A j are chiral, y 5,.1, = - iA and 
A ci=CA jyieldingysA C = iA C] are not completely integrable 
in any conventional sense; nor is the S matrix of the theory 
trivial, as would be expected of a four-dimensional theory 
with higher local conserved currents. 8 Nevertheless, in the 
superspace formulation, 9 the classical equations of motion 
for this theory, similarly to the Yang-Mills self-duality 
equations, 10 may be formulated in a geometric way as inte
grability conditions for a set of linear (superfield) equations 
based on the Witten-Manin supertwistor correspon
dence. 11-13 This structural similarity to completely integra
ble systems with solitons has led to many (hitherto largely 
futile) attempts (e.g., Refs. 14-19) to obtain meaningful ex
plicit results on classical solutions and higher conservation 
laws and symmetries using methods analogous to those de
veloped to study self-dual Yang-Mills or soliton equations 
of the Zakharov-Shabat type. This paper is a further contri
bution in this direction. We present, in Sec. II, a novel La
grangian for a reformulated set of superfield equations of 
motion. This Lagrangian is rather similar to the Lagrangian 
for self-dual Yang-Mills discussed by Leznov and Save
liev.20 In Sec. III we discuss the infinite number of continuity 
equations, first introduced in Ref. 15, which in the new for-

mulation of this paper are considerably clarified. They ac
quire a more explicit form that is perhaps more amenable to 
interpretation. In Sec. IV we comment on the infinitesimal 
symmetry transformations of the equations of motion and 
we conclude (Sec. V) with some remarks on the reduction of 
these equations to the supersymmetric self-duality condi
tions. 

II. N=3 SUPER-YANG-MILLS EQUATIONS AND A 
SUPERFIELD LAGRANGIAN 

N-extended complexified superspace, a supermanifold 
of complex dimension (4/4N) with complexified space-time 
coordinates x aP = x"o<;.P and the anticommuting coordi
nates -8 f, 'J aj

, where a, it are two-component spinor indices 
and i,j, = 1, ... ,Nis the internal SD(N) index, the upper and 
lower indices referring to fundamental and conjugate repre
sentations, respectively. The supertranslation vector fields 
aA = (aaa,D~,Daj)' 

. a -p. a 
D~ = --+ -8 'aaP' Dpj = a:<ii3.i + -8,!aaP' 

a-8f v 

a. - a 2 af3 - axaP , ( ) 

provide a nonholonomic frame for superspace and realize 
the superalgebra 

{D~,IYf3} = 0 = {Daj ,DDf3j}, 

{D~,Dp) = 2oJaap, (3) 

[aap ,D~] = 0 = [aap ,Daj] = [aaa,af3P ]. 

The Lie-algebra valued components of the gauge supercon
nection AA=(Aap,A~,APj) transform as usual under 
gauge transformations 

AA -+eAAAe- A + eAaAe- A (4) 

a covariant superfield transforming as <I> -+ eA<I>e - A, where 
the gauge parameter A is a Lie algebra valued superfield, 
A = TO AO(x,-8,'J), TO being the Lie algebra generators act
ing on the gauge indices of AA and <1>. Introducing gauge
covariant derivatives D A = (D ap ,D ~ ,Dpj ), 

D~lP = D~lP + [A ~,lP], 

DajlP = DajlP + [Aaj'lP ], 

DaPlP = aaPlP + [Aap,lP], (5) 

transforming as D A -+ eA (D AlP)e - A, the superfield curva
tures FAB may be formed by considering the graded commu-
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tator, 

{D~,DP =F~fJ' {Dai,Dpj } = Fai,pj' 

[Dap ,D1] =F~p,fJ' [Dap,Dad = Fap,ai> 

[Dap,Dyr,] = EayFpr, + Epr,Fay' 

{D~,Dpj} =F~,pj + 2~;DaP' 

(6) 

where 

F~fJ = D~A~ + IYfJA ~ + {A ~,A~}, 

Fai,pj = DaiApj + DPjAai + {Aai,Ap), 

F~,pj = D~Apj + DpjA ~ + {A ~,Ap) - 2~;AaP' (7) 

F:u, = a}lA ~ - D~A}l + [A}l,A ~] , 

F}l,ai = a}lAai - DaiA}l + [A}l,Aai] , 

and Fay (Fpr,) are the (anti-) self-dual parts of F}lv 
= a}lAv - avAIl + [A}l,Av]. 

All the above FAB'S are Lie algebra valued superfields 
transforming covariantly under gauge transformations. 
They are clearly not independent of each other, since the 
generalized Jacobi identity imposes relations amongst them, 
e.g., 

or 

0= [D ~,{Daj,DPk}] + [Daj,{DPk,D~}] 
+ [Dpk,{D~,Daj}] 

= D ~Faj,Pk + DajF~,Pk + DPkF~,aj 
- 2~~Fap,aj - 2~;Faa,Pk 

0= [Dap + {D 1,Da)] + {D 1, [Daj,DaP ]} 

+ {Daj , [D 1,Dap ]} 

(8) 

+ 2~;(EafJFaP + EapFafJ)' (9) 

Nevertheless, the set of super Yang-Mills fields FAB defined 
by Eq. (7) clearly has an enormous number of degrees of 
freedom; and in order to minimize the number of component 
fields to just those required for the construction of an irredu
cible representation of the supersymmetry algebra, one 
usually imposes the covariant (under both supersymmetry 
and gauge transformations) constraint equations,9 

F (ij) -O-F afJ - - a(i,Pj) , 

F~,pj =0. 

( lOa) 

(lOb) 

For N < 3, these equations do not imply any equations in x 
space. They are therefore a suitable representation condition 
for a minimal multiplet of component fields. For N~3, on 
the other hand, the constraints (l0) do have dynamical con
tent and do not yield an off-shell representation of the theory 
with only the minimal physical fields (viz., one spin 1, four 
spin!, and six spinO). Remarkably, forthecaseofN = 3, the 
constraints (10) are precisely equivalent to the equations of 
motion for the component fieldsY 

2979 

Equations (lOa) have the solution 

Wij= ~jkWk' 

W;j = Eijk W\ 
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(lla) 

(lIb) 

whereas the diagonal parts of (lOb) are the conventional 
equations expressing the vector potential Aap entirely in 
terms of A ~ and A ai in virtue of (7), 

Aap = i (D~Api + DPiA ~ + {A ~,ApJ) . (l2) 

The Bianchi identities can now be used to express the theory 
entirely in terms of the superfields FafJ , Fap , 
W k W D' W D Wi Di Wj ijkD W d , k' a i> ai ,Eijk a , E ai j' an covar-
iant derivatives thereof. The leading components (in a pow
er series expansion in t'J, ~) of FafJ , FaP yield the field 
strength components of the component vector field Aap (x), 
whereas the leading components of the other superfields 
yield the remaining component fields of the theory: two 
SU (3) -triplets of scalar fields (W i, Wi ), an SU (3) -scalar 
Majorana spinor (Aa,Aa ), and an SU(3 )-triplet of spinors 
(Xai'X~)' These component fields have the following equa
tions of motion [corresponding to the N = 3 version of the 
theory (l)]: 

The Dirac equations 

~fJDapAfJ + [x1, Wd = 0, 

E"'PDaaAp + [Xia,W i] =0, 
fJ. [. k ~ DafJXifJ + Xp,W ]Eijk - [Ap,Wd = 0, 

E"'PDaaxP + [Xia,WdEijk - [Aa,Wj] = 0, 

the scalar field equations 
fJ . p i 

~ ~ DaaDfJp ~ + 2[ [W ,~],Wi] 

- [[Wi,Wd,~] +~fJ{Xaj,AfJ} 

- !E ijk E"'P {X~ ,X%} = 0 

(similarly for Wi)' and the Yang-Mills equation 
fJ .. {k} { ~ DapFyfJ + ~YDyaFyp + Xyk'XP + Ay,Ap} 

+ [Wi,Dyp Wi] + [Wi,Dyp W;] = O. 

(l3a) 

(l3b) 

( 13c) 

(13d) 

( 13e) 

(13f) 

The equivalence proof of Ref. 21 eliminates the t'J depen
dence of the gauge transformations (4) by subjecting the 
superconnection to the "transverse" gauge condition, 

(14) 

which effectively eliminates all t'J-dependent gauge transfor
mations, while posing no restriction on x-dependent gauge 
transformations of the component fields. This allows the 
construction of a unique correspondence between a super
connection constrained by (10) and a component multiplet 
solving ( 13). For the N = 3 theory, therefore, the constraint 
equations (10) are just a compact way of writing the field 
equations (13). These constraints equations, remarkably, 
also correspond to the vanishing of the supercurvature along 
supernull lines. 11 Consider the equations for the covariant 
constancy of sections along the direction in superspace given 
by SA = (J-laA a,J-la,Aa ), 

J-laD ~ <I> = 0 = A aDaj<l>, 

J-laA aDaa <I> = 0, 

(l5a) 

(15b) 

where vaa = J-laA a is a null vectorinx space andsA is defined 
to be a supernull vector. Integrability of (15) (i.e., the path 
independence of <1» requires SAAA = (J-laA aAaa , 
J-la A ~,A a Aai) to be a flat connection. This is tantamount to 
requiring that the supercurvature components satisfy (10), 
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and allows the identification II of bundles with connections 
satisfying constraints (10) over super-Minkowski space 
with bundles over the supertwistor space of supernulllines 
with triviality conditions over certain Cpl XCpl submani
folds. It is the tantalizing similarity of ( 15) to Lax-type lin
ear systems for soliton equations which led to previous at
temptsl4

-
19 to understand these theories using solitonic 

methods. 
Following our previous approach,15 we note that the 

following subset of constraints (10): 

FYI =0=F~2' 

Fii,iJ = 0 = Fii,ij' 

F~,ij = 0 = Fb, 

(16) 

(17) 

(18) 

are equivalent to writing the spinor potentials and two com
ponents of the vector potential in pure gauge form, 

A ~ =g-ID~g, Aii =g-IDiig, Ali =g-Ialig, (19) 

A ~ = h -ID~h, Aii = h -IDiih, A2i = h -la2i h. (20) 

Introducing the matrix 

B = gh -I, (21 ) 

the remaining components of the vector potential then take 
the form 

Ali =g-Ialig+f,g-ID~ (BDiiB-I)g (22a) 

= h -Ialih + ih -IDii(B -ID~B)h, (22b) 

(23a) 

= h -la2i h + ih -ID~ (B -IDiiB)h (23b) 

in virtue of (lOb). 
A gauge transformation (4) of these potentials (19)

(23) corresponds to the transformation 

(24) 

where A is an arbitrary matrix superfield in the (complexi
fied) gauge algebra, which we take to be gl(n,C), and the 
matrices U and V are GL(n,C) matrices satisfying 

D~U=O=DiiU, aliu=o, 

D~ V = 0 = Dii V, a2i V = o. 

(25a) 

(25b) 

The remaining constraints in ( 10) may now be multiplied by 
g on the left and g-I on the right to yield the equivalent 
equations, 

D\iBl)iiB -I) = 0, 

Di(i(BDij)B -I) = 0, 

D~ (B DijB -I) - 2t5jgDlig- 1 = 0, 

Dii(BIYzB -I) - 2t5i;gD2ig- 1 = O. 

(26a) 

(26b) 

(26c) 

(26d) 

These equations transform covariantly under the U transfor
mation in (24), being manifestly invariant under the V- and 
A-dependent parts of (24). Equations (26) may be solved by 
writing 

BD~B -I = D~x, (27a) 

BDijB -I = DijY' (27b) 

where x and yare matrix superfields transforming under the 
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gauge transformation (24) as 

X--+ UxU- I, Y--+ UyU- I. (28) 

These superfields satisfy the equations 

DijX = 0 = D{y (29) 

in order to satisfy the nondiagonal parts of (26c), (26d) 
yielding the following expressions for the potentials A Ii .A2 i 

of (22), (23): 

Ali =g-I(ali +aliy)g, (30a) 

A2i = g-l(a2i + alix)g. (30b) 

Similarly multiplying the curvature components in (16)
( 18) by g on the left and g-I on the right, we see thatthe first 
equality in (16 )-( 18) is identically satisfied, leaving the fol
lowing forms of the right-hand side equations: 

D~i(Bl)iiB -I) + {BD~B -I,B IYzB -I} = 0, 

Di(i(BDij)B -I) + {BDi;B -1,BDijB -I} = 0, 

D~ (BDijB -I) + Di/BD~B -I) 
+ {BD~B -1,BDijB -I} 

(31a) 

(31b) 

= 205gD2ig-l. (31c) 

Inserting the solution (27) into these equations yields the 
equations 

D~1Y;)x + {D~x,D{x} = 0, 

Di(iDij)Y + {Di;y,Dijy} = 0, 

D~DijY + DijD~x + {D~x,DijY} 
= 205gD2ig-l. 

The last of these may be written, using (29), 

D~ Dijx + DijD~y + Dij [D~ x,y] 

=205(aliX+a2iY+ [alix,y] -gD2ig- I). 

(32a) 

(32b) 

(32c) 

(33) 

The nondiagonal parts of this equation are satisfied if the 
superfields x and y, in addition to (29), satisfy 

Dijx =0, 

D~y + [D~x,y] = 0, 

yielding 

A2i =g-l(a2i +ali X+a2i y+ [alix,y])g. 

(34a) 

(34b) 

(35) 

In terms of the matrix superfields x and y satisfying (29), 
( 34), the equations of motion for the theory therefore take 
the remarkably simple form ofEq. (32a), (32b). 

Introducing the symmetric products of pairs of deriva
tives (2), 

Dij=Da;l)ia = I)i;, 

Oij =Du;D; = OJ;, (36) 

Eqs. (32a), (32b) may be obtained by varying the Lagran
gian density 

L = tr{OijqD~xIYzx + xD~xD{x) 
(37) 

This Lagrangian can be considered to be an integral over a 
subspace of the odd part of superspace, since up to a total x 
derivative, a supercovariant derivative D~ is equivalent to an 
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an ordinary spinor derivative a / a{} f, which in turn is equiv
alent to a {} integration (since f d{} {} = 1). The Lagrangian 
(37) is therefore a sum of integrals over a two-dimensional {} 
subspace and a two-dimensional J subspace. The functional 
(37) is rather reminiscent of the superinvariants constucted 
in Ref. 22 by integrating over even-dimensional submani
folds of extended superspace. The constraints (29), (34) on 
x and Y may be incorported using Lagrange multipliers. 

III. A CONSTRUCTION OF CONSERVED CURRENTS 

Equations (32) are the consistency conditions for the 
following set of equations: 

Nit/!=.(D; +,uD~ +,uD;x)t/!=O, (38a) 

Mit/!=. (Dji + A, DZi + A, Djiy)t/! = 0, (38b) 

zt/!=.(alj +A,(alz +aljy) +,u(a2j +aljx) 

+ A,,u(a2Z + alzx + a2j y + [aljx,y]»t/! = 0, 
(38c) 

where t/! is a matrix superfield in the gauge group depending 
on both parameters,u and A,. Consistency of the above equa
tions is tantamount to requiring that (Ni,Mi,Z) satisfy the 
quantum-mechanical supersymmetry algebra, 

{Ni,N'} = ° = {Mi,Mj }, 

{Ni,M) = 2c55Z, 

[Ni,Z] =0= [MoZ]. 

(39a) 

(39b) 

(39c,d) 

The brackets (39a) yield relations (32a), (32b) and the re
lation (39b) corresponds to Eqs. (29), (34). The system 
(38) may be obtained from ( 15) by multiplying the latter by 

g-I on the right andgon the left, inserting the solution (27), 
and denoting by parameters,u and...t the ratios of the compo
nents of the spinors,ua and A, ex,,u2 /,ul =,u, A, z/ A, j = A,. 

Now we introduce the generating function for super-
fields x(n),y(n) (n;;;.O,x(O) = x,Y<°) = y), In t/!, where 

(40) 

Requiring that this t/! satisfies (38) immediately yields an 
infinite number of conserved supercurrents. From (38) we 
obtain 

t/!(D; +1'2 )t/!-I ='t/!(D\ + ,uD~ )t/!-I = ,uD\ x, (41a) 

t/!(Dj+..tZ.i)t/!-I=.t/!(D ji +A,DZi)t/!-1 =A,Di;Y, (41b) 

t/!( ali + ,ua2j + A,alz + ,uA,a2Z ) t/!-I 

= ,ualjx + A,aljy + ,uA,(alzx + a2j y + [aljx,yp. 

(41c) 

Equations (41a)-(41b) immediately yield 

D u .1.") .1.- 1 
I ('f'~ + 1'2 'f' ) = 0, 

D ju (t/!Dj + ..tZJ) t/!-I) = 0. 

(42a) 

(42b) 

Expanding ( 42) in,u,..t yields the Nth continuity equation as 
the trace [overtheSU (3) indices] of the coefficient of ,uN + I 
and A, N + I in (42a) and (42b), respectively. We consider 

." _ _ A Jy 2) _p'!.xl2l _A 2yl) _p?x(U -AY -J-lX 'f'3 - e e e e e e . 

Expanding t/!3 D; + 1'2 t/!3- I up to order ,u3 A, 3 yields 

D\+1'2 +A,D\+1'2 + (A, 2/2) [D\+1'2Y'Y] + (A, 3/6) [[D;+1'2Y'Y],Y] +,uD\ + 1'2 X + A,,u [D\ +1'2 X,y] 

+ (A, 2,u/2) [ [D\ +1'2X,y] ,y] + (A, 3,u/6) [ [ [D\ + 1'2X,y] ,y],y] + (,u2/2) [D\ + 1'2X,X] + (A,,u2/2) [ [D\ + 1'2X,X],y] 

+ (A, 2,u2/4) [ [ [D; + 1'2X,x]y],y] + (A, 3,u2/12) [ [ [ [D; + 1'2X,X],y],y],y] + (,u3/6) [ [D\ x,x],x] 

+ (A,,u3/6) [[ [D;x,x],x],y] + (A, 2,u3/12) [[ [[D\x,x],x],y],y] + (A, 3,u3/36) [ ... [D\x,x],x],y],y],y] 

+ ,u2D\ +1'2X(!) + A,,u2[D\ +1'2Y'X(!)] + (A, 2,u2/2) [[D\ +1'2Y'Y],X(!)] + (A, 3,u2/6) [[ [D\ +1'2y,y],y],X(I)] 

+,u3[Di xxI!)] +A,2Di y(J)+A,3[Di yu(J)] +,uA,2[Di xy(!)] +,uA,3[[Di xu] u(1)] 1+1'2' 1+1'2 1+1'2 v 1+1'2' 1+1'2 v v 

+ (A, 2,u2/2) [ [D\ + 1'2X,X] ,y(!)] + (A, 3,u2/2) [ [ [D\ + 1'2X,X],y] ,i!)] + (A, 2,u3/6) [ [ [D\ x,x],x] ,y(!)] 

+ (A, 3,u3/6) [ [ [ [D\ x,x],x],y] ,y(!)] + A, 2,u2 [D; + 1'2 x(!),i!) ] + A, 3,u2 [ [D\ + 1'2y,X(1)] ,i!)] 

+ ,u3D\x(2) + ,u3A, [D\y,X(2)] + (,u3A, 2/2) [[D\y,y],X(2)] + (,u3A, 3/6) [[ [D\y,y],y],X(2)] 

+,u3 A, 2 [D\y<!),x(2)] +,u3 A, 3 [D\Y,y(!)] + A, 3D\ + 1'2i2) + A, 3,u [D; + 1'2X,y<2)] + (A, 3,u2/2) [ [D; + 1'2 X,X] ,i2)] 

+ (A, 3,u3/6) [ [ [D; x,x]x] ,i2)] + A, 3,u2 [D\ + 1'2 x(!),i2)] +,u3 A, 3 [D; X(2),y<2)]. (43a) 

Similarly expanding t/!3 D i + ..tZ.i t/!3- I yields [we suppress the SU (3) index i in this formula] 

D j +..tZ + A, D j + AZ + (A, 2/2) [D j + ..tzY,y] + (A, 3/6) [ [D j + AZY'y] ,y] + ,uDj + ..tz x +,uA [D j +..tzx,y] 
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+ (,uA, 2/2) [[Dj + ..tzX,y] ,y] + (,uA, 3/6) [ [ [D j + ..tzx,y] ,y] ,y] + (,u2/2) [D j + ..tzx,x] + (A,,u2/2) [ [Di + ..tzx,x] ,y] 

+ (A, 2,u2/4) [[ [D j +..tzx,x],y],y) + (A, 3,u2/12) [[ [[Di +..tzx,x],y],y],y] + (,u3/6) [[D j +AZX,X],x] 

+ (A,,u3/6) [[ [D j +..tzx,x],x],y] + (A, 2,u3/12) [[ [[Dj +..tzx,x],x],y],y] + (A, 3,u3/36) [[ [[ [Dj +..tzx,x]x]y]y]y] 

+ ,u2Dj HZX(!) + ,u2...t [D j + ..tzy,x(J)] + (,u2A, 2/2) [ [Dj + AZY'Y] ,x(1)] + (,u2A, 3/6) [ [ [Di + ..tzY,Y] ,y] ,xl!)] 

+,u3 [Di + ..tzx,x(1)] + A,,u3 [ [D j + ..tix,y],x(1)] + (,u3 A, 2/2) [ [ [Di + ..tzx,y] ,y] ,x(!)] 

+ (,u3 A, 3/6) [ [ [ [D j + ..tzx,y],y],y] ,xl!)] + A, 2Dj + ..tzy(J) + A, 3 [Djy,i!)] + A, 2,u [Dj Hz X,y(1)] 
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+ A 31l [ [Di + J.ix,y] ,y(!)] + (1l2A 2/2) [ [Di + J.iX,X] ,y(!)] + (1l2A 3/2) [ [ [Di + J.iX,X] ,y] ,y())] 

+ (1l3A 2/6) [[ [D j + J.iX,X] ,X] ,y(!)] + (1l3A 3/6) [[ [[Di +J.iX,X],X],y],y(!)] + A 21l2[Di +J.iX(t),y(i)] 

+ 1l2A 3 [ [Di + J.iY,X(!)] ,y<!)] + A 2113 [ [D j HiX,X(!)] ,y(i)] + A 3113 [ [ [Dj x,y ]x(!)] ,y(i)] + 1l3Di + J.iX(2) 

+ 113 A. [Di + J.iy,X(2)] + (1l3A. 2/2) [ [Di + J.iY,y] ,X(2)] + (1l3A. 3/6) [ [[DiY,y] ,y] ,X(2)] 

+ 113 A. 2 [Di + J.iy(i),X(2)] + 1l3A. 3 [ [DiY,y<!)] ,X(2)] + A. 3Di + J.d2) + A 31l [D i x,y<2)] 

+ (A. 31l2/2) [ [Di x,x] ,y<2)] + (1l3 A. 3/6) [ [ [Di X,X] ,x] ,y(2)] + A 3112 [Di X(i),y<2)] 

+ 1l3A 3[ [D i x,x(!)],y(2)] +A. 31l3[Di x(2),y<2)] (43b) 

and 

t/J2(ali + lla2i + Aali + IlAa2i )t/J2- I 

= llaliX + Aaliy + IlA(alix + a2i y + [aljx,y]) 

+ 1l2(a2i X + H alix,x] + alj x(1» + A. 2(aliy + H aliy,y] + aljy(i) + IlA 2 (a2iY + H a2i y,y] + [alix,y] 

+![[alix,y],y] +a2i y(1) + [alix,y(i)p +AIl2(a2i X + HaliX,X] + [a2i X,y] 

+H[aliX,X],y] + a2i X(!) + [ali y,X(1)p + o (1l2A. 2). (43c) 

Therefore, Eqs. (41) contain Eqs. (29), (34), 

Dajx = 0, (29a), (34a), 

D{y = 0, (29b), 

D~y + [D~x,y] = ° , (34b), 

as well as the relations 

D; x(!) + Di x + H D~ x,x] = 0, 

D~X(2) + D~x(!) + [D~x,x(i)] 
+ HDix,x] + H [D~x,x],x] = 0, 

D;y(n) = 0, n;>O, y<0) = y, 

D~in) + [D~x,in)] =0, n;>O, 

D; [x(!),y] = 0, 

(44a) 

(44b) 

(44c) 

(44d) 

(44e) 

as coefficients ofIl2,1l3, A. n+ I, 1lA. n+ 1,1l2A, respectively, in 
(41a),and 

D iiy(1) + Diiy + HDiiy,y] = 0, (4Sa) 

Di;y<2) + Diiy(t) + [DiiY'Y<!)] 

+ HDiiy,y] + H [Diiy,y],y] = 0, (4Sb) 

DiiX(n) =0, n;>O, x(O)=x, (4Sc) 

DiiX(n) + [Diiy,X(n)] = 0, n;>O, (4Sd) 

as coefficients of A. 2, A. 3, Iln + 1, Iln + lA, respectively, in 
(41 b). Equation (41c) yields the relations 

a2j x+Hali x,x] +ali x(1)=O, (46a) 

a2i X + Halix,x] +aliX(i)+ali [y,x(!)] =0, (46b) 

which together with (29), (34), (44a), and (44e) may be 
used to verify the integrability condition (39c), as well as the 
relations 

aliy + H aliy,y] + ali y(1) = 0, 

a2iy+![a2iy,y] + a2i y(1) + [alix,y] 

+H[alix,y],y] + [alix,y(i)] =0, 

(46a') 

(46b') 

which together with (29), (34), and (4Sa) may similarly be 
used to verify the integrability condition (39d). 
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Now defining 

Jin)i = - D;x(n), 

Ji7) = - Diiy(n), 

we clearly have 

D (i J(n)J) ° D J(n) 
I 2 = = iu 2j)' 

(47a) 

(47b) 

(48) 

and, tracing over the SU (3) indices, yields infinitely many 
solutions of the conservation equation 

(49) 

Thus the coefficient of IlN + I (A N + I) in (41a) [(41b)] 
yields an expression for JiN)i (J if"» in termsofx(n) (in) ), 
n < N, and its derivatives. Therefore, given superfields x,y 
solvingEqs. (32), (29), (34), we need to perform no further 
integrations in order to successively construct all the J in)i 's 
and J i7)'s explicitly just by taking spinorial derivatives and 
commutators. From (44), (4S), the components of the first 
two currents, for instance, are 

Jil)i = Dix + HD;x,x], 

Jfli = D~ x(1) + [D;x,x(l)] 

+ HD~x,x] + H [D;x,x]x], 

JiJ) = Dii X + HDiiy,y], 

Ji;) = Diiy(l) + [Di;y,y(1)] 

(SOa) 

(SOb) 

(SOc) 

(SOd) 

IV. INFINITESIMAL SYMMETRY TRANSFORMATIONS 

Analogously to the infinitesimal symmetry transforma
tions obtained previously in Ref. IS, the equations of motion 
(32), (29), (34) are left invariant, to first order in the vari
ation, under the transformations 

~x = -1l- 1(t/JTt/J-I) + 5, 
~y = - A. -I (t/JTt/J-I) + 1], 

(Sla) 

(SIb) 

where t/Jsatisfies (38), and Tis a matrix in the gauge algebra 
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satisfying 

(D~ + IlD~) T= 0, 

(Dii +ADi;)T=O, 

( al i + Aali + lla2i + AIla2i ) T = 0, 

(52a) 

(52b) 

(52c) 

and the matrix superfields sand 'T] are defined to be solutions 
of the following equations: 

D~ S = ° = Dj;'T], 

DirjS = 1l-IDc,jS, 

D~ 'T] = A - I D~ S, 

D~ 'T] = Il- I [D; S,y] - A - I D; S - [D; x, 'T] ] , 

where 

S=I/ITI/I- I
• 

(53) 

(54) 

It is clear that (29), (34) are left invariant under the 
variations (51), whereas the invariance of Eq. (32a) re
quires the vanishing of 

Dii D{) S + {D\i x,D{) S}. (55) 

Taking the second term in (55) 

{D~ x, D;) S} = - DnD{) x,S] 

=1l- 1 D\i D{) S + DnYi S, 

using (38a). 

Thus (55) vanishes. The invariance of (32b) may similarly 
be verified using Eq. (38b). 

The algebra of these infinitesimal transformations as 
well as their integrability to finite (Backlund) transforma
tions will be discussed elsewhere. 

v. SUPERSYMMETRIC SELF-DUALITY CONDITIONS 

The supersymmetric self-duality equations arise as inte
grability conditions if, in addition to (38), the matrix super
field 1/1 is required to be Il independent, 

a -1/1=0. 
all 

(56) 

This is tantamount to all thex(n) 's, n»O, in (40) being set to 
zero. Then Eqs. (38) reduce to 

2983 

D; 1/1 = ° = (D~ + D; x) 1/1, 
(Dj; + A Dii + A Diiy) 1/1 = 0, 

[ali +A(aI2 +aliy)]I/I=o, 

[a2i + A(a2i + a2i y)] 1/1 = 0, 
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(57a) 

(57b) 

(57c) 

(57d) 

a supersymmetrization of the linear system (57c), (57d) for 
the form of the self-duality equation 

(58) 

[where we use Yang's variablesxaP = [~ y-X], used by Lez
nov and Sa veliev20 in their reformulation of the conservation 
laws for which the generating function 1/111' = 0 in (40) is 
identical to that found in Ref. 23. Similarly, imposing A inde
pendence on 1/1 yields the anti-self-duality equations. 
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Using the basic construction of the affine superalgebra OSp(M IN) (I) in terms of vertex 
operators, vertex operator representations of a large class of untwisted and twisted affine basic 
superalgebras of the unitary and orthosymplectic series are found. The construction uses two 
methods: first, the regular embeddings of semisimple superalgebras (untwisted case) and, 
second, the folding method developed in a previous paper [Frappat et al., Nucl. Phys. B 305, 
164 (1988)] to construct twisted vertex operators for Lie algebras with fermionic elementary 
fields (twisted case). 

I. INTRODUCTION 

The theory of superalgebras today constitutes a natural 
extension of the known algebraic structures with supersym
metry appearing as a privileged component in physics. Ver
tex operators of affine simple Lie algebras playa fundamen
tal role in string theories and more generally in 
two-dimensional conformal field theories via the boson-fer
mion equivalence. ' 

Recently, a current algebra treatment of symplectic bo
sons, which arise in constructing superconformal ghosts of 
fermionic string theories, naturally led the authors of Ref. 2 
to use affine simple superalgebras. This was in some sense a 
first step in the study of conformal field theories based on 
affine superalgebras. Therefore one may hope that a con
struction of vertex operators for affine superalgebras, which 
will involve the boson-boson equivalence, could help us to 
go further in the study of conformal theories. Moreover such 
a framework also may be useful in the construction of ex
tended superconformal theories. 

In a previous publication, the realization of the basic 
orthosymplectic affine superalgebra OSp(M IN)(') via vertex 
operators has been considered by one of us. 3 The first funda
mental ingredient in this construction is the use, following 
Ref. 4, of an affine Clifford algebra to obtain the k = 1 level 
of SO (M)(I) and of an affine Weyl algebra to generate the 
k = - 1 level of SP(N)(I), both showing up in the k = 1 
representation ofOSp(M IN)(I). The second step consists in 
expressing such fermionic (resp. bosonic) elementary fields 
in terms of vertex operators, such a program being achieved 
owing to the fermion (resp. symplectic boson) bosonization. 
A summary of this method is given in Sec. IlIA. 

The generalization of this vertex construction to all the 
untwisted as well as twisted affine basic superalgebras for 
unitary and orthosymplectic series has been made possible 
owing to general structure properties of affine superalgebras 
we have developed in Ref. 5. First, an extensive study of the 

aJ Also at Universite de Savoie, 74000 Annecy, France. 

extended Dynkin diagrams (EDD's) associated to a finite 
simple superalgebra has led us to deduce the regular 
subsuperalgebras of a basic superalgebra. Second, the use of 
the symmetries of the affine Dynkin diagrams allows us to 
determine by folding the twisted affine superalgebras. It is 
this kind of technique, i.e., embedding and folding, that is 
used to achieve the vertex construction for classical affine 
superalgebras. 

II. A REMINDER ABOUT SUPERALGEBRAS 5.' 
Let us recall rapidly the Z2-grading structure and the 

root systems of the unitary and orthosymplectic superalge
bras: we will denote by [10 (resp. [1,) the bosonic (resp. 
fermionic) part of the superalgebra [1, and by ao (resp. a, ) 
the set of even (resp. odd) roots. The roots can be expressed 
in terms of e" ... ,em , ft, ... .r,.. 

For the unitary seriesA(m - 1, n - 1) or Sl (min), 

[10 = Sl(m) xSI(n) XU( 1), 

[1, = (m,ii) + (in,n) , (2.1) 

ao = {e; - ej ;/; -f), a, = {± (e; -.lj)}. (2.2) 

In the case m = n, the bosonic part reduces to 
Sl(m) XSl(m). 

For B(m,n) or OSp(2m + 1I2n) with m#O, 

[10= 0(2m + 1) XSp(2n), [1, = (2m + 1,2n) , 
(2.3 ) 

ao = { ± ei ± ej ; ± ei ; ±/; ±.Ij; ± 2/;} 

a, = { ±/;; ± e; ±.Ij} . 
For B(O,n) or OSp(112n), 

U#j), 
(2.4) 

[1o=Sp(2n), [1,=(2n), (2.5) 

ao = { ±/; ±.Ij; ± 2/;} U#j), a, = { ±/;} . 

For D(m,n) or OSp(2mI2n) with m# 1, 

[10 = 0(2m) xSp(2n), [1, = (2m,2n) , 

(2.6) 

(2.7) 
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60o = { ± ei ± ej ; ±/; ±Jj; ± 2/;} (ii=j) , 

AI = { ± ei ±Jj} . 

For C(n + 1) or OSp(212n), 

(2.8) 

[§ 0= 0(2) X Sp(2n), [§ 1= (2n) + (2n) , (2.9) 

60o = { ±/; ±Jj; ± 2/;} (ii=j) , AI = { ± e ±/;} . 
(2.10) 

III. VERTEX OPERATORS FOR THE UNTWISTED 
AFFINE SUPERALGEBRA 

In a previous paper,3 we constructed a level 1 represen
tation in terms of vertex operators ofthe affine superalgebra 
OSp(M IN) (I), using fermionic fields and the bosonic ghost 
fields from string theories. Let us remind the readers of the 
basic results about this construction, in particular, the form 
of the vertex operators. 

A. Vertex operator representation of affine untwisted 
orthosymplectlc superalgebra OSp(M/2n) with M> 2 

In order to construct a vertex operator representation 
for OSp(2mI2n)(I) one starts with m Fubini-Veneziano 
fields 

i 

Qi(Z) =qi-iilnz+i L a mz - m , (3.1) 
m#O m 

with 

[a~,aim] = mOm + nOij , (3.2) 
[qi,pj] = iOij (a~ = pi) . (3.3) 

If ei is a weight vector of the tensor coset zm of the 
weight lattice Aw ofSO(2m), one defines the vertex opera
tor as 

U( ± ei,z) = Zl/2 :exp ± ieiQ i(Z): . (3.4 ) 

Notice that the elementary fields 
l£( ± ei,z) = U( ± e;.z)c ± e

j
' the cocycle operator c ± e

j 
be

'mg defined on the lattice Aw ' are fermionic fields. The Car
tan subalegbra generators 

pi(Z) =izaQi(z) =a~ + L a~z-m (3.5) 
m#O 

md the step operators associated to the roots ± e i ± ej with 
I di=j<.m, 

E( ± ei ± epz) = :U( ± ei,z)c ± e
j 
U( ± ej,z)c ± ej: 

= U( ± ei ± ej,z)c ± e;± ej , (3.6) 

~enerate a level 1 representation of the SO(2m)(I) algebra. 
For the symplectic part Sp(2n), one has to consider n pairs 
)f Fubini-Veneziano fields 

·i 

4/(z)=j~-j~lnz+ LJmz-m, 
m#om 

. . ' h~ 
X'(z) =h~ -h~ lnz+ L _z-m, 

m#O m 
mch that 

~985 

[j~j,,] = - mOm+ nOij , 

[h~,h~] =mOm+nOij' 
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(3.7) 

(3.8) 

(3.9) 

(3.10) 

We define the vertex operators as 

U(J:,z) = Z1l2 :exp 4/(z): :exp - Xi(z): , (3.11 ) 

U( - /;,z) = Zl/2 :exp - 4/(z): a :exp xi(z): (3.12) 

Now these elementary vertex operators behave rather as bo
sonic fields, but with a fermionic propagator. The Cartan 
subalgebra generators 

Pi(Z) = -za4/(z)=j~+ Lj~z-m (3.13 ) 
m#O 

and the step operators associated to the roots ±/; ±Jj, with 
1 <.iJ<.m, 

E( ±/; ±Jj,z) = :U( ±/;,z)U( ±Jj,z): (3.14) 

generate a level - 1 representation of the Sp (2n) (I) algebra. 
The fermionic generators ofOSp(2mI2n)(1) are constructed 
as 

E( ± ei ±Jj,z) = U( ± ei,z)c ± e,u( ±Jj,z) . (3.15) 

In the case ofOSp(2m + 112n)(I), one has to construct 
the vertex operators associated to the (bosonic) roots ± ei 

of SO (2m + 1) (I), one needs a supplementary fermionic field 
r(z) such that 

(3.16 ) 

The step operators associated to the fermionic roots ±/; are 
defined by 

E( ±Jj,z) = U( ±Jj,z)r(z) . (3.17) 

One can notice that the explicit expression of this fermionic 
auxiliary field in terms of vertex operators can be obtained 
by folding the DD (or EDD) ofOSp(2m + 212n). One ob
tains 

r(z) = (l/-/2) (U(e2m+2,Z)ce2m+2 

B. "Bosonic" representation of OSp(2 I 2n)<1) and 
OSp(112n)(1) 

(3.18) 

The cases ofOSp(212n) (I) and OSp( 112n) (I) require spe
cial attention because of the nature of their bosonic part. 

In the case of OSp(212n)(I), the bosonic part is 
SO (2) X Sp (2n) and the fermionic part reduces to twice the 
fundamental representation ofSp(2n) of dimension 2n. The 
generators are constructed following Eqs. (3.13 )-( 3.15), 
i.e., for the bosonic roots ±/; ±Jj and ± 2/; ofSp(2n), 

E( ±/; ±Jj,z) = :U( ±/;,z) U( ±Jj,z):; 

and, for the fermionic roots ±/; ± e, 

E( ±/; ± e,z) = U( ±/;,z) U ± (z), 

where U ± (z) is a fermionic field constructed from a Fu
bini-Veneziano field Q( z) as Eqs. (3.1) and (3.4): 

U ± (z) = zl/2 :exp ± Q(z): . 

The SO (2) generator is simply given by the U(l) current 
associated to the vertex operators U ± (z), i.e., 
P(z) = iz aQ(z). 

In the case ofOSp( 112n), there is no orthogonal part for 
the bosonic underlying algebra. The generators are con-
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structed following Eqs. (3.14) and (3.17), i.e., for the fer
mionic roots ±/; [representation (2n) ofSp(2n)], 

E( ±/;,z) = U( ±/;,z)r(z) , (3.19) 

where r(z) is an auxiliary fermionic field, given by [from 
Eq. (3.18)] 

(3.20) 

Notice that in this case the central charge in the bosonic part 
Sp(2n) of the algebra has the value - 1, so that the vertex 
operator representation is a nonstandard representation of 
level - 1. 

c. "Fermlonlc" representation of OSp(2I 2n)(1) and 
OSp(112n)(1) 

One first constructs, a level 1 representation of the bo
sonic part Sp(2n) in the usual way, using auxiliary fields. 
The vertex operators associated to the long roots ± 2ej are 

E( ± 2eoz) = U( ± 2eoz)c ± 2e, . (3.21) 

The vertex operators associated to the long roots ± ej ± ej 

are 

E( ± ej ± ej,z) = U( ± ej ±ej,z)c ± e;± ejr ij (z), 
(3.22) 

with 

rij(z) = (l/..j2)(U(sj - Sj,z)csl-Sj 

+ U(Sj - Soz)CSj - s)' (3.23 ) 

The vectors Sj are orthogonal to each other (Sj 'Sj = 0) and 
also orthogonal to the e/s (e j 'Sj = 0). The vectors ej and Sj 

are normalized to e~ = S ~ =~. The auxiliary fields r ij (z) 
depend only on the orbit n = { ± ej ± ej )} to which the 
short root belongs. The cocycle operators C ± ej ± ej are con
structed on the root lattice ofSp(2n). The s/s constitute a 
basis of the rescaled root lattice (1/..j2) I A R (SU (2n ) ), on 
which the cocycle operators CSI - Sj can be constructed. 

In the case of OSp(212n)(i), the fermionic roots are 
± ej ±f One defines the vertex operators associated to the 

fermionic roots ± ej ±f by 

E( ± ej ±J,z) = U( ± ej,z)c ± e,rj± (z) , 

with 

r j± (z) = (l/..j2)(U(Soz)cs,u( - J,z) 

± U( -soz)c_sjU(f,z». 

(3.24) 

(3.25) 

where U( ±J,z) are bosonic fields constructed as in Eqs. 
(3.11) and (3.12): 

U(f,z) = zl/2 :exp ¢(z): :exp - X(z):, 

U( - J,z) = Zl/2 :exp - ¢(z): a :exp x(z): . 

The SO(2) generator is give by the U(l) current associated 
to the vertex operators U( ±f,z), i.e. P(z) = - z a¢(z). 

In the case of. OSp(112n)(i), the fermionic roots are 
± ej • One defines the vertex operators associated to the fer
mionic roots ± e; by 

E( ± eoz) = U( ± e;,z)c ± e,rf(z) , (3.26) 

with 
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rjB(z) = ! ( (U(S;,z)CSI + U( - S;,z)c _ SI) U(f,z) 

+ (U(Sj,z)Csl - U( - Soz)c _ SI) U( - J,z» , 
(3.27) 

the cocycle operators C ± e, and C ± SI being extended to two 

independent lattices (1/..j2)zn. 

D. Vertex operator construction of the unitary affine 
superalgebra 

The vertex construction for SI(mln)(1) is obtained by 
using the results on the regular semisimple subsuperalgebras 
ofa superalgebra.5 Actually one can show that Sl(mln) is a 
regular subsuperalgebra of OSp ( 2m 12n ). In fact the bosonic 
part ofSI(mln) is 

Sl(m) XSI(n) xU(1) CO(2m) X Sp(2n) (3.28) 

and the fermionic part is 

(;n,n) + (m,n) C (2m,2n) (3.29) 

[compare also Eqs. (2.1) and (2.3) with Eqs. (2.7) and 
(2.8) ] . Therefore, one has, for the bosonic roots 
± (e j -ej ) (1<,i=/=j<,m) and ± if; -fj) (l<,i#j<,n), 

E( ± (e - ej),z) = :U( ± eoz)c ±e,u( +ej,z)c=Fej: 

= U(± (e j -ej),z)c±(e,_e) , (3.30) 

E(± if; -fj),z) = : U( ±/;,z)U(#fj,z):; (3.31) 

and, for the fermionic roots ± (e - fj ) (1 <, i <, m and 
1<j<,n), 

E( ± (e; - fj ),z) = U( ± ej,z)c ± e,u( #fj,z). (3.32) 

Notice that the symmetry of the indices m and n in the struc
ture ofSI(mln)(i) implies that one can construct two differ
ent vertex operator representations: the first one corre
sponding to k = 1 for Sl(m) and k = - 1 for Sl(n) and the 
second one to k = - 1 for Sl(m) and k = 1 for Sl(n). 

IV. VERTEX OPERATORS FOR THE TWISTED AFFINE 
SUPERALGEBRA 

Now following the method developed in Ref. 7, we want 
to construct the vertex operators for the twisted affine super
algebras (or T.S.A.). Table I shows the different T.S.A., 

TABLE I. The different twisted affine superalgebras, their invariant sub
(super-) algebra, and the superalgebra they come from via the folding 
method. 

Twisted S. A. Invariant S. A. FoldedS. A. 

OSp(2mI2n)12) 
OSp(2m - 112n) OSp(2m + 112n)(I) 

m>1 
SI(112m)12) 

OSp(112m) SI(212m)12) 
n>2 

SI(112m)l4) 
SO(2m) SI(212m)12) 

n>2 
Sl(212m + 1 )12) 

OSp(2m + 112) Sl(212m + 2)12) 
n>2 

SI(212m + 1)14) 
OSp(212m) Sl(212m + 2)12) 

n>2 
SI(112m + 1)14) 

OSp(l12m) Sl(112m + 2)12) 
n>2 

SI(112m + 1)14) 
SO(2n + 1) SI(112m + 2)12) 

n>2 
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their invariant sub-(super- ) algebra, and the superalgebra 
they come from via the folding method. 

A. Construction of OSp(2m/2n)(2) (with m> 1) 

One starts from the untwisted affine S.A. 
OSp( 2m + 112n) (I) and one considers a particular EDD 
that exhibits a Z2 symmetry transforming the affine root into 
a horizontal root: 

which corresponds to the simple root system 

A = {ao = {j - el -iI, a l = el - /1' a 2 = /1 - h, ... , 
a" =/,,-1 - /,., 
a,,+1 =/" -e2,an + 2 =e2 -e3,···, 

a,,+m_1 =em_ 1 -em,a,,+m =em}· (4.1 ) 

The outer automorphism T of order 2 corresponding to the 
Z2 symmetry of the diagram above is defined by 

T(ao) = ai' T(a;) = a; (2o;;;;;io;;;;;n + m). (4.2) 

The folded EDD is 

e:¢O- -()--3-0- -Q::>:O OSp(2m12n) (2) 

I I I I I I 
a o a 2 an a n+1 an+2 a n+m 

with the simple root system 

which corresponds to the twisted superalgebra 
OSp(2mI2n)(2). The invariant integral subsuperalgebra is 
OSp(2m - 112n) and the twisted part is the fundamental 
representation of Osp (2m - 112n) of dimension 
2m + 2n - 1. Therefore if 

and 

A~ = { ± e; ± ej , 2 O;;;;;i::j:jo;;;;;m, 

±/; ±Jj, ± 2/;, IO;;;;;i::j:jo;;;;;n 

± e; ±/;, 2o;;;;;io;;;;;m, l.;Jo;;;;;n} 

Ai = { ± eo 2 0;;;;; io;;;;;m, ±Jj, l.;Jo;;;;;n}, (4.4) 

the roots of A~ and Ai appear at each integral level, whereas 
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the roots of Ai appear at each half-integral level. 
The construction of the vertex operators is given as fol

lows. For the invariant part, the generators associated to the 
bosonic roots are 

E( ± e; ± ej,z) = U( ± e;,z)c ± e; U( ± epz)c ± e] , 

(4.5) 

E( ±/; ±Jj,z) = :U( ±/;,z)U( ±Jj,z):, IO;;;;;i,jo;;;;;n, 
(4.7) 

where r F (z) is the auxiliary fermionic field needed for 
OSp(2m - 112n), 

and the generators associated to the fermionic roots are 

E( ± e; ±Jj,z) = U( ± e;,z)c ± e; U( ±Jj,z) . (4.8) 

For the twisted part, the generators at half-integral levels are 
constructed using a Lorentzian lattice Aso by extending the 
root lattice Aso of SO (2m) by the isotropic direction {j: if 
(e; ) is a basis of the SO( 2m) lattice Aso , one extends it with 
the conditions 

(4.9) 

The Fubini-Veneziano fields (! (z) are extended from 
lo;;;;;io;;;;;m to dim Aso such that 

One uses an auxiliary fermionic field constructed by folding 
and defined by 

r;,,(z) = _1_(u(e l + ~ ,z)ce J2 2' 

+ u( - el + ~ ,z)c _ e,) . (4.11 ) 

The generators associated to the bosonic short roots ± e; at 
half-integral levels are defined by 

(4.12) 

and the generators associated to the fermionic roots ±Jj at 
half-integral levels by 

E( ±Jj,z) = U( ±Jj,z)rF(z) . (4.13) 

B. Construction of OSp(212n)(2) 

The construction is very similar to the last one, the only 
difference being in the fact that the invariant integral subsu-
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peralgebra is now OSp ( 112n), which bosonic part reduces to 
Sp(2n), and the twisted part is the fundamental representa
tion of Osp( 112n) of dimension 2n + 1. One starts from the 
EDD ofOSp(312n)(I), 

OSp(3/2n) (1) 

with the simple root system 

(4.14 ) 

The automorphism r associated to the Z2 symmetry is de
fined by 

(4.15 ) 

The folded EDD is 

~ OSp(2!2n) (2) 

a' a' o 2 

with the simple root system 

/1' = {a~ = 812 - fl' a; =fl - f2' 

( 4.16) 

Therefore the generators are for the invariant part, 

E( ±/; ±i;,z) = : U( ±/;,z) U( ±i;,z):, 1 <'i,j<.n , 
( 4.17) 

E( ±/;,z) = U( ±/;,z)rF(z), (4.18) 

where r F (z) is the auxiliary fermionic field needed in 
OSp( 112n); and, for the twisted part, one uses another auxil
iary fermionic field constructed by folding and defined by 

r;,.(z) = (l/.J2){U(e + 812,z) + U( - e + 812,z». 
( 4.19) 

The generators associated to the fermionic roots ±i; at 
half-integral levels are 

E( ±i;,z) = U( ±.Ij,z)r;,.(z) . ( 4.20) 

C. Construction of SI(212m)(2) 

Consider the EDD of the twisted superalgebra 
SI(212m)(2>, 

SL(2I2m) (2) 
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associated to two different root systems, corresponding to 
different end points of the EDD for the affine root. These 
two root systems are 

(4.21 ) 

or 

(4.22) 

These two root systems correspond to different gradings of 
the twisted superalgebra. In the first case, the invariant sub
superalgebra is OSp(2mI2), whereas in the second case the 
invariant subsuperalgebra is OSp(212m). Only the last case 
will keep our attention. The roots 

/1~ = {± ej ± ej , ± 2ej, ± ej ±J, l<.i#~<.m} 
(4.23) 

appear at each integral level (invariant part), and the roots 

(4.24) 

appear at each half-integral level (twisted part). 
The construction of the vertex operators is as follows: 

for the invariant part, 

E( ± 2ej,z) = U( ± 2ej,z)C±2e; (4.25) 

E( ± ej ± ej,z) = U( ± ej ± ej,z)c ± ejr ij (z), (4.26) 

with r ij (z) given by Eq. (3.23), 

E( ± ej ±J,z) = U( ± ej,z)c ± e;r j± (z) , 

with 

r j± (z) = (1I.J2){U(5j,Z)CsP( - J,z) 

± U( - 5j,Z)csP(J,z»; (4.27) 

and for the twisted part, 

E'( ±ej ±ej,z) = U( ±ej ±ej,z)c±e;+ejrij(z), 
(4.28) 

E' ( ± ej ±J,z) = U( ± ej,z)c ± e;r; ± (z) , 

with 

rij(z) = (1I.J2)(U(5j +5j +812,z)cs;_Sj 

+ U( - 5j - 5j + 8/2,z)cSj_s)' 

r; ± (z) = (1I.J2)( U(5j + 8/2,z)csP( f,z) 

(4.29) 

± U( - 5j + 812,z)csP( - J,z». (4.30) 

D. Construction of SI(2I 2m_1)(4) 

The folding of the EDD of Sl(212m)(2) in 
Sl (212m - 1) (k) leads to two twisted superalgebras, name-
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ly, Sl(212m - 1)(2) with invariant subsuperalgebra 
OSp(2m - 112) and Sl(212m - 1 )(4) with invariant subsu
peralgebra OSp(212m - 2). We will construct a vertex op
erator representation for the last one. One considers the 
EDD ofSl(212m)(2) associated to the root system 

A = {a j = ej + f, a 2 = e2 - e1, ••• , 

am = em - em _ j, am + 1 = ej + f, 
a o = 8/2 - em - em _ j} . (4.31) 

The automorphism r associated to the Z2 symmetry is de
fined by 

r(aO)=am, r(aj)=a j (1<i<m-1). (4.32) 

The folded diagram is 

(4) 
SL(2/2m-l) 

associated to the root system 

A = {a j = e1 + f, a 2 = e2 - ej , ••• , 

am + j = e1 - f, a~ = 8/4 - em _ j} . 

The roots 

A~ = { ± ej ± ej , ± 2ei> ± ej ±f, 
1<i=l=<J<m -l} 

(4.33 ) 

(4.34) 

appear at each integral level (invariant part); the roots 

Ai = {± ej ± ej , ± ej ±f, 1 <i=l=j<m - l} (4.35) 

appear at each half-integral level (twisted part); and the 
roots 

A; = {± ej , 1<i<m - l} (4.36) 

appear at each levell + 1 and l + a (twisted part). 
The vertex operators are constructed as follows: for the 

invariant part, the generators associated to the roots at level 
l are given by the formulas (4.32)-(4.34), with 
1 < i =1= j < m - 1; and, for the twisted part, the generators as
sociated to the roots at levell + ! are given by the formulas 
(4.35)-(4.37), with 1 <i=l=j<m - 1. The generators asso
ciated to the roots ej at levell + ! are given by 

E" ( ± ei>z) = ! U( ± ej,z) r;'B(z) , 

with 

r;'B(z) = (U(em + 8/4,z)r jm (z) 

+ U( - em - 8/4,z)r;m (z», 

(4.37) 

(4.38 ) 

and the generators associated to the roots ej at levell + a are 
obtained by action of the generators at level l + ! on the 
previous generators at levell + l. 

E. Construction of SI(112m)(2) 

The folding of the EDD ofS1(212m)(2) in SI(112m)(k) 
leads to two twisted superalgebras, namely, Sl ( 112m) (2) with 
invariants subsuperalgebra OSp(112m) and SI(112m)(4) 
with invariant subsuperalgebra SO(2m). We will only treat 
the case ofSl( 112m)(2). 
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One starts from the twisted affine superalgebra 
SI(212m)(2) with EDD 

~
ao 

SL(2I2m) (2) 

O 2 0 1 

associated to the root system 

A = {aD = 8/2 - ej - e2 , a 1 = ej - e2 , ••• , 

a m + j = em + f}· (4.39) 

The automorphism that defines the folding is 

r(am) = am + l' r(a j ) = a j (O<i<m - 1) . (4.40) 

The folded EDD is 

(2) 
SL(l/2m) 

with the corresponding simple root system 

A' = {aD = 8/2 - ej - e2, a 1 = e1 - e2, ••• , 

(4.41) 

One obtains the twisted superalgebra Sl ( 112m) (2). The invar
iant integral subalgebra is OSp ( 112m). The roots 

A~ = { ± ej ± ej , ± 2ei> ± ej , 

l<i=l=<J<m} (4.42) 

appear at each integral level (invariant part), and the roots 

Ai = {± ej ± ej , ± eo 1 <i=l=j<m} (4.43) 

appear at each half-integral level (twisted part). 
The construction of the vertex operators is given by, for 

the invariant part, the generators associated to the bosonic 
roots are 

E( ± 2ej ,z) = U( ± 2ej ,z)c ± 2ei ' (4.44 ) 

E( ± ej ± ej,z) = U( ± ej ± ej,z)c ± ei ± ejr ij(z) , 
(4.45) 

with 

rij(Z) = (lIJ2)(U(Sj -Sj,z)CSi - Sj 

+ U(Sj - Sj,z)CSj _ 5)' 

The generators associated to the fermionic roots are 

E( ± ej,z) = (1IJ2) U( ± ej,z)ceir~(z) , 
with 

(4.46) 

r~(z) = !«U(Si>z)CSi + U( - Si>z)c _ s)U( f,z) 

+ (U(Sj,Z)cSi - U( - Sj,z)c _ Si U( - f,z» ; 
(4.47) 

and, for the twisted part, the generators associated to the 
bosonic roots are 

E I ( ± ej ± ej,z) = U( ± ej ± ej,z)c ± e,± ejrij (z) , 
(4.48) 
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with 

rij(z) = (1I..j2)(U(5; + 5j + M2,z)cs;+s) 

+ U( -5j -5; +M2,z)c_ Sj _ s)' (4.49) 

The generators associated to the fermionic roots are 

E'( ± eoz) = (1I..j2) U( ± e;,z)ce;r;B(z) , 

with 

r;B(z) = ~«U(5; + M2,z)cs; 

+ U( - 5; + M2,z)c _ s)U( - J,z) 

+ (U(5; + 812,z)cs; - U( - 5; + M2,z)c - s) 

X U( J,z» . (4.50) 

F. Construction of SI(112m-1)(4) 

The twisted superalgebra Sl (l12m + 1) (4) can be con
structed with two different Z2 gradings, corresponding to 
opposite end points of the Dynkin diagram for the affine 
root. In the first case, the integral invariant subsuperalgebra 
is OSp( 112m - 2), whereas in the second case, it is 
SO(2m - 1). We will concentrate on the first case. 

One starts from the twisted affine superalgebra 
Sl( 112m)(2) with EDD 

associated to the simple root system 
a' = {aD = 8/2 - e l - e2, a l = e l - e2, 

am_I =em_ 1 -em' am =em}· 

The automorphism that defines the folding is 

r(ao) = ai' r(a;) = a; (2<J<m). 

The folded EDD is 

(2) 
SL(l/2m) 

(4.51 ) 

(4.52) 

(4) 
SL(1/2m-l) 

a m.l aID 

with the corresponding simple root system 

a' = {a~ = 8/4 - e2, a 2 = e2 - e3, ••• , 

am_I =em_ 1 -em' am =em}· (4.53) 

One obtains the twisted superalgebra SI(l12m - 1)(4). The 
invariant integral subalgebra is OSp (112m - 2). The roots 

a~ = {± e; ± ej , ± 2e;, 2<ii=<J<m} (4.54) 

appear at each integral level (invariant part); the roots 

a; = {± e; ± ej , ± eo 2<ii=j<m} (4.55) 

appear at each half-integral level (twisted part); and the 
roots 

(4.56) 

appear at each level Z + land Z + ~ (twisted part). Notice 
that the generators E(e;,z) and E'(e;,z) associated to the 
roots e; at integral and half-integral levels, respectively, have 
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SL(2/2nI) (2) 

/ 
q". OSp(2I2m) 

"'-SL(1I2m) (1) SL(lI2m-l) (4) 

'i" • OSp(I/2m) tjD. OSp(2I2m-l) 

"'- (4) / SL(lJlm-l) 

tjD.OSp(I/2m·2) 

SL(lI2m) (1) 

/ 
'iD.OSp(2n1I2) 

"'-SL(lJlm) (4) SL(lI2m-l) (2) 

'i". SO(lm) tjD. OSp(lm-II2) 

"'- (4) / SL(lJlm-l) 

'iD - SO(lm-1) 

FIG. I. The different foldings with invariant subsuperalgebras Yo in the 
case of unitary superalgebras. 

a fermionic nature, whereas the generators E" (e;,z) asso
ciated to the roots e; at the levels Z + land Z + ~ have a 
bosonic nature. 

The construction of the vertex operators is as follows: 
for the invariant part, the generators associated to the bo
sonic roots ± 2e; and ± e; ± ej are given by the formula 
(4.62) and the generators associated to the fermionic ones 
± e; by the formula (4.64), with 2<ii=}<m; for the twisted 

part at level Z + !, the generators associated to the bosonic 
roots ± e; ± ej are given by the formula (4.66) and the 
generators associated to the fermionic ones ± e; by the for
mula (4.68), with 2<ii=j<m; and for the twisted part at 
level Z + l, the generators associated to the bosonic roots 
± e; at level Z + l are given by 

E"( ±e;,z) =!U( ±eoz)rrB(z), (4.57) 

with 

r;,B(z) = (U(e l + M4,z)r li (z) 

(4.58 ) 

The generators associated to the bosonic roots ± e; at level 
Z + ~ are obtained by action of the generators associated to 
the short roots ± e; ± ej at level Z + ! on the generators 
associated to the bosonic roots ± e; at level Z + l. 

In summary, Fig. 1 gives the different foldings with in
variant subsuperalgebras Yo in the case of the unitary super
algebras. 
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Federal Republic of Germany 
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The Dyson equation for the renormalization of the curvature stiffness by elastic fluctuations 
into a simple differential equation is transformed and solved iteratively as well as numerically. 
If the tension parameter falls below some critical value, the inverse two-point function develops 
discontinuously a minimum at a nonzero momentum Po. This should be relevant for 
understanding a transition in elastic membranes. 

Although elastic forces do not contribute to the ultra
violet divergencies in the extrinsic curvature stiffness of 
membrane undulations, I they have important effects in the 
infrared. 2 To see this most easily, the elastic energy 
(u;j = strain tensor) 

(1) 

of an almost flat surface with tangential and vertical displa
cements -I (s) and u(S), 

Xl = s 1+ 1"1(S)' x 2 = S2 + reS), x3 (s) = u(s), 
is approximated by (we set Ui ==aiu) 

Eel = f d2S [~ (ai1" j + a j 1"i - UiU j)2 

+ ~(a.1". _ "!"U.U.)2]. 
2 •• 2" (2) 

An auxiliary fluctuating stress field (Tij is introduced to re
write this in a canonical form 

E 1= f d 2
/: [_1 [cr. - v 0:.] 

e ~ 4/1- .) (1 + v) II 

+ fo"i j [ai1"j + ai1"i - UiU j] ], (3) 

where v = A. I (A. + 2/1-) is the Poisson ratio. Integrating out 
the 1"i fields gives ai (Tij = 0, to be enforced via a stress gauge 
field X by setting (Tij ==€ik€ j/ ak a/X and Eel becomes 

Eel = f d2s [ 1 (a2X)2 
4/1-(1 + v) 

+ ~X€ik€j1 ai ajuk U/] 

= /1-(1: v) f d2s(Pk/UkU/ )2, (4) 

wherePij = €ik€jI ak a/la 2 isthetransverseprojection. The 
quantity €ik€jI a i ajUkU/ = 2 det(ai aju) = R is the scalar 
( = twice Gaussian) curvature of the surface {recall that 
R = C 2 

- C / C;, whereC /is the extrinsic curvature matrix 
c/=ai [(1 + (a/u)2)- 1/2 a j u]}. 

As pointed out in Ref. 2, a phonon renormalizes the 
bending and stretching energy 

Eo = ~ f d2S [k(a 2u)2 + r(au)2] (5) 

and brings it to a momentum-dependent form 
E = !fd2s ur( - ia)u, where rep) is determined by the 
Dyson equation 

rep) = kp4 + rp2 + /1- (1 + V)T(!) f C~:~2) 
(6) 

The purpose of this paper is to solve this equation and 
find a phase transition that may be related to transitions in 
physical membranes. In Ref. 2 it was suggested that a transi
tion in the model Eo + Eel may be related to the crumpling 
transition seen in Monte Carlo simultions,3 but this seems 
dubious since the model surface under consideration lacks 
the rotational invariance of the simulated system. 

Certainly, the solution to the equation (6) to be present
ed here is not the solution of the entire one-loop renormaliza
tion problem. For this, the renormalization of the elastic 
energy4 will also have to be considered. The solution of Eq. 
(6), however, is an interesting problem in its own right and 
presents a necessary first step. In particular, we find it worth 
communicating that the complicated looking integral [Eq. 
(6) ] can be transformed into a very simple differential equa
tion. This transformation goes as follows: We observed that 
after replacing q + p ..... q, the numerator in the integrand of 
(6) becomes (1 - cos2 8)/[ 1 + (qlp)2 - 2(qlp)cos 8]2, 

where cos £I = p-qlff. The integral over £I gives simply 
(31T14)q4 for q<p and (31T14)p4 for q>p. Hence we can 
rewrite (6) as 

rep) = kp4 + rp2 + /1-(1 + V)T(_3_) 
1281T 

X [f' dp2 q4r- 1 (q) + p4 i~ dq2 r- I (q) ]. 

(7) 

Introducing the variable s = p2 and setting /1-( 1 + v) T 
(3/1281T) = t 12, we obtain from this the simple differential 
equation (' == d Ids), 

(r'(s)ls)' + t Ir(s) = - rls'l. (8) 

We now seek for a solution, which for large s behaves 
like 

res) = r s + ks'l + tl:(s), (9) 

with a self-energy l:(s), which grows weaker than ks'l and 
satisfies the equation 
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r -l:'/s + s/(r + k.r + tl:) = O. 

We now insert the ansatz 

t t 
tl:(s) = -s - --3 (r k + t)ln s 

k 2k 

'" j 

+s L L cijs-jlnjs, 
j=2j=O 

(10) 

(11) 

and work out the coefficients C jj iteratively, with the result 
shown in Table I. 

For small s, we use the ansatz 

t '" j 

tl:=d--.rlns+.r L L aijsjlnjs, (12) 
2r j= 1.j= 0 

and find the coefficients shown in Table II, where we have 
replaced k + C by k'. 

The solutions for small and large s can be matched with 
each other by an appropriate choice of C < 0 and a numerical 
solution of the differential equation (9) in the intermediate 
regime. For a typical configuration of parameters k = 1, 
I = 1, the curves r (s) approach, for large s, rapidly the lead
ing terms in (9) and (11), 

r(s) - (r + I /k)s + ks2 
- (t /2k 2) (r + I /k)ln s 

(13 ) 

(see the dotted curves in Fig. 1) . For the small s series ( 12), 
the radius of convergence is, for small r, very small since the 
coefficients aij involve inverse powers of r. In particular, the 
first two terms in (12) give 

r(s) = rs + k'.r - (t /2r).r In s, (14) 

and this is applicable only very near s = O. It can be used to 
fix the initial value and the slope of r(s) for the numerical 
integration of the differential equation from small to large s. 
For r:::::O, there is a phase transition at which the flat ground 
state destabilizes, going over into a wrinkled state of nonzero 
wave vector Po2-0.9, not far from the lowest estimate 
po2 :::::e- 1/2

, which can be obtained from (12). This situation 
is similar to the transitions of spontaneous strings in large 
dimensions,5 the main difference being the absence of cubic 
field terms in the present case. 

For r = 0, there exists an exact solution (8), 

TABLE I. Large p2 expansion of inverse undulation correlation 
np2); ns) =ki+ (r+tlk)s- (!)(tlk 3)(rk +t)logs 
+ 1:i~ 2 1:; ~ 0 c(i, j)Si log j s. 

C(2,O) = _k-5tqk2r+~krt+at2) 

C(2,1) = f.k -5t 2(kr+ t) 

C(3,Q) = k -7t(!k 3r3 + ~k 2rt 

+ illkrt 2 + Not 3) 

C(3,1) = _k-7t 2qk 2r+ijkrt+tst 2) 
C(4,O) = -k-9t(ilk4r'+Nrl,k3h 

+~k2rt2 

+~krt3+~t4) 

C(4,1) = k -9t 2(fok'r3 + ~k 2rt 

+ fM,krt 2 + ~t3) 
C(4,2) = - k -9t3(obk 2r + Jbkrt + 7.ll 2

) 
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TABLE II. Small p2 expansion of inverse undulation correlation n p2); 
r(s) = rs+ k'i - (t12r)ilogs + 1:i~ I 1:;~o a(i,j)si+Z log is. 

a(1,O) =r-3tqk'r+ijt) 
a(1,l) = _!r-3t Z 

a(2,O) = -r-5t(lk'2r+'lik'rt-&,t2) 
a(2,1) = r-5t2<Ak'r+~t) 

a(2,2) = - f>.r- 5t 3 

a(3,O) = r-7t(ilk '3r3 + rJook '2rt 

- nm,k'rt 2 - ~t3) 
a(3,1) = - r-7t 2(fok '2r + rJook 'rt _ ~t2) 
a(3,2) = r-7t3(rok 'r +"Iioot) 

a(3,3) = - tir,r-7t 4 

(15) 

This, however, is useles for membranes since it corresponds 
to a vanishing curvature stiffness k. The small s behavior, 
however, also agrees with r 0 for k # O. In fact, as r passes 
from 0+ to 0- , the solution flips from the upper to the lower 
branch of the square root. The zero in r (p2) at p2 = So # 0 is 
an essential singularity. As r passes through zero, s in
creases like s - So::::: (2/So) -1/2 ( - In r) -1/2 r, which ex
plains the infinite slopes of r(s) at So. 

The coefficients of the large s expansion at r = 0 can be 
taken from Table II. 

The renormalization resulting from the nonlinearities in 
the curvature terms at the one-loop level (u jj =JjJju) 

Enlcurv=+ f d2s[ - ~ Uii2Uj2_2UiiUkU/Uk/+"'] 

(16) 

gives only a rather trivial change of r(p2), 

ar(p2) = - (3T /2)Lp4 - (3T /2)Qp2, (17) 

where L=S (dp/21T)2)(P2/r(p», Q=S(d2p/(21T) 2) 

9 r:; 1.5 
8 0.5 

7 -0.5 
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FIG. I. The dispersion curves of undulations in elastic membranes (divided 
by pZ, to show the asymptotic behavior kp4 as a straight line). We have 
chosen k = 1 and varied the tension parameter r from 1.5 to - 2.5. At 
r = 0, the curve jumps from an initial behavior J 4t 13 s-'i2 to - J 4t 13 s'/2 
and a new minimum of r arises at s~0.9, where r min jumps from 0 to 
;:::: - 0.2. The dotted lines are the large p2 approximation ( II). The dashed
dotted lines starting fromp2 = 0 show the small s solution (12); for r> 1.5 
they lie on top of the flat lines up to p2 ~ 1.5. For r = ± 0.5 the convergence 
breaks down earlier. 
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X «p4/r (p» are constants, with a divergence that can be 
absorbed into the initial values of k and r. The differential 
equation (8) will therefore remain unchanged and the solu
tions, when parametrized directly by the k, r values observed 
at large s, will be the same as before. 

Let us end by noting that if the elastic membrane has 
undergone a continuous premelting transition to a phase 
with only orientational order (hexatic phase), the Dyson 
equation contains one extra factor of q2 in the integrand 
(6)2.6 and we find quite similarly, the integral equation 

r(p2) = kp4 + rp2 + ~p2[J:' dq2 q4(3 _ ;:)r-l(q) 

(18) 

where t=.KA T /32r and KA is the angular stiffness. This 
equation can be converted into the differential equation 
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r"" = 3tr- 1
; (19) 

it can be solved by similar methods. 
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The general structure and existence of equilibrium and ground states of infinite spin systems 
with the mean-field type interaction of Hepp and Lieb [Helv. Phys. Acta 46,573 (1973)] is 
investigated. The form and the role ofthe "Bogoliubov-Haag" Hamiltonians is cleared. The 
analysis is based on a recent mathematically correct definition of the corresponding time 
automorphism group rQ (specified by a classical Hamiltonian Q) of an appropriately defined 
"physical" C *-algebra of observables 7f' containing an abelian subalgebraf of classical 
macroscopic quantities as well as the conventional "bare" quasilocal (sub-) algebra .#, 
7f' = .# ®f [Po Bona, J. Math. Phys. 29, 2223 (1988)]. A Lie group G of "hidden 
symmetries" acting nontrivially (also) onfplays an essential role in the presented theory. 
The applications to the quasispin strong-coupling version of the BCS model of 
superconductivity, and to the corresponding model of the Josephson junction illustrate 
possibilities of the developed formalism as well as an easy manipulation with it. A simple 
mathematical description of "symmetry breaking" is sketched for the considered class of 
mathematical models of large quantal systems. 

I. INTRODUCTION 

Mathematically clear description of macroscopic prop
erties of equilibrium states oflarge physical systems (such as 
phase transitions) is available only in the framework of the 
theory of infinite systems. I ,2 The first mathematically cor
rect proof of possibility of description of phase transitions in 
the framework of equilibrium statistical physics of infinite 
systems was the Onsager's calculation3 of thermodynamic 
potentials of the two-dimensional Ising model. In trials to 
overcome difficulties with Hilbert space descriptions of 
quantum field theory4 a representation-independent formal
ism of quantum theory of infinite system was developed,5 

i.e., the formalism of (C *-) algebraic quantum theory gener
alizing the elementary Hilbert space formalism in a natural 
way. The main mathematical object in algebraic formulation 
of quantum theory of (spatially, or in other variables) ex
tended systems is a "quasilocal algebra of observables" d 
built of a net of its "local subalgebras" d A associated with 
members AEYn of the set of "finite regions" of some infi
nite "configuration set" II. In the framework of algebraic 
formalism, models for quantum-theoretic description of in
teresting collective many-constituents behavior like various 
types of phase transitions were constructed. la, 2,6,7 

The usual physically intuitive method of theoretical in
vestigation of thermal equilibria of infinite systems consists 
in taking some-for the considered physical situation most 
appropriate--kind of thermodynamic limit 7 of local Gibbs 
states. This method is particularly convenient in investiga
tion of surface effects8 and stability properties9

,10 of the sys
tem. It is almost inevitable to use this method in investiga
tion of infinite classical lattice systems. II In the last case, 
there is not known any way of direct (i.e., without going to a 
form of "quantization" of the considered classical system) 
determination of time evolution: We have not defined any 
canonical formalism associating some dynamics with a given 
Hamiltonian for classical lattice systems. 

Infinite quantum systems afford also an alternative 
method of investigation of equilibrium states. It is applica
ble, strictly speaking, only in the cases in which there is given 
a mathematically correct definition of dynamics of the whole 
infinite system as a one-parameter group of automorphisms 
of the C *-algebra d of observables. This method uses the 
KMS condition (after Kubo, Martin, and Schwinger) intro
duced into the algebraic formulation of quantum theory by 
Haag, Hugenholtz, and Winnink. 12 The KMS condition was 
extensively used6 for investigation of spin systems with 
short-range interactions, in which cases the correct defini
tion of the global time evolution was known for a long time. 13 
In some cases oflong-range interactions, a reformulation of 
the KMS condition not using the global dynamics of the 
infinite system was introduced: It was formulated in terms of 
limits of expressions containing derivations of local time 
evolutions 10 instead. In these last mentioned cases, however, 
the question was left open as to the existence of some connec
tion of such a reformulated KMS condition with some one
parameter group of (global-automorphic) time translations. 
Long-range interactions were studied almost exclusively in 
terms of local Hamiltonians and corresponding local dy
namics. Some very interesting results were obtained in this 
way, especially in investigations of the mathematical struc
ture of appropriately simplified versions of the Bardeen
Cooper-Schrieffer (BCS) model of superconductivity. 14-17 
Clear interrelations between different observed phenomena 
like spontaneous symmetry breaking, phase transitions, and 
the possibility of a description of dynamics oflocal perturba
tions of some stationary states by the linearized ("Bogoliu
bov-Haag") form of Hamilton operator remained, however, 
missing. 

The KMS states of a class of infinite quantal spin sys
tems with a mean-field type (hence long-range) interactions 
are investigated in this paper. The considered class of sys
tems include the arbitrary polynomial mean-field systems 
introduced by Hepp and Lieb,18 which in turn include, e.g., 
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the quadratic models of the BCS theory in its quasispin for
mulation in the strong coupling limit, 15 including a model of 
the Josephson junction. 18.19 A mathematically correct (glo
bal) dynamics of these models was formulated in a recent 
paper20; that paper also contains a brief description of the 
history of the problem with citations of some relevant pa
pers.21 Let us sketch here a formulation of the problem for 
the case of polynominal models. 

Let.!lfP (pEn) be copies of the algebra .!If0: = .!L' (Ko) 
of all bounded operators on the finite-dimensional complex 
Hilbert space K o, and let these algebras be connected by 
isomorphisms 

1Tp: .!If0-+.!IfP, ~1Tp(X), XE.!If°. (1.1) 

The conventional C *-algebra .!If of quasilocal observables 
(we shall call it the "bare algebra" -it is chosen indepen
dently of interactions) is defined as the C *-inductive limit22 

of finite tensor products of local algebras 

.!If A: = ® .!IfP, AEY n' (1.2) 
peA 

Here, .!If can be considered as an infinite tensor product, 

.!If = ® .!Ifp. 
pen 

Let a polynomial Q, 
q 

Q(FI>F2, .. ·,Fn): = L L cj,"j/"jmFj,Fj," 'Fjm' (1.3) 
m= I j,jl···j", 

of n variables and of degree q be given in such a way that the 
operators Q A defined below are all self-adjoint. Let XjE.!If° 
(j = 1,2, .. ,n) be arbitrary chosen (mutually linearly inde
pendent) self-adjoint matrices, and define the local intensive 
observables ~A by the formula 

1 
XjA:=-L 1Tp(~)' AEFn, (1.4) 

jAj peA 

where j A j: = card A. The local Hamiltonians are defined by 

QA: = jAjQ(XIA ,x2A, ... ,xnA)' (1.5) 

The local time evolution of the algebra .!If A is given by its 
automorphism group ~ determined in the usual way: 

~(y):=exp(itQA)yexp(-itQA), tER, yE.!IfA
• (1.6) 

We have shown in Ref. 20 in what sense a limiting global 
time evolution rQ exists for an arbitrary (not only polynomi
al) Q. It was shown in Corollary 4.4 of Ref. 20 that, roughly 
speaking, the net oflocal evolutions (1.6) leads to an auto
morphism group rQ of the "bare" algebra .!If iff Q is a linear 
function. Hence for a description of dynamics of the nontri
vial mean-field-type interactions, one has to extend the alge
bra .!If by adjoining to it other algebraic elements, to include 
also the time transforms of its (original) elements. The mini
mal extension of.!lf suitable to a description of rQ for a gen
eral Q is a C *-algebra 1ff isomorphic to the tensor product 
.!If ® ff, whereff is an abelian C *-algebra of classical mac
roscopic quantities. 

The description of the limiting evolution rQ in the 
("physical", or "dressed") C *-algebra ~ rests heavily on a 
certain ("sufficiently continuous" as well as "sufficiently 
discontinuous") action u( G) of a Lie group G on the "bare" 
algebra .!If. A convenient choice ofthe group G-a group of 
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"hidden symmetries" of the system-is given by its Lie alge
bra 9 generated by the matrices ~ (j = 1,2, ... ,n) in 
.!L'(Ko) occurring in (1.5). All considered macroscopic 
phenomena are expressed in terms of the group G (and of 
related mathematical objects). 

The definition of kinematics of described systems to
gether with a brief determination of the evolution rQC * 
-aut 1ff for a generalR-valued differentiable function Q de
fined on the dual g* of the Lie algebra23 9 of G is reviewed and 
supplemented in Sec. II; that section also contains an investi
gation of the "Bogoliubov-Haag" Hamiltonians. Section III 
is devoted to general investigations of KMS states of such a 
general class of systems. Illustrative examples of Sec. IV in
clude the strong coupling version ofthe BCS model, and also 
a corresponding model of the Josephson junction. 

II. THE MATHEMATICAL STRUCTURE OF MEAN-FIELD 
THEORIES 

We use here some concepts of global differential calcu
lus on manifolds24.25 to formulate connections of microscop
ic dynamics rQ with classical Hamiltonian dynamics genera
ted by the Hamiltonian function Q. The theory of 
C *_algebras6.22.26 is extensively used in this paper. The final 
results are formulated, however, in a way suitable for an easy 
use in applications. 

We shall start with a general setting, and later on we 
shall specify the formalism to the situations described in 
Sec. I. 

A. Macroscopic observables and classical properties of 
states 

Let G by an arbitrary connected Lie group, let 9 be its 
Lie algebra and let g* be the dual space of g. Let Ad * (G) be 
the coadjoint representation24.25.20 of G in g*. Let [s,7]] Eg be 
the Lie bracket in 9 (S,7]Eg), and letfs be the linear functions 
on the linear space g* defined by the relation: 

fs (F): = F(s), for all sEg, and all FEg*. 

Here F(S)ER is the value of the linear functional F taken on 
the vector S. The Poisson bracket {f,h} is determined 20 for 
any differentiable functionsfand h on an Ad*-invariant do
main ECg* [i.e., Ad*(g)FEE for all FEE] by the formula 

{fs/.,,}(F): = -F([s,7]]),for all FEE,s,7]Eg. (2.1) 

This bracket endows E with the Poisson structure27 of a 
(generalized) classical phase space. It enables us to associate 
the (generalized classical Hamiltonian) dynamics20 on E 
with any differentiable function Q on E. 

Let .!If be a simple C *-algebra with unit element 1. As
sume that a strongly continuous representation u( G) C *
aut .!If is given. Each Ug: = U(g)EU( G) (gEG) can be canon
ically extended to an automorphism of the double dual.!lf** 
to.!lf. The space.!lf** is considered here as a von Neumann 
algebra containing .!If as a weakly dense C *-algebra in a ca
nonical way.28 The center !r of .!If** is a u(G)-invariant 
subset of .!If * *. Although the center of.!lf is trival, !r can be 
(and typically is) a rather huge commutative von Neumann 
algebra. The formulation of our assumption of "sufficient 
discontinuity" of the action of u( G) on .!If** consists in an 
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assumption of "sufficient nontriviality" of the action29 of 
C7( G) on fr. Let us introduce first a basic mathematical ob
ject.30 

Definition 2.1: Let fJI be the C7-algebra of all Borel sub
sets of g*. Then a G-measure Eg [or C7( G) -measure Eg] is a 
projection-valued measure Eg on g* with values in fr which 
is G-equivariant. This means that Eg is a C7-additive mapping 
from fJI into the Boolean lattice of projections in fr satisfy
ing the relation 

C7g (Eg (B» = Eg (Ad* (g)B), for all gEG, and all BEfJI. 
(2.2) 

The G-measure Eg is nontrivial if its supporfo 
E: = supp Eg Cg* contains at least one two-point transitive 
set [i.e., there are two distinct F(j)EE,j = 1,2, connected by 
the transformation: Ad*(gl2)FO) = F(2), for some gI2EG]. 
Let Pg: = Eg (g*) = Eg (E). • 

In the considered cases E will be compact. The above
mentioned (dis-) continuity of C7( G) is now formulated in 
the following assumption. 

Assumption 2.2: C7( G) C *-aut .sf" is such that there is 
at least one nontrivial G-measure Eo in the considered sys
tem (.sf,C7(G». • 

The albegra 'i of observables of C7( G)-mean-field theo
ries2°is isomorphic to the C*-algebra C(E,.sf) of .sf-valued 
norm-continuous functions on the compact E: = supp Eg , 

which in turn is isomorphic to the C *-tensor product 
.sf ® C(E). It can be embedded into .sf** by the isomor
phism E g : C(E,.sf) ->.sf" expressed by the formula20 

The algebras .sf, resp. C( E) are considered here as the subal
gebras of C(E,.sf) consisting of constant, resp. C-valued 
functions. The image of.sf by (2.3) is denoted here again by 
.sf (it belongs, strictly speaking, to the subalgebra Po .sf**), 
and Eo (C(E) ) C fr will be denoted by ff. The embeddding 
of'i =.sf ®ff into .sf** is useful due to the existence of 
canonical extensions of mappings defined on .sf to (normal) 
mappings on .sf". We obtain in this way, e.g., the natural 
extension of C7( G) C *-aut .sf to the group of autmosphisms 
of 'i = .sf ® ff leaving the subalgebras .sf and ff invar
iant; moreover, the group of automorphisms of ff con
structed in this way coincides with the natural action of 
Ad*(G) on C(E): 

C7g(Eg (I» = Eg (Ig ), 

where 

Ig(F): =/(Ad*(g-I)F). 

We obtain also the canonical extensions to 'i of those states 
wES(.sf) (: = the set of all states on .sf) the central covers28 

of which are majorized by Pg • "Natural" extensions to 'i of 
other states on .sf are non unique, and they depend on chosen 
way of taking "the" thermodynamic limit.31 Let us formu
late now a connection between the states wES( 'i) and the 
corresponding classical states Pw on ff. 

Proposition 2.3: The restriction of any state w on 
CCi: =.sf ®JY' to the subalgebra ff -C(E) is given by a 
probability measure Pw on E. If w is a factor state, the mea-
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sure Pw is concentrated at a point FwEE, i.e., Pw = {jF," 

: = the corresponding Dirac measure. Each point FoEE cor
responds to some factor state w on 'i with Fw = Fo. • 

Proof Any state on C(E) is described by a probability 
measure on E, by the Riesz-Markov theorem. Since C(E) is 
the center of 'i, the one-point support property of Pw for a 
factor state w follows. The last assertion of the proposition is 
a consequency of the product form32 of the pure states on 
.sf ®ff: For any pure state w.o/ on .sf and any Dirac mea
sure {jF. on E there is a pure (hence factor) state on 'i with 
restrictions to .sf, resp. to ff, equal to W.o/' resp. to {j F" 

Q.E.D. 
Let us consider now a quasilocal structure33 on the 

"bare" algebra .sf. Let .sf: = ® pElI .sf P be the C * -algebra 
defined in Sec. I. Let U( G) be a norm-continuous unitary 
representation of G in K o, and let XsE.sf° (SEg) 
be the generators of one-parameter groups 
~U(exp(ts» = exp( - itXs )' Let XsA be defined accord
ing to (1.4), 

I 
XsA: =- L 1Tp(Xs)' sEg. (2.4) 

IAI pEA 

ThenXsAE.sf(AEYII ) is a uniformly bounded net. It was 
shown in the proof of Proposition 2.9 in Ref. 20 that there is 
an absorbing directed subset {A ( j) : jeJ} C Y II such that all 
the subnets {XsA(j) :jeJ} (SEg) converge in the w*-topology 
of .sf**. This limit could be denoted by Xsll (Efr). Clearly, 
all the numerical nets {w(XsA(j) ):jeJ} (with wES(.sf) , 
sEg) are convergent: 

Fw (s): = lim w (XsA( j) ) = w (Xsn ). 
jEJ 

(2.5) 

For states wEPg S* (.sf"), with Po: = Eg (g*) as defined in 
Sec. II A of Ref. 20, and S. denoting the set of normal states, 
the limits in (2.5) are independent of the choice of taking the 
thermodynamic limit. 20 The functions F w depend linearly on 
sEg, since the association sf--+Xs is a representation of the Lie 
algebra g. Hence FwEg*. We shall consider wEPgS. (.sf") 
as a state on 'i C Pg .sf". One can choose different Pg de
pending on the way of taking the thermodynamic limit. Let 
the minimal Pg considered here be that one constructed in 
Sec. II A of Ref. 20, i.e., the maximal of such projections Po 
Efr for which the limits for the nets (2.4) (with AEY 11 ) 

(2.6) 

exist. Let us deonte by conv B=conv(B) the closed convex 
hull of BCg*. We shall now describe the structure of 
suppEg. 

Proposition 2.4: The subset of ECg* determined by the 
relation 

E: = {FwEg*: wES(CCi), Fw (s): = w(Eg (fs»for SEg} 
(2.7) 

is the convex hull of the set 

Eo: = {F",Eg*: F", (s) 

= (tP,xstP), SEg, ~o, IltPll = G. 
The set E is compact. It is identical with supp Eg : 

supp Eg = E = conv Eo. 
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Proof For any basis {Sj:j = 1,2, ... ,n} of 9 the numbers 
Fw (Sj) are coordinates of FwEg* in the dual basis. Supposed 
boundedness of the generators Xs implies boundedness of E. 
Convexity follows from the convexity in Crff * (: = the topo
logical dual to Crff) of the set S( Crff ), as well as from the ob
vious convexity of the mapping @-+Pw' Since Crff is unital, 
lECrff, the set S(Crff) is w*-compact22 in Crff*. Due to its con
vexity and boundedness, the convex mapping ~Fw is con
tinuous.34 But a continuous image of a compact set is com
pact. Hence E is convex and compact. Since the C *-algebra 
Crff is antiliminal,35 the set g'S( Crff) of its pure states is w*
dense in S( Crff ), and its (continuous) image is dense in E. 
The equality conv (supp Eo) = Eis valid due to the validity 
of 

Fw (s) = w(g( Is» = J F(s)/-lw (dF). 

To obtain any FwESUpp Eo it suffices to choose for /-lw the 
corresponding Dirac measure. We can conclude now that 
also supp Eo is convex. 30 Any product state w'" on d given 
for an arbitrary normalized ~o by 

W",(1Tp , (XI) ® 1TP2 (x2 ) ® ... ® 1TPm (x m » 
m 

: = II (t/I,xj,t/I), xj E2"(JYo) 
j=1 

belongs to PoS(d). One has for any given sEg, ~o, 

1It/l11 = 1: 

w",(XSA ) = (t/I,Xd) , for all AEYn . 

Since the extension of w '" to the state on Crff given by (2.5) is 
pure, one has EoESUPP Eg as a consequence of Proposition 
2.3. The construction of the G-measure Eo implies that the 
spectrum sp(Xsn ) of the self-adjoint element XsnECrff is 
sp(Xsll ) = {F(S)ElR:FEE}. But from the properties of spec
tra of functions of operators acting on a tensor product 
space, as well as from the convergence properties of the spec
tra of convergent nets of operators36 one can conclude that 

sp(XSfl ) = conv sp(Xs )' SEg. (2.8) 

From the definition of Fw in (2.5)-(2.7) we can see that 
E coincides with conv EO•

37 Q.E.D. 
Remark 2.5: Each state wES(d) has many different 

extensions to states on Crff. These extensions differ one from 
another, roughly speaking, by different possible distribu
tions of values of macroscopic quantities.38 We have asso
ciated classical states /-lw with states wES( Crff ). If one chooses 
a unique "physically acceptable" extension of any state 
wES( d) to a state wES( Crff ), than one can associate the cor
responding classical state directly to the state wES(d) on 
the "bare" C *-algebra d. We have seen in Proposition 2.9 of 
Ref. 20 that such a natural choice of the extensions of states 
is possible. • 

B. Dynamics of mean-field theories 

The Poisson structure27 on the compact E: = supp Eo 
introduced in (2.1) associates20 with any differentiable func
tion {lEC 00 (E) on E the classical ("Poisson", or equivalent
ly "generalized Hamilton") flow qJ Q on E. With 
j,: = qJ ~·f = l°qJ ~, the dynamics on E is expressed by Eq. 
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(2.20) of Ref. 20. The qJ Q-invariance of the Ad * (G) -orbits 
allows us to introduce20 the differentiable cocycle gQ:lR 
X E -+ G such that the relation 

qJ ~(F) = Ad*(gQ (t,F) )F, tElR, FEE, (2.9) 

is valid. The cocycle gQ is given by a solution of an ordinary 
nonautonomous differential equation on the group manifold 
G, or by a time-dependent Schr6dinger-like linear equa
tion. 39 It is specified,20 moreover, by an arbitrary function 
so: E-+g*, F~s~, such that Ad*(exp(ts~»)F=F(VFEE, 
VtElR), cf. (2.14). 

Now we can express the time evolution rQ in the system 
(Crff ,a( G» described in Sec. II A with a help of the cocycle 
gQ' Let/EC(E,d) - Crff. We define then};EC(E,d) by the 
formula20 

A -I A Q 
j,(F):=a(gQ (t,F»(f(qJ,F», tElR, FEE. (2.10) 

After the embedding of C(E,d) into Po d** via the map
ping Eg from (2.3) we obtain the expression of time-evolved 
elements r~(y) ()'ECrff) in the form 

r~(Eg <h) = J}; (F)Eg (dF). (2.11) 

The elements of d are identified with the constant functions 
in C(E,d). We see that this subalgebra d ofCrff is not invar
iant40 with respect of rQ if some constants are transformed by 
(2.10) into some non trivially varying functions, i.e., if the 
function 

F~Q I (t,F»(x) 

depends nontrivially on FEE for some XEd and for some 
fixed tElR. Let us formulate now some of the main results of 
Ref. 20. 

Theorem 2.6: With the above definitions and notation, 
let a( G) C *-aut d be strongly continuous, and let 
E = supp Eo be compact. Then 

(i) rQ is a strongly continuous one-parameter group of 
*-automorphisms of Crff . 

(ii) Let Ou (s), sEg, be the derivation of the one-param
eter automorphism group t~exp(ts» of d. Let so=O. 
The derivation oQ of rQ can be expressed by the formula 

oQ(Eo (I» = J ± ({Q,fj}(F) al(F) _ aQ(F) 
J= 1 afj afj 

XOu (Sj )(f(F» )Eg (dF), (2.12) 

for any "sufficiently differentiable,,41 IEC(E,d) - d ®JV. 
(iii) The subalgebra JV: = Eg(C(E» is rQ-invariant, 

and the restriction of rQ to JV coincides with the classical 
evolution qJ Q, i.e., r~(Eo ( I» = Eg (qJ ~ *.f). • 

We can be more specific in the case if the quasilocal 
structure of d as described in Secs. I and II A is introduced. 
Let us quote20.30 the following proposition. 

Proposition 2.7: Let d = ® d p , U(G), andXs be as 
perI 

above. Let X A (s): = I A IXsA' for sEg. Then the subalgebras 
CrffA: = Eg(C(E,dA» are rQ-invariant. For any "sufficient
ly differentiable,,41 IEC(E,dA), and for any AEYn , one 
has 
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(2.13 ) 

where the square bracket denotes the commutator in d A. • 
The time evolution oflocal perturbations of w is unitari

ly implementable in the G NS representations (17'", ,S)", ,.0.", ) 
corresponding to the time invariant states w, w = W 01'? 
(tER).l This means that there is a self-adjoint operator Q", 
on S)", such that Q",n", = 0, and 

17'", (1'?(y» = exp(itQ",)17'",(y)exp( - itQw), 

for all tER, and for yE'G'. If w is a ground state, then Qw can 
be interpreted as the energy operator in the corresponding 
"island of states" consisting of the local perturbations Wy 

ES( 'G') of w, Wy (x): = w(y·xy)/w(y·y) [for suchyE'G', for 
which w(y·y) ::;f0]. There were extensive discussions in the 
paseS

-
19 on the form of Qw in equilibrium (hence time invar

iane) states of mean-field interactions, and on the corre
sponding time evolution. To obtain some answers to this 
kind of questions in the framework of our formalism, we 
shall prove first the following lemma. 

Lemma 2.8: Let wES( 'G') be a factor state. Then the 
image 17' w ( 'G' ) ofthe algebra 'G' = d ® ff at the G NS rep
resentation 17'", coincides with the image 17' w (d) of its subal
gebra d. Specifically, 

17'",(Eg (In = 17'w(/(Fw », 
where I(F)Ed on the right-hand side is considered as an 
element of Pg d**. • 

Proof' Let F., EE be the point of the (generalized) classi
cal phase space of the considered system to which the factor 
state w !s projected ac~ordin& to the Pr:,oposition 2.3. Then 
17'",(Eg(iI»=17'",(Eg (.t;»iff/t(F.,)=.t;(F.,); this is be
cause w(Eg (B» = 0 for any Borel BeE such that FwfiB, 
and due to (2.3),aswellas due to the simplicity of d. Hence 
each element x: =Eg(/) with I(F): =yj(F) [yEd, 
jEC(E)] is represented by 17'w (x) = j(F", )17'w (y). The result 
is then obtained from the product structure of 'G' .' Q.E.D. 

We shall derive now the form of the generator Q", of the 
mean-field theory in the GNS representation 17'", corre
sponding to a time invariant factor state w. We shall use the 
following notation: 

I:-Q d I ( ~ aQ(F) I:- 1:- 0 
~ p: = -d gQ t,F) = £.J -a'F ~j + ~ p, 

t,=o j=1 j 
(2.14 ) 

where S~ was introduced in Ref. 39. 
Proposition 2.9:42 Let wES( 'G') be a 1'Q-invariant factor 

state. Let F., (S): = w(Eg ifs »' Then the generator Q., of 1'Q 
in the canonical cyclic (i.e., GNS) representation coincides 
with the (properly normalized) self-adjoint generator 
X", (S ~") of the one-parameter group 

t 1---W",(exp(tS ~»(17'", (x»: = 17'", 0o(exp(tS ~»(x) 

of • -automorphisms of 17'., ( d) = 17'", ( 'G' ). If all the one
parameter subgroups t~o(exp(tSj » are unitarily imple
mentable with the self-adjoint generators Xw (Sj ), and if S ~ 
== 0, the operator Q., can be written in the form 
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Q., = i aQ(F",) X.,(Sj ). (2.15) 
j= 1 aFj 

If d: = ® pEn d P (hence it is quasilocal), and if 1'Q is 
defined as in (2.11), the restriction of the evolution 17'", 01'Q to 
any 'G' A is generated by the element Q ~E17' w (d) which can 
be expressed (for SO == 0) in the form 

Q~ = i aQ(Fw) 17'",(X A (S)' (2.16) 
j= 1 aFj 

HereXA(S): = IAIXsA' as before. • 
Proof' As w is a factor state, we see from the proof of 

Proposition 2.3 that the central cover28 c( 17'.,) of the GNS 
representation 17'", is a minimal projection in .:r majorized by 
any Eg (B) with openB3F.,. The 1'Q-invarianceof w implies 
the time-invariance of c( 17'",) [with 1'Q canonically extended 
to an automorphism group of Pg d** :::)c( 17'.,) 'G' ]. The rep
resentation 17'", is an isomorphism of the C ·-subalgebra 
C(17'.,)'G' of d**. We have from the Lemma 2.8, for any 
IEC(E,d) , 

17'.,(Eg (In = 17'., <f(F", ». 
The rp Q-invariance ofF." as well as the formulas (2.10) and 
(2.11) give 

Q A -I A 

17'", (1', (Eg (j)) = 17'", (o(gQ (t,F", »(f(F", »). (2.17) 

The cocycle property20 of gQ implies the group property of 
t ~gQ (t,F", ) for the rp Q-invariant F"" i.e., 

gQ (tl + t2,F",) = gQ (t1,F", )gQ (t2,F.,), for all tl,t2ER. 

Hence gQ (t,F.,) = exp(S ~ ) for some element S ~ Eg. One 
has then the invariance of'"w with respect to the ;utomor
phism group t ~o(exp( - ts ~ » of d, and the consequent 
unitary implementability43 of this group in the representa
tion 17'." i.e., 

17'", (o(exp( - ts~»<f(F.,») 

= exp(itXw (S~"»17'", (Eg (I) )exp( - itX", (S~"», 
(2.18) 

for some self-adjoint operator X., (S~) on S)", annihilating 
the cyclic vector .0..,. By comparison of (2.17) with (2.18) 
one obtains 

Q A 

17'., (1', (Eg (j») 

= exp(itQ", ) 17'., (Eg (/»exp( - itQ",) 

= exp(itX", (S~"»17'", (Eg (I» 

xexp( - itX",(s~», for all tERJEC(E,d). 

Due to the uniqueness43 of the generator Q"" we have proved 
the first assertion of the proposition. The second assertion 
follows from (2.12) and the differential equation39 for gQ' 
The last assertion follows, with a help of previous consider
ations, from the 0'( G) -in variance of local algebras d A, and 
from the fact that the generators of the restrictions of 0'( G) 
to the local subalgebras themselves belong to these subalge
bras.42 Q.E.D. 

Notes 2.10: (i) If a 1'Q invariant state w has a "sufficient
ly nice" decomposition44 to time-invariant factor states 
xES( 'G') projected onto mutually distinct classical states 
concentrated at F"EE, 
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lUCy) = J x, (Y)I1/"(dx,) , ye'G', (2.19) 

with some probability measure It" on S( 'G' ),45 then the cor
responding generator Q., is equal to an integral of the gener
ators of the form (2.15). This can be seen also from (2.15), 
where the first term containing the Poisson bracket vanishes 
due to the cp Q-invariance of points F = Fx lying in the inte
gration domain.42 

(ii) The generator (2.16) [resp. also (2.15) ] of the time 
evolution in any time invariant factor state [or also the inte
gral of such generators constructed in more general GNS 
representations according to the preceding note (i)] is 
called here (in an agreement with the traditional terminol
ogy) 14.15,46 the Bogoliubov-Haag Hamiltonian. • 

III. EQUILIBRIUM STATES 

The finite quantal systems were described traditionally 
by operators, density matrices, and Wigner symmetries30 in 
a separable Hilbert space S). It is supposed in the traditional 
version47 of quantal statistical mechanics48 that there is giv
en a self-adjoint operator H corresponding to the energy ob
servable in the described system of a (large but) finite system 
of "elementary constituents" with the property that the op
erator exp( - PH) is of trace class, exp( - PH)EY(S), 
for all P > 0, where P - I is the temperature of the system. If 
this is the case, then the equilibrium state lU/3 of the system is 
described by the density matrix P/3 in the usual way: 

lU/3(x):=Tr(p/3x), with P/3:=Zilexp( -PH), 

XE.Y (S). (3.1) 

The thermostatics Ie of the system is described then by the 
partition function Z/3' 

Z/3: = Tr(exp( - PH». (3.2) 

This scheme cannot be used in the description of infinite 
systems, for which the operator of total energy H cannot be 
defined. Also, for the generator H 1/' of time evolution in a 
representation 1T the operator exp( - PH1/') is usually not of 
trace class. One overcomes this difficultyl.6 by enclosing a 
finite part of the system described by a local algebra of obser
vables.Ji£A into a finite box A, constructing local Gibbs states 

lU~ according to (3.1) withH replaced by a suitableH A, and 
taking a thermodynamic limit A/II. To the best of the pres
ent author's knowledge, the obtained limiting Gibbs states 
lU/3 satisfy the KMS condition in all the cases in which it was 
possible to obtain a definite result. This condition is formu
lated for the total (infinite) system if its global time evolu
tion is known.49 

Definition 3.1: Let Ctf be a unital C *-algebra, and let T be 
a strongly continuous one-parameter subgroup of the *-au
tomorphism group of 'G' . Let 'G' 7 be the set of all entire ana
lytic elements of 'G', i.e., ye'G' 7¢:}the function z ~Tz (y) is 
entire analytic. Let 87 be the generator (derivation)6 of T, 

and let D(87 ) C Ctf be its domain. Then the state UJES( Ctf) is 
called (i) a T-KMS state at the inverse temperature P (briefly 
a (T,fJ) -KMS state) if there is a norm-dense T-invariant 
*-subalgebra 'G'~ of Ctf 7 such that for all X,yE'G'~, 

lU(XT;/3(y» = lU(YX); (3.3) 
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or (ii) a T-ground state (or T-P KMS state at P = + 00), if 

- ilU(y*87 (y»>O for all yeD(87 ). .(3.4) 

One can easily check that the relation (3.3) is fulfilled 
by the states lU/3 of traditional quantum statistics defined in 
(3.1), if the time evolution is described by the automor
phism group T of .Y (S) generated by H: 

TI (y): = exp(itH)y exp( - itH) , ye.Y (S), tER. 
(3.5) 

Let lUeS( 'G' ) be a T-invariant state for a strongly contin
uous one-parameter group TC *-aut 'G'. Let H., be the can
onically defined43 generator of T in the cyclic GNS represen
tation (1T."S).,,!}.,), i.e., 

1T .,(TI (x» = exp(itH",)1T '" (x)exp( - itH",). (3.6) 

The following lemma is then valid. 50 
Lemma 3.2: In the conditions of the Definition 3.1, the 

state lUeS( Ctf) is a ground state iff lU is T-invariant, and H", 
>0. For such a state we have exp(itH",)E1T", ('G') " = the 
strong operator closure51-53 of the set 1T '" ( 'G' ) C .Y (S) w ) •• 

Some of the important properties of the general KMS 
states are collected54 in the following proposition. 

Proposition 3.3: Let K/3 CS( 'G') (0 <P<. 00) be the sets 
of (T,P)-KMS states for a strongly continuous automor
phism group TC *-aut 'G'. Then 

(i) Each state lUEK/3 is T-invariant, i.e., lUoTI = lU(tER). 
(ii) Each set K/3 is a convex w*-compact subset of 

S('G'). 

(iiia) For P i= 00, K/3 is a simplex55 in S( Ctf). 

(iiib) K"" is a face56 in S( Ctf). 

(iva) The set 'l! K/3 of extremal points lUEK/3 (P i= 00 ) 

consists of factor states: The centers of 1T '" ('G' )" are trivial 
for lUE'l! K/3' 

(ivb) The extremal points lUE'l! K"" are pure states, i.e., 
1T",('G')" = .Y(S)",). 

(v) For lUj E'l!K/3 (Pi=oo,j= 1,2) one has either 
lUI = lU2' or lUI 6 lU2' i.e., any two distinct extremal KMS 
states are disjoint. This means that the central covers of their 
GNS representations are mutually orthogonal. 

(vi) The extremal decomposition oflUEK/3 (P i= 00) co-
incides with its central decomposition. 57 • 

Now we shall study the specific properties of the ( TQ,fJ)
KMS states of our "C *-dynamical system,,6 (Ctf ,TQ). We 
shall consider from the beginning the specific quasilocal 
structure of the "physical" algebra of observables 

'G' =.Ji£ ®JV -C(E,.Ji£), with .Ji£ = ® .Ji£P' andJV 
pEn 

- C(E). The time evolution TQ is determined according to 
(2.11). First we shall prove several auxilary assertions. It is 
assumed that all the traces in the forthcoming formulas ex
ist. This happens, e.g., if the considered Hilbert space S) is 
finite dimensional. 

Lemma 3. 4: Let Hand Xbe self-adjoint operators on the 
Hilbert space S). Let [X, Y] denote the commutator of opera
tors X and Y. Then, for any Borel functionJsp(H) ..... R, one 
has 

Tr(f(H) [H,xD = o. • 
Proof: From the commutativity of f(H) with H, and 
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from the invariance of the traces with respect to cyclic per
mutations of operators in products lying in the argument of a 
trace, we obtain 

Tr(j(H)HX) = Tr(/(H)XH), 

which gives the result. Q.E.D. 
Lemma 3.5: Let Xs (SEg) be the self-adjoint genera

tors58 of a strongly continuous representation U( G) of the 
Lie group G in 5). Let us choose an 1]Eg. Let I be a real
valued Borel function on the spectrum sp(X'1)' Let F~Eg* 
be defined by the relation 

F~ (S): = Tr(j(X'1 )Xs), for all SEg. 

Then F~ is a stationary point of the one-parameter group 
{Ad*(exp(t1]) ):tElR} of transformations of g*. • 

Proof: We have to prove F~([1],S]) =0 (VSEg).25 
Since X['1.s J = - i[X'1'Xs]' we have to prove 
Tr(j(X'1) [X'1,xs]) = 0 (VSEg). The last equation is valid 
due to Lemma 3.4. Q.E.D. 

The following proposition shows that the Gibbs state w{3 

from (3.1) determined by the Hamiltonian H: = Qw (acting 
in a Hilbert space 5) given by the formula (2.15) determines 
such expectation values Fw (S) (SEg) of observables Xs that 
are automatically stationary with respect to the correspond
ing classical Hamiltonian time evolution cp Q of the "mean
field" FEg*. 

Proposition 3.6: Let {sd = 1,2, ... ,ntbe an arbitrary ba
sis in g. Let QECOO(E,lR). The point FEg* satisfying the 
"consistency condition" 

Tr[exp( - {3.± aQ(F) XSj)Xs ] 
J= 1 aFj 

= F(S)Tr[exp( - {3 .± aQ(F> X Sj )], 
J= 1 aFj 

for all SE~ is a ~ationary point of the classical flow cp Q on g*, 
i.e., cp ~(F) = F, for all tER • 

Proof: Let us set in the Lemma 3.5 

n aQ(F> 
1]: = .L -aF Sj' 

J= 1 j 

and I(x): = const exp( - {3x) with 
const: = [Tr[ exp( - {3X'1)]] -I. Th~nF~ = Fis a station
ary point of t~Ad*(exp(t1]», i.e., F([1],S]) =0, for all 
SEg. We have 1] = dFQ. The definition (2.1) of the Poisson 
structure on g* then implies59 

A 

{Q/s} (F) = 0, for all S = g, 

hence also 

!!...I j{CP~(F»=O, for any/ECOO(g*). 
dt ,=0 

This implies stationarity of E, since the Hamiltonian equa
tions are differential equations of the first order. Q.E.D. 

The following lemma takes into account the quasilocal 
structure of d (resp. C(f). We shall consider the set n to be 
endowed with the structure of a commutative noncompact 
discrete group, e.g, n could be the v-dimensional lattice ZV. 
This is not any serious restriction of generality, but it enables 
us to take formulations of some assertions directly from the 
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literature. Let the group multiplication in n be denoted by 
" + ", and let DEn be the unit element. Then we shall consid
er the algebra dO = ..t" (K 0) as a subalgebra d P (with 

p = 0) of d = ® d P, and the mappings 7Tp from (1.1) will 
pElI 

be considered as a translation automorphisms of d in a nat-
ural way: For xEdq

, we define 7Tp (x): = 7Tp+ q 07Tq- 1 (x), for 
p,qEn. 

Lemma 3. 7: Let d be the quasilocal algebra with the 
quasilocal structure generated by an action 7T1I of countable 
discrete abelian group n, as described above. Let wES( d) 

be a 7T n -invariant factor state. Then w is weakly 7Tn -cluster
ing,lb hence 

lim W(7Tp (x)y) = w(x)w(y), for all x,yEd. 
P- 00 

Conversely, any 7Tn -clustering state on d is a factorial 
state. • 

Proof: This is a corollary to the Proposition 2.3 of Ref. 
33a. • 

A connection between expectations of mutually corre
sponding local and global quantities in equilibrium states 
gives the following almost trivial lemma. 

Lemma 3.8: Let w = Sed) be a 7Tn -invariant product 
state, 

w: = ® wP, with wP: = W OO7Tp- I, for pEn, (3.7) 
pElI 

where wPES( d P ). Let wES(Pg d**) denote also the normal 
extension of w. Let Fw (S): = w(Eg (Is» for SEg. Then 
wo(Xs) = Fw (S)· • 

Proof: After insertion of (2.4) into the argument of w, 
we obtain w(XsA ) = wO(Xs) for all AEY n' Since the cen
tral cover c( 7T w ) <;Pg , due to permutation invariance of W,6O 

the result is obtained from (2.6). Q.E.D. 
Now we are going to formulate our main theorem con

cerning the structure of the KMS states of the considered 
mean field theories. Due to the separability of the C *-algebra 
C(f, each KMS state is supported (and not only pseudosup
ported) 61 by extremal KMS states of the considered strongly 
continuous time evolution at the same temperature. Hence it 
is sufficient to consider extremal KMS states of our systems. 
Any other KMS state is expressible by a w*-convergent inte
gral of extremal KMS states determined by some regular 
Borel measure on S( C(f) supported by the Borel set of the 
extremal KMS states.62 

Theorem 3.9:63 Let us consider the C *-dynamical sys
tem (C(f, T Q) with C(f = d ® JI/, and the quasilocal struc
ture defined by the action 7Tn of the abelian group n, as it 
was introduced above. Let wES( C(f ) be a state on C(f satisfy
ing (2.5). Then the following two statements are equivalent: 

(i) The statewES( C(f) is an extremal KMS state at posi
tive temperature 0 <{3 < 00. 

(ii) The state w is a 7Tn -invariant product state 

where WO is the unique (u'1,{3) -KMS state on 
dO: = ..t" (Ko) corresponding to the one-parameter auto
morphism group u'1: = {u'1(t): = u(exp( - t1]»:tER} of 
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,xfo, with 1]: = S ~ , and this F",eg* satisfies the "consistency ., 
condition": 

• 
Proof: (i) implies that llJ is a rQ-invariant factor state. 

According to the Proposition 2.9, the time evolution of 
1T '" ( '6') = 1T '" ( ,xf) induced by the group rQ C * -aut '6' coin
cides with the evolution induced by the group U T/ C u( G) 
determined as in (ii). The "consistency condition" is satis
fied here trivially-from the definition of F", entering in the 
determination of the generator 1]eg. Hence llJ is a (uT/,{J)
KMS state on '6'. The restriction llJo of llJ to the subalgebra 
,xf0 is also a (uT/,{J) -KMS state, since ,xf0: = 2" (Jf'o) is 
u( G) -invariant. The cyclic vector fi", is separating for 
1T '" (,xf)", 28 so that llJo is a faithful normal state on ,xf0. 
Hence61 llJo is the unique (uT/,P)-KMS state on 2"(Jf'o) 
determined by (3.1) withH: = XT/' cf. Proposition 2.9 [with 
Q",: = X", ( 1]) = X T/ + constT/' if the corresponding trans
formations are restricted to the subalgebra ,xfo, and the addi
tive scalar valued constant "constT/ " might be inserted for a 
convenient renormalization]. The same considerations are 
applicable to the restriction llJA of llJ to the subalgebra 
,xf A = 2" ( ® peA Jf'p) for any finite A: The state llJA is the 
unique (u T/ ,m -KMS state on ,xf A determined by the Hamil
tonian (2.16). 

We have to prove that llJ is 1Tn -invariant product state on 
,xf (which has a unique "physically acceptable" extension to 
the "physical algebra" '6' , coinciding with the given 
llJEPg ,xf**). Let (ijA: = ® pEAllJo01Tp-leS(,xfA) be the prod
uct state determined by the (uT/,{J) -KMS state llJo on ,xf0. 
Then (ijA also satisfies the (uT/,m -KMS property [cf. Eq. 
(3.3)], hence it coincides with the unique (uT/,m -KMS 
state llJA on ,xfA. The state llJeS(,xf) is uniquely determined, 
however, by its restrictions to all local subalgebras ,xfA. This 
proves the product property, as well as the 1T" -invariance of 
the extremal KMS state llJeS( '6' ). So we have proved the 
implication (i) ~ (ii). 

Let llJ be given by (ii). We have just proved that this 
product state llJ satisfying the "consistency condition" (spe
cifying also the values of 1]: = S ~") is a unique extremal 
(uT/,m -KMS state on ,xf. The Lemma 3.8 and Lemma 3.6 
imply time invariance of F", = q; P(F", )eg*, hence also the 
equalities {QJ1(F",) = 0 [for alljEC 00 (E)]. Factorialityof 
llJeS(,xf) follows from its product property,33 cf. Lemma 
3.7. The comparison of the expression (2.13) for the deriva
tion t>Q of the time evolution rQ taken in the representation 
1T '" with the generator of U T/ (with 1]: = S ~) expressed by a 
help of (2.14), the factoriality of llJ, and the constancy 
F", = q; PF", show that llJ is also a (rQ,p)-KMS state on '6'. 
The extremality follows now from the Proposition 
3.3(vi). Q.E.D. 

In proving the theorem we have also proved the follow
ing results. 

Proposition 3.10: (i) There is exactly one (u T/ ,m -KMS 
state of the system ('6' ,u( G)}, for each /3EH, and for each 
1]eg. It is the product state of identical copies of the Gibbs 
state ~ on subalgebras,xfP (pen). The Gibbs state llJ~ on 
2" (Jf'o) is determined by the Hamiltonian H: = X T/ accord-
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ing to the formula (3.1). The points FZeg* determined by 
the "consistency condition" FZ (s): = llJ~ (Xs ) are station
ary points of the Poisson (Le., generalized Hamiltonian) 
flow q; T/ on g* generated by the classical Hamiltonian 
fT/eC 00 (E):q; iF: = Ad*(exp(t1])~ FZ -=FfT/. 

(ii) For any stationary point Fee of the classical flow 
q; Q, there is at most one extremal (T"Q,{J) -KMS state of the 
system ('6', T"Q). It exists iff the Gibbs state llJ~ on ,xf0 corre
sponding to the quantum-mechanical Hamiltonian XT/ with 

satisfies the "consistency condition": 

llJ~ (Xs ) = F(s), for all seg. 

(3.8) 

(3.9) 

(iii) The set of all rQ-KMS states on '6' is independent of 
the choice of "physically acceptable" extensions weS( '6' ) of 
all states weS(,xf) according to (2.5)-see also Proposition 
2.9 of Ref. 20. • 

Now we can give an answer to the quenstion on exis
tence ofKMS states for any system of the considered class of 
mean-field theories. Let us introduce the mappings 
"'p:g-+g* (peR), "'p:~"'p(1]): = FZeg*, such that for 
X(s): = Xs one sets 

FZ(S): 

= [Tr exp( - PX(1]))] -ITr[exp( - PX(1])}X(s)]. 
(3.10) 

The mapping "'pis continuous, since the association 
~X( 1]) is bounded linear [we consider here finite dimen
sional representations U( G) only]. The point FZeg* corre
sponds to the unique P-KMS state of the automorphism 
group t ~exp (t1])} -= U T/ (t) of '6'. The ranges of the map
pings "'pare contained in the convex compact set 
E: = conv Eo = supp Eg, cf. Proposition 2.4. 

The mapping S Q:B-+s ~eg -= g** -= T ~g* is a contin
uous mapping from E into g, cf. (2.14). The existence of 
KMS states is then assured by the following proposition. 

Proposition 3.11: Let U( G) be a finite dimensional rep
resentation of any given compact connected Lie group G, 
QeC 00 (g*,H), and let ('G' ,T"Q) be a corresponding mean
field system (with supp Eg = conv Eo, as in Proposition 
2.4). Then there is at least one (T"Q,m -KMS state of this 
system for any peR. • 

Proof: The composed mapping'" p Os Q:FI---+'" p (s ~)eg* 
is a continuous mapping of a convex compact subset E of g* 
into itself, hence it has a fixed point F, due to the Schauder 
!!.xed point theorem (cf. Ref. 24c, p. 565). This means that 
Fee satisfies the "consistency equation" 

A Q 
F= "'p(s F)' (3.11) 

We can construct now a permutation invariant product state 
llJ according to (3.7), with 

llJo(y): = [Tr exp( - PX(s~)}] -lTr[ exp( - PX(s~)}y], 

for ye,xf0-= 2" (Jf'o). Then one can use Lemma 3.8 to see 
from Theorem 3.9 that llJ is the desired (T"Q,{J) -KMS 
state. Q.E.D. 
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From the proof of this proposition one can see the valid
ity of the following assertion. 

Corollary 3.12: Let G be a connected compact Lie group, 
and U( G) its finite dimensional unitary representation. Let 
E: = conv Eo, as in Proposition 2.4. Assume that E is en
dowed with the canonical Poisson structure of the space g*. 
Then the (generalized) Hamiltonian flow f/J Q on E corre-

A 

sponding to an arbitrary QeC 00 (E,R) has a fixed point FeE, 
f/J?F = F(tER), with F satisfying the "consistency condi
tion" (3.11). • 

We cannot obtain such a complete and general informa
tion on the 'TQ-ground states (i.e., the KMS states at 
{3 = 00), since there is no uniqueness theorem on ground 
states for general Hamiltonians for "local" subsystems. We 
can, however, formulate the following assertion. 

Proposition 3.13: Let the C *-dynamical system 
(<G': = .Q{ ®'%,'TQ;O'( G),1Tn ) be given as above. Let 
WES( <G' ) be determined from the product state 
cu: = ® penol'ES(.Q{) by the natural extension (2.5). Let the 
F., given by (2.5) be f/J Q-invariant, and let all the 01' (pErI) 
be ground states on .Ji'fP with respect to the restrictions of 
0' T/ (TJ: = s~") to .Q{p. Then cu is a factorial ground state on <G' 
for the evolution 'TQ. If all the 01' (pErI) are pure then cu is an 
extremal 'TQ-ground state. • 

Proof The factoriality of cu is a consequence of the clus
ter properties according to Lemma 3.7. The condition (3.4) 
is fulfilled for '1': = 0' T/ due to the factoriality of cu, due to the 
Ad*(exp(tTJ) )-invariance of F." and due to the trivial fulfill
ment of (3.4) by local elementsyE.Q{A (AEYn ). An appli
cation of the Proposition 2.9 proves the fullfillment of (3.4 ) 
also for '1': = 'TQ. The remaining assertion is valid, since the 
restriction of the product of pure local states 01' to any local 
subalgebra.Q{A is a pure state cuA (hence it cannot be a con
vex combination oftwo mutually different states). Q.E.D. 

Now we shall consider the question on existence of 
ground states. Let ns~o be an eigenvector of X(s) corre
sponding to the minimal eigenvalue. Then the permutation 
invariant product state cusES( '7ff) constructed from cu~ ac
cording to (3.7), with 

cu~(y): = (ns,yns )' yE2'(,w'o), 

is a ground state for the system (<G',O' s ). Let us define the 
mapping 

l{loo :g-+g*, s~F~: = l{loo (s), 

F~ (TJ): = (ns,X(TJ)fls)' TJEg. 

Let the mapping S Q:g* -+ g, F~s ~ be defined according to 
(2.14 ). 

Proposition 3.14: Let the above defined mapping l{loo can 
be chosen continuous for the considered representation 
U( G) (with E: = supp Eo convex compact). Then the sys
tem (<G', 'TQ) has a ground state. • 

Proof The composed mapping l{loo Os Q of the two con
tinuous mappings l{loo and S Q is a continuous mapping of the 
convex compact set E into itself, cf. Proposition 2.4. Then an 
application of the Schauder fixed point theorem, and the use 
of Proposition 3.13 gives the result (cf. also the proof of 
Proposition 3.11). Q.E.D. 
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Let us close this section with some easily derivable re
sults on symmetries of the considered systems.64 

Remarks 3.15: (i) ]'E*-aut <G' iff there is a homeomor
phism f/Jy: E -+E, and a function r: E -+ *-,!lut .Q{, F~r F' with 
Y strongly continuous, such that for alljEC(E,.Q{) one has 

y(f)(F) = YF<f(f/JyF», for all FeE. (3.12) 

(ii) Let <G':= C(E,.Q{), Eg (<G') CPg.Q{**, and let 
Eg 0yoE g-I be extendable to an *-aut Pg .Q{**. Let rand f/Jy 
be definedAaccording to (3.12)'AThen f/Jy is uniquely deter
mined by y. This connection of y and f/Jy is expressed by the 
formula: 

Eg (jsof/Jy) = s* -l~ J rF(XsA )Eg (dF),VsEg. 

(3.13) 

(iii) For y: = O'g (some fixed gEG) one has f/Jy 
= Ad*(g-I). 

(iv) If YO'T?=='T?oy, then f/Jyof/J?==f/J?of/Jy' If f/J y is, 
moreover, a Poisson automorphisms27 of E, then 
f/J ~Q = Q + QO, whereQoisconstanton theAd* orbitsofG 
inE. 

(v) If Qo Ad * (g) == Q, and F satisfies the consistency 
A 

condition p.9), then (3.9) is satisfied also by Ad*(g)Fin-
serted for F. • 

IV. SOME HINTS FOR APPLICATIONS 

Let us consider the system determined by the quasilocal 
algebra .Q{ defined by its local subalgebras .Q{A as in (1.2), 
and by the local Hamiltonians Q A from (1.5). Suppose that 
.Q{0: = 2' (,w'o) is finite dimensional. We have an unambig
uously defined global dynamics of the infinite system, 20 and 
we have a mathematically clear description (except of a de
tailed knowledge of the stability properties of states) of the 
corresponding equilibrium thermodynamics of such a sys
tem (cf. Sec. III). At the beginning of this section we shall 
describe briefly a general algorithm of how to calculate inter
esting quantities connected with a system from the consid
ered class of mean-field theories. Afterwards we shall sketch 
applications of our methods to two simple nontrivial exam
ples modeling the superconductivity. 

(i) First, since,w'o is finite dimensional, we can embed 
the matrices X j E2' (,w'o) into a finite dimensional Lie alge
bra Xo of matrices Xs (SEg), where 9 is the Lie algebra of a 
connected compact Lie group G. The group G can be taken, 
e.g., to be the unitary group U(N) of ,w'o, with 
N: = dim ,w'o, but it would be better to take G "as small as 
possible"-to simplify the forthcoming calculations. To ob
tain the minimal Lie algebra of matrices in 2' (,w' 0) contain
ing the Aj occurring in (1.5), we have to add those commu
tators Yjk: =i[Aj,xm] #cjmXI which are linearly 
independent of the original set Xj (j = 1,2, ... ,k) to this set, 
and subsequently we have to add to this new set of matrices 
similar commutators between the matrices from the set 
{Aj,Yjm :i,m = 1,2, ... ,k}, etc. The finite dimensionality en
sures that we shall obtain a Lie algebra Xg generated by 
{Aj,Yjk,Zjkl''''} in a finite number of steps. • 

(ii) The next step in the investigation of the dynamics of 
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our lattice model is the formulation and investigation of the 
classical equation corresponding to the group G and to the 
function QeC 00 (E). The Lie algebra 9 of the group Gis 
represented in K o by the set Xo of self-adjoint operators. 
The set E could be investigated subsequently, after recogniz
ing some facts on the structure of the Ad* (G) orbits. The 
function Q is determined from the local Hamiltonians Q" by 
the correspondence of ( 1.3) with ( 1.5). To obtain Q, we can 
choose A: = {a}: = "the one point set containing a chosen 
point Den" in ( 1.5), and insert into ( 1.5) of the coordinates 
Fj: = F(Sj) for the operators~. The Poisson brackets are 
determined by the commutators between Xj's. For an arbi
trary normalized 'l/lEK0, let F", (s): = (1/I,xs 1/1). According 
to (2.1), as well as according to the relation 

[Xs,x.,] = iX1s . ., l' s,1]Eg, (4.1) 

we have the expression for Poisson brackets of the functions 
Is(F): =F(s), 

Vs!.,}(F",) = -F",([s,1]]) = i(1/I,[Xs,x.,]1/I)· (4.2) 

We can introduce the corresponding structure coefficients 
c'fo. in the chosen basis Xj (j = 1,2, ... ,n) of the Lie algebra 
Xg, 

(4.3) 

and the corresponding Poisson brackets for the coordinate 
functions Fj (F): = Is} (F) are obtained immediately: 

{Fj,Fk}(F) = - cj7cFm (F). (4.4) 

The next step is the writing down the Hamilton equa
tions of motion 20 for the coordinate functions Fj : 

fj = {Q,Fj}, j= 1,2, .. ,n, (4.5) 

where the right-hand side can be calculated from (4.4). 
Equations (4.5) can be nonlinear even for quadratic Q, as it 
will be seen in the forthcoming examples. The fact of the 
existence of the flow If Q solving (4.5) is known,24 but de
tailed investigation of properties of If Q might be very com
plicated for a general Q. However, for an analysis of equilib
rium thermodynamics, it might be sufficient to know the 
stationary points FEg* of (4.5), i.e., the points F, where 
{Q,Fj}(F) = 0 for allj. • 

(iii) Now we can investigate the set E: = supp Eo' Let 
us denote here ~:=Xs} (j=1,2, ... n), where {Sj: 
j = 1,2, ... ,n} is a basis of the Lie algebra g, and the self-ad
joint Xs (SEg) form the minimal matrix Lie algebra in 
.? (Ko) containing the originally given Xj's. Then, accord
ing to the Proposition 2.4, the set conv{F",Eg*:F", (Sj): = 
(1/I,xj1/l), 111/111 = 1, 'l/lEK0, j = 1,2, ... ,n} 
= {FEg*:F(s)Econv sp(Xs ) for all SEg} e g* coincides 

with E: = supp Eo .30 An effective help in the construction of 
the set Ee g*, as it will be seen in our analysis of specific 
examples, is the Ad * (G) invariance of E. The set E is the set 
of all possible values of the "mean field" (i.e., of the macro
scopic intensive quantities) of our system; all the values FEE 
are really achieved in some (even in factor) states. • 

(iv) With the solution If Q known, we can calculate all 
the details of the quantum microscopic evolution of arbi
trarily local quantities yed by solving the equation for the 
unitary operator-valued function UQ: = UogQ.39 The time 
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evolution of an arbitrary element jEC(E,d) 
- <c = d ® ff is described, according to (2.10) and 
(2.11), by the evolution If Q in ff - C(E) as well as by the 
evolution of elements XEd considered as constant functions 
onE. Hence 

1'~(x) = f o(gQI(t,F»)(x)Eg(dF), for all XEd. 

(4.6) 

Elements from d are constructed by norm-continuous alge
braic operations from elements XEdP (pen), each d P is 
invariant with respect to the action of 0'( G) described by a 
copy of the unitary action O'(g)(x): = U(g)XU(g-l) 
(XEdO,geG), and any C*-morphism is norm continuous.53 

So, to get the knowledge of the action of 1'Q on d, it is suffi
cient to know its action onto the elements of dO. For the 
cyclic representation 1T" '" corresponding to a factor st~te 
WES( <C) we have from Lemma (2.8) 

1T"",(1'~(X») 

= 1T"",(U Q I (t,F", )xUQ(t,F", »), VXEdo, 'IteR. 
(4.7) 

We see that the time evolution of local elements from d 
depends on the "classical projection,,65 F",Eg of the consid
ered factor state (j). Since each state has a canonical (central) 
decomposition into an integral of factor states, one can see 
that the knowledge of the evolution in (4.7) (in addition to 
the evolution If Q of classical observables) determines 1'%*
aut <c completely. Let us stress here several facts concerning 
this point (iv) of our exposition. • 

Remarks 4.1: (a) The time evolution (4.7) oflocal ele
ments of d depends in the considered mean-field type theo
ries on the chosen initial value F", determined by the (factor) 
state (j) of the whole infinite system. This value F", is not 
changed by local perturbations of the state (j), hence it does 
not depend on the initial state of a local subsystem d" 
(AEYIl ), i.e., on the restriction of (j) to d". In this way, the 
time evolution of local quantities is one-sidedly influenced 
(i.e., without an occurrence of any "locally observable feed
back") by the classical macroscopic quantities of the large 
quantal system. 

(b) With the classical evolution If Q known (it is a solu
tion, as a rule, of a finite set of nonlinear coupled ordinary 
autonomous differential equations), the equation39 for U Q is 
a finite dimensional linear ordinary differential equation 
with time-dependent coefficients depending, moreover, on 
the parameter F", Eg*. The calculation of the dynamics of our 
infinite quantum system is reduced in this way to the solu
tion of two finite dimensional ordinary differential equations 
(of the dimension at most n: = dim G), only one of which is 
nonlinear. The dimensions in the examples ofthe strong cou
pling BeS model, resp. of the Josephson junction modeled 
by an interaction of two such BeS models are n = 3, resp. 
n = 6, as we shall see later in this section. • 

(v) The extremal KMS states of our system are con
structed now according to Theorem 3.9. The essential tool of 
this construction is solution (for the unknown elements 
F",Eg*) of the "consistency condition" 
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(4.8) 

Here the Gibbs state (J)~ is constructed according to (3.1) 
from the Hamiltonian X'1' 1]: = S ~"" where the Lie algebra 
element S ~'" is defined in (2.14). Equation (4.8) is a finite 
dimensional transcendental equation for Fw as an implicitly 
given function of /3 and c},7/· -jm from the polynomial Q in 
(1.3). 

The solutions Fw of (4.8) need not be invariant with 
respect to a transformation cp:E->E, which is a symmetry 
transformation of the Hamiltonian Q (cf. Remarks 3.15, and 
Ref. 64), i.e., 

Qocp = Q, and simultaneously cp(Fw) =j:.Fw' (4.9) 

This is a kind of "symmetry breaking" which often occurs in 
the presence of phase transitions l

•
6 at low temperatures. A 

further investigation of symmetries of the considered class of 
systems as well as of their "breaking" is postponed to a sepa
rate paper.64 

• 

We shall now illustrate the described procedure on two 
nontrivial, although technically relatively simple models. 

A. The strong-coupling BCS model 

The local systems are described in this model by the ~
spin quantum variables, i.e., Jlt'o: = C2, and elements of 
&'°are all the 2 X 2 complex matrices. The local Hamilto
nians Q A of the considered version of the BCS model are 
described (up to an additive scalar "renormalization con
stant") 15 in terms of the Pauli matrices24c (7j' j = 1,2,3; 
(7jp: = 1Tp «(7j ) (pEII), resp. of their combinations 
(7 ± : = (71 ± i(72' as follows: 

QA:= -EL(73P-~L(7+p L(7-Q' 
pEA 41AI pEA qeA 

(4.10) 

where E and A are some positive numbers. Since the (7 matri
ces are proportional to the generators of the two-dimension
al unitary irreducible representation of the group SU (2), we 
shall choose G: = SU (2) in our considerations. The Pauli 
matrices satisfy the commutation relations (with the imagi
nary unit iEC) 

[(7j,(7k] = 2iEjk/(7/. 

(We use here the standard summation convention; Ejk/ are 
components of the totally antisymmetric unit tensor of the 
third order in R3

, EI23: = I). These relations correspond to 
the commutation relations for the generators X';j: = ~(7j 

(j = 1,2,3) of the representation of SU(2) associated with 
the basis {Sjj = 1,2,3} of the Lie algebra g: = su(2) for 
which we have 

(4.11 ) 

The classical Hamiltonian Q is now of the form 

Q(F) = - 2EF3 -,1(Fi + F~) == - 2EF3 -,1F+F_, 
( 4.12) 

where F ± : = FI ± iF2 , and Fj (F): = F(Sj ), (FEg*). The 
Poisson structure on g* = su (2) * is determined by the Pois
son brackets 

{Fj,Fk } = - Ejk/F/, j,k,(l) = 1,2,3. (4.13) 

By the substitution into Eq. (4.5) of (4.12) for Q, and by 
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taking the Poisson brackets from the relations (4.13), we 
obtain the classical equations of motion for our model, i.e., 

FI = 2(E - ,1F3)F2, (4.14a) 

F2 = -2(E-,1F3)FI, (4.14b) 

F3=0. (4.14c) 

The solution is elementary: 

F + (t) = F + (O)exp( - 2i(E - ,1F3)t), (4.15 ) 

with F3: = F3(t) = F3(0), for all tER. 
Since the time evolution cp Q is nontrivial, the (cp Q-invar

iant) Ad*-orbits have nonzero (even) dimension. Being 
submanifolds of the three-dimensional space su (2) *, the or
bits are two dimensional (except of a zero-dimensional orbit 
consisting of the point F = 0). The compactness of the group 
SU(2) implies compactness of the orbits. Symplectic mani
folds are orientable. The orbits are homeomorphic to a two
dimensional sphere S2: The existence of the invariant 
F2: = Fi + F~ + F~ of the Poisson structure, {F2,Fj} = 0 
(j = 1,2,3), shows that the Ad*(SU(2» orbits are spheres 
S;: = {FESU(2):F2 = ,-2}, r;;oO. Let us consider now the 
structure of supp Eg • 

Lemma 4.2: E: = supp Eg = {FESU(2)*:F2<!}. • 
Proof The spectra of the generators X';J (j = 1,2,3) are 

the two-point sets {112, - 112}. One can use the Ad* invar
iance of E, the spheric form of the Ad* orbits, as well as the 
convexity of E,66 to obtain the result. Q.E.D. 

The quantum evolution is determined by the elements 

S~: = dFQ= - 2ES3 - U(FISI + F2S2 ), FEg*, 
(4.16 ) 

of the Lie algebra g. Writing X(S): = X,;, the corresponding 
(one-spin) "Bogoliubov-Haag" generator in the represen
tation Uis 

(4.17) 

The evolutiuon of arbitrary quantal observables (or states) 
can be calculated now in the way described in the point (iv) 
above, i.e., by solving a nonautonomous linear ordinary dif
ferential equation. 

Let us write down the "consistency condition" for val
ues F w ESU (2) * of classical macroscopic quantities in extre
mal KMS states of the considered BCS model. Let n(F) be 
the three-dimensional unit vector with coordinates 

,1F n .= __ 2_ 
2' a(F) , 

with 

a(F): = ~(? +,1 2F+F_. 

E 
n3: = a(F)' (4.18 ) 

( 4.19) 

If the components of the three-dimensional matrix-valued 
vector (7 are the Pauli matrices, we can write X(S~) 
= - a(F)n(F) '(7. The "consistency condition" is satisfied 

by the Gibbs state (J)~ on 5t' (C) 2 corresponding to the Ham
iltonian H: = X(S~) according to (3.1) iff the relation 

(J)~ (X,;) = F(S) (4.20) 

is fulfilled. This is the condition for F = Fw' By taking 
S: = Sj (j = 1,2,3) to be the elements of the chosen basis of 
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~u(2), the condition (4.20) can be rewritten in the form of 
the equations 

nj (F",)th(f3a(F",» = 2F",(Sj ), j= 1,2,3. (4.21) 

These conditions are satisfied by the following two sets S n 

and Ss of pure classical macroscopic states F: = F",: 

normal: Sn: = {FE~U(2)*:F + = 0,F3 = !th(/JE)} 

for any 0 <P < 00, E> 0, A > O. • 

superconducting: Ss: = {FE~U(2)*:F3 = dA, 

2a(F) = A th(f3a(F»}, 

for 0 < 2E<A, 

if the positive temperature is p -I < Tc: = E[ th- I 

X (2d A)] -I; the setSs is a circle lying in the plain F3 = d A 
in ~u(2)* with the positive radius IF+I, and the center at 
~=~=Q • 

The set Sn corresponds to the "normal conducting 
phase," and the set Ss describes eqUilibrium values F", for the 
"superconducting phase." 17 The local quantal Hamiltonians 
(4.10) as well as the classical Hamiltonian (4.12) are all 
invariant with respect to arbitrary rotations around the third 
axis [in the chosen basis ofR3 = ~u(2)]. The same is true for 
the points FESn • But the points FESs corresponding to the 
subcritical values of the temperature are not invariant with 
respect to the arbitrary rotations <pES I around the 3rd axis: 
we have F + #0 for these points. Hence, the symmetry is 
broken in the superconducting phase. Let us note, that the 
thermodynamic limit (J) of local Gibbs states for subcritical 
p -I is given by the integral (2.19) of the factor-KMS states 
J( over the circle Ss (3 F,,) with the (<p invariant, <pES I) 
Lebesgue measure /-l"'. 16,17,30 

B. A model of Josephson junction 

This model is constructed by combining two copies of 
the models described in Sec. II A. The behavior of its macro
scopic quantities for the system interacting with a thermal 
reservoir was partly examined already in the classical pa
per lS by Hepp and Lieb.67 The group G is now the direct 
product SU (2) a X SU (2) b (here we distinguish the two 
copies of the group and of other related objects by an index 
cE{a;b} ), and it is represented in .Y (C~ ® C~ ) by the tensor 
product U(SU(2)a}® U(SU(2h} of the two two-dimen
sional representations U(SU (2) a} and U(SU (2) b}' The 
group is now six-dimensional, and the elements SCj 
Eg: = ~u(2) a Ea ~u(2) b (c = a,b;j = 1,2,3) of a basis of the 
Lie algebra 9 satisfy the commutation relations 

[ f;- f;- ] - 8 E f;- (no summation over c), '::>cj,'::>dk - cd jkl'::>cl 

c,dE{a;b}, andj,k,{l) = 1,2,3. (4.22) 

For the corresponding coordinate functions FCj: = F(Scj ) of 
the classical (generalized) phase space g*, and for the corre
sponding complex functions Fc ± : = Fcl ± iFc2 we obtain 
the Poisson brackets 

{Fa+ ,Fa_ } = 2iFa3 , {Fa3 ,Fa±} = ± iFa± ' (4.23) 

and similarly for (lI--+b. Clearly, {Faj ,Fbk } = O. The dynam
ics is given by the classical Hamiltonian 
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-AbFb+Fb_ +K(Fa+Fb_ +Fa_Fb+)· 
(4.24) 

Here Ec, Ac, and K are some real constants. The correspond
ing equations of motion (4.5) have the form: 

Fa+ = 2i[ (AaFa3 - Ea )Fa+ - KFa3Fb+ ], (4.25a) 

Fb+ =2i[(AbFb3 -Eb)Fb+ -KFb3 Fa+], (4.25b) 

Fa3 = - iK(Fa+ Fb_ - Fa_ Fb+ ) , (4.25c) 

Fb3 = iK(Fa+ Fb_ - Fa_ Fb+ ) . (4.25d) 

It might be instructive to compare the derivation and the 
form of Eqs. (4.25) with the derivation and the form of the 
corresponding equations in Ref. 19. Let us formulate some 
facts on the classical motion described by these equations. 

Proposition 4.3: The classical equations (4.25) on the 
manifold g* (with g: = ~u(2) Ea~u(2)} [corresponding to 
the Poisson structure (4.23) and to the dynamics given by 
the Hamiltonian Q from (4.24) ] are completely integrable24 

for almost all (with respect to the Lebesgue measure) values 
of parameters, e.g., for K#O. They have the following inde
pendent (global) integrals of motion: 

Q, F3: = Fa3 + Fb3 , 

~: = F~I + F~2 + F~3' ~: = FL + F~2 + F~3 .• 

Proof: By direct calculations from Eqs. (4.25). Q.E.D. 
The integrals ra,b are of "kinematical character": they 

determine the Ad* orbit on which the motion is realized, i.e., 
the Cartesian product of two spheres S2 with radii ra,b form
ing the symplectic manifold for the actual motion of the sys
tem. These integrals are present for an arbitrary Poisson flow 
on our g*, hence they are independent of the Hamiltonian 
(?Eeoc (g*). The integrals Q and F3 are the "dynamical" 
ones: their existence leads to the integrability of the system 
on the four-dimensional symplectic manifold S;Q XS;b' One 
can use a Sard's theorem24 to prove integrability for almost 
all values of the integrals of motion. 

The "consistency condition" (4.8) is formulated with a 
help of the Bogoliubov-Haag Hamiltonian X(s~) of the 
present model, 

X(s~) = - Ea~ + (KFb I - AaFal )01 

+ (KFb2 - AaFa2)~ - Ebo1 

+ (KFal - AbFb I )01' + (KFa2 - AbFb2 )~ 

= - a(F)na.o" - b(F)nb'if, (4.26) 

where 

a(F)2: = ~ + (KFb I - AaFal )2 + (KFb2 - AaFa2)2 , 

b(F)2: = ~ + (KFal - AbFb I )2 + (KFa2 - AbFb2 )2 , 

and the three-vectors na and nb have components 

1 ~ 
n): = a(F) (AaFaj - KFbj ), j = 1,2; n~: = a(F) ; 

1 b, _ Eb 
nJ: = --(AbFbj - KFaj ), j = 1,2; n3· - --. 

b(F) b(F) 

Using the commutativity [o",if] = 0, the standard calcu-
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lations with the u-matrices lead to the following form of the 
"consistency condition": 

2Faj = n; th(,8a(F», 

2Fbj = nJth(,8b(F», j= 1,2,3. (4.27) 

The solutions {Fa ;Fb }~u (2)· ED ~u (2)· ofthese equations 
give, according to Proposition 3.10, classification of extre
mal KMS states at positive temperatures /3 - I. We postpone 
the detailed analysis ofEqs. (4.25) and (4.27) to another 
paper. 

Note 4.4: Let us finish with some additional historical 
notes: In our considerations and calculations, we have exten
sively used the algebraic description of classical macroscopic 
quantities of the investigated infinite quantal dynamical sys
tems. Such a description of classical "observables at infinity" 
was exploited in modeling the measurement process in quan
tum theory,68 by trials of obtaining some answer to the old 
interpretation problem of the theory-the "measurement 
problem" in quantum physics. The mathematical back
ground for these investigations was formulated69 soon after 
the formulation of basic principles of quantum mechanics. 
In the present time the physically most interesting connec
tions of the described phenomena and of the used mathemat
ical formalism might be found, perhaps, in quantum field 
theory and its applications in particle and solid-state phys
ics. 70 
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ERRATUM 

Erratum: Some results from a Mellin transform expansion for the heat kernel 
[J. Math. Phys. 30, 1226 (1989)] 
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(Received 19 May 1989; accepted for publication 28 July 1989) 

After the proofs of our above mentioned paper were cor
rected, we noted that even if the list of singularities of See
ley'skemel l K(s;x,x) ats = (j - D)/m, j = 1,2, ... includes 
the point s = 0, corresponding to j = D (D integer), the 
function K(s;x,x) is effectively not singular at s = 0, as a 
result of theorem 4 of Seeley. I This allows us to write the 
asymptotic expansion (1,2) in the form 

a) Present address: Centre de Physique Theorique. Ecole Poly technique, 
91.128. Palaiseau. France. 

00 

F(t;x,x) = - L a/(x)t/ 
/~o 

_ ~ r (D,:- j) Rj(x)t(j-Dl/m, (1) 

where a/(x) = - K(/;x,x). The sum overj is restricted to 
the condition (j - D)/m =1= 1,2, .... 

Then the formula for the anomaly (4.2) in arbitrary 
(integer) dimension D may be written in the simpler form, 

A = q Tr{(A + B) [ao(x) + Po(x,x)]}. (2) 

'R. T. Seeley, Am. Math. Soc. Proc. Symp. Pure Math. 10.2885 (1967). 
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